直流系统短路计算
短路电流及其计算

短路电流及其计算短路电流是指在电路中,当发生短路故障时,电流会迅速增大到很高的数值。
短路故障是指电路中的正、负极之间或者两个不同元件之间发生距离非常短的导通,导致电流异常增大。
短路电流的计算是为了评估电路中的设备或元件的安全工作能力,以确保其能够承受短路故障所产生的巨大电流,并选择合适的保护装置来防止其发生。
短路电流的计算方法根据电路的类型和复杂程度有所不同。
下面针对不同情况进行具体说明。
1.直流电路的短路电流计算方法:在直流电路中,由于电流只会沿着一条路径流动,所以短路电流的计算相对简单。
可以通过欧姆定律计算得到。
短路电流(Isc)= 电源电压(Us)/ 短路电阻(Rs)式中,Us为电源电压,Rs为短路电阻的阻值。
2.单相交流电路的短路电流计算方法:在单相交流电路中,短路电流的计算稍微复杂一些。
需要考虑电源电压、短路阻抗和负载阻抗之间的关系。
a) 短路电流(Isc)= 电源电压(Us)/ 短路阻抗(Zs)b) 短路电流(Isc)= 电源电压(Us)/ (短路阻抗(Zs)+ 负载阻抗(Zl))式中,Us为电源电压,Zs为短路阻抗,Zl为负载阻抗。
3.三相交流电路的短路电流计算方法:在三相交流电路中,短路电流的计算需要考虑三相电源之间的相位差、各相的电流大小以及负载阻抗和短路阻抗之间的关系。
a) 短路电流(Isc)= 母线电压(U)/ 短路阻抗(Zs)b) 短路电流(Isc)= 母线电压(U)/ (短路阻抗(Zs)+ 负载阻抗(Zl))式中,U为母线电压,Zs为短路阻抗,Zl为负载阻抗。
需要注意的是,短路电流的计算一般是在额定工况(即正常运行工况)下进行的。
此外,在实际的电路设计中,还需要考虑短路电流的持续时间、短路电流对设备和元件的热稳定性造成的影响等因素。
短路电流的计算对于电气工程师来说是非常重要的,它能够帮助工程师评估不同元件或设备的安全性能,同时也能够指导选择合适的保护措施,以最大程度地减少短路故障对电路和设备的损坏。
电力系统短路电流计算

电力系统的短路计算 第 4 篇 附录 1
钢质海船入级规范
为计算短路电流,将运行中的各台发电机和各台电动机综合成一台等效发电机,该等效发电机馈 送的短路电流等效于各台发电机和各台电动机馈送的短路电流之和。
1.1.2.8 等效电动机 为简化短路电流的计算,将运行中除大电动机以外的各台电动机综合成一台等效电动机,该等效 电动机馈送的短路电流等效于上述各台电动机馈送的短路电流之和。 1.1.2.9 大电动机 任何额定输出功率大于 100kW,或者大于系统中最大发电机额定功率的 25% 的电动机。
电力系统的短路计算 第 4 篇 附录 1
钢质海船入级规范
(4) 时间和时间常数见表 1.1.3.2(4)。
时间和时间常数符号
表 1.1.3.2(4)
符号
名称
单位
t
以短路发生时刻为起点的持续时间
ms
tx
以短路发生时刻为起点的某一规定时间
ms
T″d、Td′ 同步发电机直轴超瞬态和瞬态短路时间常数
ms
T″d*、Td′* 等效发电机直轴超瞬态和瞬态短路时间常数
符号
E″qo E’ qo E″M Ur UrM UrT2 uK uR uX
电压符号
名称 短路发生前发电机超瞬态交轴电动势 短路发生前发电机瞬态交轴电动势 电动机超瞬态电动势 系统额定线电压 电动机额定线电压 变压器次级额定线电压 以百分比表示的变压器短路电压 以百分比表示的变压器短路电压的电阻分量 以百分比表示的变压器短路电压的电抗分量
1.2.2 同步电机馈送的短路电流计算
1.2.2.1 概述
(1) 在船舶和海上设施的电气装置中使用的同步电机,包括同步发电机、同步电动机和调相机。
多馈入直流短路比计算例题

