第二章 典型环节的数学模型(2-1)讲解
合集下载
第二章数学模型-simple讲述

d 2 d dM L JLa 2 (JRa fLa) (fRa C M C e) C M U a La Ra M L dt dt dt 若以为输出量,则根据关系 d 可得相应运动方程。 dt
§2-2 非线性运动方程的线性化
• 定义:将非线性微分方程在一定的条件 下转化为线性微分方程的方法。 • 小偏差线性化: 基本假设——变量偏离其预期工作点的 偏差甚小,这种线性化通常称为小偏差 线性化。
划分环节
恒温箱自动控制系统
由若干个元件相互配合起来就构成一个完整的控制系统。 系统是否能正常地工作,取决各个物理量之间相互作用 与相互制约的关系。
t
u2
u
t
ua
n
v
u
写出每个环节(元件) 运动方程式 找出联系输出量与输入量的内部关系,并确定反 映这种内在联系的物理规律。列写运动方程的关 键要了解元件或系统所属学科领域的有关规律, 而不是数学本身。 例如:机械运动——牛顿定理、能量守恒定理 电学——欧姆定理、基尔霍夫定律 热学——传热定理、热平衡定律 数学上的简化处理,(如非线性函数的线性化, 考虑忽略一些次要因素;参数时变)。 注:数学模型的准确性和简化的矛盾。
线性定常系统的微分方程一般表达式为
设描述系统的微分方程 为: (p n a0 p m n 1 a1 p n2 a n 1 p a n ) x 2 ( t )
( b0 p
b1 p
m 1
bm 1 p bm ) x1 ( t )
其中,
x2(t )为输出量, x1(t )为输入量
ky
m
f
dy dt
0
y
第2章系统的数学模型02精选全文完整版

的传递函数。
图2-13 油缸-负载系统
解:液压缸的作用力F
F pA
式中p—进油压力
A—液压缸工作面积
该力用于克服阻尼负载和弹性负载,即
dx
F Bc
kx
dt
式中x —液压缸输出位移
Bc—阻尼系数
K —弹簧刚度
合并以上两式,得液压缸的运动方程式:
dx
Bc
kx Ap
dt
传递函数为
A
4
dt
dt
dt
dt
解:按(2-53)式,则传递函数为
Y ( s)
6s 7
(1) G ( s )
3
X ( s) 5s 2s 2 s 2
(2) G ( s )
Y (பைடு நூலகம்s)
4
4
X ( s) s 2s 3 6s 2 3s 2
二、典型环节的传递函数
bm s m bm 1 s m 1 ...... b1 s b0
dt
dx
b1
b0 x
dt
(2-51)
式中,n≥m; an、bm均为系统结构参数所决定的定
常数 。(n,m=0、1、2、3…)
如果变量及其各阶导数初值为零,取等式两边拉
氏变换后得
an s nY ( s ) an1 s n1Y ( s ) a1 sY ( s ) a0Y ( s )
X(s)=0 系统的特征方程,→ 特征根。
特征方程决定着系统的动态特性。
X(s) 中s的最高阶次等于系统的阶次。
b0
当s=0时 G (0) K 系统的放大系数或增益
a0
!从微分方程的角度看,此时相当于所有的导
图2-13 油缸-负载系统
解:液压缸的作用力F
F pA
式中p—进油压力
A—液压缸工作面积
该力用于克服阻尼负载和弹性负载,即
dx
F Bc
kx
dt
式中x —液压缸输出位移
Bc—阻尼系数
K —弹簧刚度
合并以上两式,得液压缸的运动方程式:
dx
Bc
kx Ap
dt
传递函数为
A
4
dt
dt
dt
dt
解:按(2-53)式,则传递函数为
Y ( s)
6s 7
(1) G ( s )
3
X ( s) 5s 2s 2 s 2
(2) G ( s )
Y (பைடு நூலகம்s)
4
4
X ( s) s 2s 3 6s 2 3s 2
二、典型环节的传递函数
bm s m bm 1 s m 1 ...... b1 s b0