多馈入直流短路比计算例题摘要:I.引言- 多馈入直流短路比的计算方法II.多馈入直流短路比的计算方法- 计算原理- 具体步骤1.确定电源类型和数量2.计算每条馈线的阻抗3.计算短路电流4.计算短路比III.例题解析- 题目描述- 解题步骤1.确定电源类型和数量2.计算每条馈线的阻抗3.计算短路电流4.计算短路比5.得出结论IV.总结- 多馈入直流短路比计算的重要性- 计算方法的适用范围正文:多馈入直流短路比计算在电力系统中有着重要的应用,其计算方法的掌握对于理解电力系统的运行特性及进行相关设计工作具有重要意义。
下面,我们通过一个例题来详细解析多馈入直流短路比的计算方法。
例题描述:某电力系统中,有3个直流电源,分别为600V、400V和200V,通过3条馈线分别连接到负载。
现需要计算该电力系统的多馈入直流短路比。
解题步骤如下:1.确定电源类型和数量:本例中有3个直流电源。
2.计算每条馈线的阻抗:假设馈线阻抗分别为Z1、Z2和Z3。
3.计算短路电流:在每条馈线上分别施加短路电流,假设短路电流分别为I1、I2和I3。
4.计算短路比:根据短路电流和电源电压计算短路比,假设短路比分别为S1、S2和S3。
计算过程如下:首先,根据电源电压和馈线阻抗计算短路电流:I1 = 600 / Z1I2 = 400 / Z2I3 = 200 / Z3然后,根据短路电流计算短路比:S1 = I1 / (600 + I1 * Z1)S2 = I2 / (400 + I2 * Z2)S3 = I3 / (200 + I3 * Z3)最后,将计算得到的短路比进行比较,得出结论。
通过以上步骤,我们可以得到该电力系统的多馈入直流短路比。
短路电流的计算方法

短路电流的计算方法短路电流是指电路中出现故障时,电流异常增大的现象。
短路电流的计算方法包括直流短路电流的计算和交流短路电流的计算。
一、直流短路电流的计算方法:直流短路电流的计算是为了确定短路电流对电路和设备的影响,以保证电路和设备安全。
直流短路电流的计算方法主要有以下几种:1.简化计算法:直流电路的短路电流可以通过简化计算法进行估算,根据欧姆定律和功率定律,可以通过电压和总电阻来估算短路电流。
假设短路电流源为电压为U、内阻为Z的电源电路,电源电阻为R,负载电阻为RL,总电阻为RT=RL+R,则短路电流IL=U/(Z+RT)。
2.等效电源法:将电源电路和负载电路转化为等效电源和等效负载电阻,然后根据欧姆定律计算短路电流。
等效电源法适用于简化电路和负载电路比较复杂的情况。
3.发电厂贡献法:针对大型电力系统,可以根据发电机的参数和系统的接线方式来计算各个节点的短路电流。
发电厂贡献法可以精确计算节点的短路电流,但计算过程较为复杂。
二、交流短路电流的计算方法:交流短路电流是指交流电路中出现短路时的电流。
交流短路电流的计算方法包括对称分量法和电流源法等。
1.对称分量法:根据对称分量法,交流短路电流可以分解为正序、负序和零序三个分量。
正序短路电流通常是三相对称的,可以通过正序电压和正序阻抗来计算。
负序短路电流和零序短路电流可以通过负序电压和零序电压以及负序阻抗和零序阻抗来计算。
2.电流源法:电流源法是一种常用的计算交流短路电流的方法,将电源电压和电源阻抗转化为电流源和阻抗的组合,然后根据电流传输方向计算短路电流。
根据基尔霍夫电流定律,在每个节点上列出节点电流方程组,然后根据节点电流的关系求解未知的短路电流。
3.电抗补偿法:电抗补偿法是通过在电路中添加合适的电抗元件,来减小电路的短路电流。
通过选取合适的电抗元件的参数,可以使得电路的短路电流降低到安全范围内。
总之,短路电流的计算方法根据电路的特点和问题的需求选择不同的方法,通过对电压、电流和阻抗的计算和分析,来确定短路电流的数值,以保证电路和设备的安全。
直流分量计算结果

系统对称短路电流I SYS (KA)50系统对称短路电流分量峰值
I ac =V2I SYS (kA)70.71068断路器出头分离时间t cp (ms)
75直流分量I dc (KA)
45.50585直流分量衰减时间常数τ(ms)
170.1623直流分量百分数%
64.35499系统元件短路电抗X(Ω)
0.15495系统元件电阻R(Ω)0.0029
根据IEEE_C37.013-1997(发电机断路器)规范及《电力工程电气设计手册》计算,直流分量百
分数与短路电流大小无关,只与系统电阻与电抗及电网频率有关!%=(I dc /I ac )x100=电抗见发电机参数表X d ''然后转成欧姆见右边公式发电机出口断路器直流分量选型
根据计算输入需要根据分闸时间确认输入+1/2周波
τ=(X/wR)*1000:(w=2πf=314;X系统元件短路阻抗,R系统元件电阻)发电机定子直流电阻。
直流系统短路电流计算及空开级差配合

认识问题(二)
4、设计规程规定的允许2组蓄电池短时并联,是指切换过程 中的短时并联是有条件的。同时规定了不允许任何支路馈 线形成的并联。理解为可能出现的误操作和避免不可控制 的环流。
5、根据有关规定:双重化的要求是除了继电保护和高压断 路器跳闸线圈外,蓄电池直流电源也应该是双重化配置。 但供电电缆可由直流接地检测和短路保护检出故障,不需 双重化。因此简化接线,辐射供电是正确设计。
相关标准的规定
• 《直流电源运行规范》 • 第十二条 运行管理 • (8)直流熔断器和华侨断路器应采用质量合格的产品,
其熔断体或定值应按有关规定分级配置和整定,并定期极 性核对,防止因其不正确动作而扩大事故。 • (9)直流电源系统同一条支路中熔断器与空气断路器不 应混用,尤其不应在空气断路器的下级使用熔断器。防止 在回路故障时失去动作选择性。严禁支路回路使用交流空 气断路器。 • 《直流电源系统技术监督》 • 第二十七条 应加强直流系统熔断器的管理,熔断器应按 有关规定分级配置。一个厂、站的直流熔断器或自动空气 断路器,原则上应选用同一厂家系列产品。自动空气断路 器使用前应进行特性和动作电流抽查。同一条支路上直流 熔断器或自动空气断路器不应混合使用,尤其不能在自动 空气断路器之后(下级)再使用熔断器。
二、造成直流系统级差不配合的主要原因 和解决的措施:
一)、级差配合问题的主要原因及复杂性 • 1、接线复杂。原则上应该简化接线即蓄电池接单母线运
行辐射供电。但是目前的控制合闸母线环行供电;硅降压, 闪光母线不变的情况下,强制将熔断器改为直流断路器级 差配合是十分复杂的,短路电流无法计算,控母合母馈线 合用断路器,控母闪光合用断路器无法整定瞬动脱扣器等 一系列问题没有很好解决。 • 2、交流或交直流两用断路器应用在直流电源中,其降容 能力,临界分断能力,没有产品数据,试验证明交流断路 器的分断能力仅为直流断路器的分断能力的1/5~1/8,额 定电流分断直流电流弧光引起烧坏触头现象经常发生,全 分断时间的不确定性,也是级差配合中成为难题。
直流短路电流计算方法的中外标准差异分析