dt
dx
b1
b0 x
dt
(2-51)
式中,n≥m; an、bm均为系统结构参数所决定的定
常数 。(n,m=0、1、2、3…)
如果变量及其各阶导数初值为零,取等式两边拉
氏变换后得
an s nY ( s ) an1 s n1Y ( s ) a1 sY ( s ) a0Y ( s )
X(s)=0 系统的特征方程,→ 特征根。
特征方程决定着系统的动态特性。
X(s) 中s的最高阶次等于系统的阶次。
b0
当s=0时 G (0) K 系统的放大系数或增益
a0
!从微分方程的角度看,此时相当于所有的导
自动控制原理第二章数学模型精选全文完整版

第二章 控制系统的数学模型
第二章 控制系统的数学模型
基本要求
§ 2-1 引言 § 2-2 系统微分方程的建立 § 2-3 非线性微分方程的线性化 § 2-4 传递函数 (Transfer Function) § 2-6 典型环节及其传递函数 § 2-7 系统的动态结构图 § 2-8 信号流图和梅逊公式
Ea —
基尔霍夫
电枢反电势: Ea ke
— 楞次定律
电磁力矩: M D kmia
— 安培定律
力矩平衡:
d
J dt M D M L
— 牛顿定律
其中 ke (V/rad/s)为反电势系数, km (N •rad/s)为电磁转矩
系数。
消去中间变量 ia , Mm , Ea 可得:
La J
d 2 (t)
di(t ) ur (t) L dt Ri(t) uc (t)
i(t) C duc (t) dt
LC
d
2uc (t ) dt 2
RC
duc (t) dt
uc
(t)
LC
d
2uc (t) dt 2
RC
duc (t) dt
uc
(t)
ur
(t)
返回子目录
力-电压相似量
机械 电气
阻尼 f 电阻 R
力 F 电压 U
dt 2 Ra J
d(t)
dt
k m ke (t )
kmua (t)
La
dM L (t) dt
RaM L (t)
在工程应用中,由于电枢电感La很小,通常忽略不计。则:
Tm
d(t)
dt
(t)
K1ua (t)
K2M L (t)
第二章 控制系统的数学模型
基本要求
§ 2-1 引言 § 2-2 系统微分方程的建立 § 2-3 非线性微分方程的线性化 § 2-4 传递函数 (Transfer Function) § 2-6 典型环节及其传递函数 § 2-7 系统的动态结构图 § 2-8 信号流图和梅逊公式
Ea —
基尔霍夫
电枢反电势: Ea ke
— 楞次定律
电磁力矩: M D kmia
— 安培定律
力矩平衡:
d
J dt M D M L
— 牛顿定律
其中 ke (V/rad/s)为反电势系数, km (N •rad/s)为电磁转矩
系数。
消去中间变量 ia , Mm , Ea 可得:
La J
d 2 (t)
di(t ) ur (t) L dt Ri(t) uc (t)
i(t) C duc (t) dt
LC
d
2uc (t ) dt 2
RC
duc (t) dt
uc
(t)
LC
d
2uc (t) dt 2
RC
duc (t) dt
uc
(t)
ur
(t)
返回子目录
力-电压相似量
机械 电气
阻尼 f 电阻 R
力 F 电压 U
dt 2 Ra J
d(t)
dt
k m ke (t )
kmua (t)
La
dM L (t) dt
RaM L (t)
在工程应用中,由于电枢电感La很小,通常忽略不计。则:
Tm
d(t)
dt
(t)
K1ua (t)
K2M L (t)
自动控制原理课件 第二章 线性系统的数学模型

c(t ) e
dt Leabharlann t
c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0
0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10
自动控制理论_哈尔滨工业大学_2 第2章线性系统的数学模型_(2.4.1) 典型环节的传递函数PPT

0
t
积分环节在单位阶跃输入下的响应
例:积分器
i2
C
ui R
_
i1
uo
+i1 i2Fra bibliotek1 Rui
(t)
C
d dt
u0
(t )
uo
(t)
1 RC
ui (t)dt
G(s) Uo (s) 1 1 Ui (s) RC s
二、几种典型环节的数学模型
4.微分环节
c(t) d r(t)
斜率1/T
0τ
t
例: • 汽车加速、火箭升空; ——作用力和输出速度
• 加热系统; ——加热量和温度变化
• 励磁回路; ——输入电压和励磁电流
惯性大小用τ来量度。 ——τ越大,接近目标值越慢 ,惯性越大;τ越小,接近 目标值越快,惯性越小。
几乎任何物理系统都包含 大大小小的惯性。
二、几种典型环节的数学模型
滞后环节
二、几种典型环节的数学模型
1.比例环节
y(t) Ku(t)
G(s) Y(s) K U (s)
K——称为比例系数或放大系数,也称为环节的增益,有量纲。
输出量无失真、无滞后、成比例地复现输入。
• 无弹性变形的杠杆;
——作用力和输出力
• 忽略非线性和时间迟后的运算放大器;
——比例放大器的输入电压和输出电压
τ=RC—时间常数
当 r(t) 1(t) 时, R(s) 1
s
Y(s) s 1 1 s 1 s s 1
t
y(t) e
t=0时,输出幅值为1;
t→∞时,指数衰减至0。
二、几种典型环节的数学模型
微分环节微分方程传递函数变化曲线方框图

出量有关的各项放在方程的左边;
各导数项按降幂排列; 将方程的系数通过元件或系统的参数化成具有
一定物理意义的系数。
例1 设有由电感L,电容C 和电阻R组 成的电路,如图所示. 试求出以输出电 压U2为输出变量和以输入电 压U1为输 入变量的运动方程。
R
L
U1 i
U2 C
解:根据基n 霍夫定律有
对数学模型进行近似而得到的。以后各章所讨 论的系统,均指线性化的系统。
一、数学模型
数学模型是描述系统动态特性的数学表
达式;可有多种形式。在经典理论中, 常用的数学模型是微(差)分方程,结 构图,信号流图等;在现代控制理论中, 采用的是状态空间表达式。结构图,信 号流图,状态图是数学模型的图形表达 形式。
式的次数N大于等于分子多项式的次数
M ,N M 。
传递函数写成
G(S)
k
(S - Z1)(S (S - P1)(S
Z2)......(S P2)......(S
Zm) Pn )
的形式,则 Z1, Z2 , Z3 Zm和
为G(S)的零点和极点。
P1,
P2
,
P3
Pn
不同物理结构的系统可以有相同的传递函数。
性微分方程的方法,称非线性微分方程的线 性化。
小偏差线性化:非线性微分方程能进行线性化的一
个基本假设上是变量偏离其预期工作点的偏差甚小, 这种线性化通常称为小偏差线性化。
§2-3 传递函数 一、定义
初始条件为零时,线性定常系统或元件输出
信号的拉氏变换与输入信号的拉氏变换的比, 称为该系统或元件的传递函数。
三、传递函数的求法
工程上,通常采用拉普拉斯变换来求解
各导数项按降幂排列; 将方程的系数通过元件或系统的参数化成具有
一定物理意义的系数。
例1 设有由电感L,电容C 和电阻R组 成的电路,如图所示. 试求出以输出电 压U2为输出变量和以输入电 压U1为输 入变量的运动方程。
R
L
U1 i
U2 C
解:根据基n 霍夫定律有
对数学模型进行近似而得到的。以后各章所讨 论的系统,均指线性化的系统。
一、数学模型
数学模型是描述系统动态特性的数学表
达式;可有多种形式。在经典理论中, 常用的数学模型是微(差)分方程,结 构图,信号流图等;在现代控制理论中, 采用的是状态空间表达式。结构图,信 号流图,状态图是数学模型的图形表达 形式。
式的次数N大于等于分子多项式的次数
M ,N M 。
传递函数写成
G(S)
k
(S - Z1)(S (S - P1)(S
Z2)......(S P2)......(S
Zm) Pn )
的形式,则 Z1, Z2 , Z3 Zm和
为G(S)的零点和极点。
P1,
P2
,
P3
Pn
不同物理结构的系统可以有相同的传递函数。
性微分方程的方法,称非线性微分方程的线 性化。
小偏差线性化:非线性微分方程能进行线性化的一
个基本假设上是变量偏离其预期工作点的偏差甚小, 这种线性化通常称为小偏差线性化。
§2-3 传递函数 一、定义
初始条件为零时,线性定常系统或元件输出
信号的拉氏变换与输入信号的拉氏变换的比, 称为该系统或元件的传递函数。
三、传递函数的求法
工程上,通常采用拉普拉斯变换来求解
自动控制原理:第二章 控制系统数学模型

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入
典型环节的数学模型

任何一个复杂的系统,总可以看成由一些典型环节组合而成的。
掌握这些典
型环节的特点,可以更方便地分析较复杂系统内部各单元的联系。
典型环节有比较环节、积分环节、惯性环节、微分环节、振荡环节等,分别介绍如下。
一、比例环节
二、积分环节
三、理想微分环节
四、惯性环节
五、振荡环节
特别注意:当0〈§〈1时称为振荡环节若§≥1认为是两个惯性环节
七、延迟环节(又称纯滞后环节)
τ0:纯延迟时间
在延迟时间很小的情况下,延迟环节可用一个小惯性环节来代替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率特性: G(j ) C(j ) K
R(j ) jT
11
其它举例
n(t) D
x (t )
N (s)
D
X (s)
s
i (t ) u(t)
I (s)
1
U (s)
Cs
12
4、惯性环节(又叫非周期环节)
特点:此环节中含有一个独立的储能元件,以致对突变的输 入来说,输出不能立即复现,存在时间上的延迟。
6
例 RC电路
i (t )
C
ur (t)
R
uc (t)
设:输入——ur(t) 输出——uc(t)
u r
(t)
1 c
i(t)dt i(t)R
i(t) uc (t) R
消去i(t),得到运动方程:
ur (t)
1 RC
uc (t)dt uc (t)
传递函数: G(s) Uc (s) Tcs
R(s)
1
C(s)
Ts 1
运动方程: T dc(t) c(t) Kr(t)
dt
传递函数: 频率特性:
G(s) K Ts 1
G(jω ) K jTω 1
13
例:直流电机
输入量: ud ——电枢电压 输出量: id ——电枢电流 动态方程如下:
Ld
d dt
id
Rd id
ud
第二章 物理系统的数学模型
第一节 控制工程的数学方法 (Laplace变换)
第二节 物理系统的数学模型 第三节 非线性数学模型的线性化
1
第四节 典型环节及其传递函数
1、比例环节(又叫放大环节)
R(s)
特 点:输出量按一定比例复现输入量, 无滞后、失真现象。
C(s)
K
运动方程 : c(t)=Kr(t) K——放大系数,通常都是有量纲的。
r (t )
c (t )
R3
ic (t)
i1 (t)
r(t) R1
R(s)
1
R1Cs
C(s)
运动方程:
传递函数:
c(t)
1 C
ic (t)dt
1 R1C
r(t)dt
1 T
r(t)dt
G(s) C(s) 1 K R(s) Ts s
(T=R1C)
EL (s)
Ls
9
3、积分环节
特点:输出量的变化速度和输入量成正比。
R(s)
1
C(s)
s
运动方程: dc(t) Kr(t )
dt
传递函数:
G(s) K s
频率特性:
G(jω ) K jω
10
例:积分电路
输入为r(t),输出为c(t)
ic (t) C
i1(t ) R1
-
+K
传递函数: G(s) C(s) K
R(s)
C(j )
频率特性:
G(j )
K
R(j )
2
例: 输入:(t)——角度 输出:u(t)——电压
E——恒定电压
+ E
-
u(t)
+
(t)
(s)
U (s)
K
运动方程: u(t)=K(t) 传递函数: G(s) U(s) K
(s)
K——比例系数,量纲为伏/弧度。
频率特性: G(j)=K
3
例:输入:n1(t)——转速 输出:n2(t)——转速
Z1
n1 (t )
n2 (t) Z2
Z1——主动轮的齿数 Z2——从动轮的齿数
N1 s
z1
N2 s
z2
运动方程: 传递函数:
n 2 (t)
z1 z2
n1 (t)
即
d
d dt idud源自Rdid+
d
Ld Rd
ud
D
传递函数:
1 G(s) Id (s) Rd
Ud (s) ds 1
式中 Ld ——电枢回路电感; Rd ——电枢回路电阻; τd ——电枢绕组的时间常数;
14
其他一些例子
L
r(t)
R c(t)
R(s)
1
C(s)
L s 1
R
f (t)
v (t )
M
B
1
F (s)
V (s)
B
J s 1 B
B
T (t)
(t)
J
T (s)
1
(s)
B
J s 1 B
15
5、振荡环节
特点:包含两个独立的储能元件,当输入量发生变化时,两个 储能元件的能量进行交换,使输出带有振荡的性质。
R(s)
1
C(s)
T 2s2 2 Ts 1
运动方程:
T2
R
L
+
r(t)
i(t)
C
+ c(t)
_
__
解:
r(t) L di(t) ri(t) 1 i(t)dt
dt
C
c(t)
1 C
i(t)dt
消去中间变量i(t)得到运动方程: LC d2c(t) RC dc(t) c(t) r(t)
dt 2
dt
传递函数:
G(s)
1
LCs2 RCs 1
G(s) N 2 (s) z1 K N1(s) z 2
频率特性:
G(jω ) N2 (jω ) z1 K N1(jω ) z2
4
其它一些比例环节
R2
R1 -
r (t )
r1
r2
r (t )
c (t )
+K
c (t ) R3
+ Ec
R
ic (t)
ib (t)
R(s)
r2
Cs
频率特性:
G(j ω)
输 出: uf(t)——测速发电机的电枢电压 运动方程:
uf
(t)
K
d (t)
dt
传递函数: G(s)=Ks 频率特性: G(j)=jK
8
其他举例
i(t) C uc (t)
U c (s)
I (s)
Cs
i(t) C
u(t)
R
U (s)
Cs
+ I(s)
1
+
R
i (t )
L
eL (t)
I (s)
r1 r2
R(s)
R2
R1
Cs
Ib (s)
Ic (s)
5
2、微分环节
特 点:动态过程中,输出量正比于输入量的变化速度。
R(s)
S
C(s)
运动方程:
C(t) K dr(t) dt
传递函数: 频率特性:
G(s) C(s) KS R(s)
G(jω ) C(jω ) jKω R(jω )
d 2c(t) dt2
2ζT
dc(t) dt
c(t)
Kr(t)
传递函数:
R(s)
1
C(s)
T 2s2 2 Ts 1
式中:——阻尼比, T——振荡环节的时间常数。
频率特性:
G( j ) C( j )
1
R( j ) (1 T 2 2 ) j2 T
16
例:RLC电路
U r (s) Tcs 1
(Tc=RC)
当Tc<<1时,传递函数又可表示成: G(s)
Uc (s) U r (s)
Tcs
频率特性:G(j)=jTc——此时可近似为纯微分环节。
7
例:测速发电机CF的数学描述
ud (t)
(t)
D
F
u f (t)
输 入: (t)——电动机D转子(与测速发电机同轴)的转角