直流短路电流计算方法的中外标准差异分析孙 茗1,於崇干2(1.华北电力设计院有限公司,北京 100120 ;2.华东电力设计院有限公司,上海 200063)摘要:本文介绍了IEC 61660和IEEE Std 946提供的直流短路电流计算方法,针对发电厂直流电源系统短路电流计算,将中国标准DL/T 5044-2014提供的计算方法,与IEC 61660和IEEE Std 946提供的计算方法进行比较,分析中外标准计算方法的差异以及对短路电流计算结果的影响。
关键词:电力工程;直流短路电流;计算方法;中外标准差异。
中图分类号:TM621 文献标志码:B 文章编号:1671-9913(2018)10-0050-05Analyze the DIFFerence of DC Short Circuit Current Calculation Method Between the Chinese and Foreign StandardSUN Ming 1, YU Chong-gan 2(1. North China Power Engineering Co., Ltd., Beijing 100120, China;2. East China Power Engineering Co., Ltd., Shanghai 200063, China)Abstract: This article introduces the short circuit current calculation method of dc auxiliary power supply system on IEC 61660 and IEEE Std 946. Compared the short circuit current calculation method of dc auxiliary power supply system for power plant between Chinese and foreign Standard. A detailed analyzes the differences of short circuit current calculation method between Chinese and foreign standard and its influence to the short-circuit current calculation results.key words: power engineering; dc short circuit current; calculation method; difference between Chinese and foreign standard.* 收稿日期:2015-07-22作者简介:孙茗(1963- ),女, 北京人,教授级高级工程师、长期从事火力发电厂电气二次线设计工作。
直流系统短路计算

直流系统短路计算1 计算意义为使直流牵引供电系统在城市轨道交通中更有效的发挥作用,必须保证继电保护的可靠性、选择性、灵敏性和速动性。
而直流系统短路计算正是城市轨道交通直流牵引供电系统设备选型及继电保护整定所必须具备的基础条件。
只有在直流系统短路计算之后,才能够进行直流系统设备选型与继电保护整定。
2 计算容直流系统短路计算一般需要计算以下容:(1) 正常情况下双边供电时,各供电区间任一点的直流短路电流。
(2) 任一中间牵引变电所解列时,由相邻牵引变电所构成大双边供电时的区间任一点的直流短路电流。
(3) 端头牵引变电所解列时,由次端头牵引变电所单边供电的区间任一点的直流短路电流。
3 计算方法直流牵引供电系统短路计算有两种方法:电路图法和示波图法,由于示波图法是建立在工程实践基础之上,通过对现场短路试验所拍摄的示波图进行数理分析,而计算出相关参数,因此本文仅应用电路图法进行直流系统短路计算。
(1) 电路图法这一方法是针对城市轨道交通直流牵引供电系统电源多、供电回路多、供电方式多、回路参数多的特点,按照实际供电网络画出等效电路图、进行网络变换,在供电网络中只包括电阻。
再将网络变换后的电路图利用基本定律—欧姆定律、基尔霍夫定律进行计算。
该方法只能计算稳态短路电流I,而不能计K算供电回路的时间常数τ和短路电流上升率di/dt,这是该计算方法的不足。
①用电路图法进行直流短路计算需要以下两个假设条件:a 牵引供电网络中,电源电压U相同。
b 牵引变电所为电源电压,其阻ρ因不同的短路点而改变,不认为是一个固定值。
②用电路图法进行直流短路计算需要输入以下三个条件:a 牵引变电所直流母线电压U (V );b 牵引变电所阻ρ(Ω);c 牵引网电阻R (Ω)。
(2) 牵引变电所阻牵引变电所阻包括以下四个部分设备的阻抗:交流中压电缆、牵引变压器、整流器、直流电缆。
下面介绍从地铁现场短路试验中心总结出来的,便于工程应用的经验公式(1-1),其计算结果包括了中压电缆和直流电缆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流系统短路计算1 计算意义为使直流牵引供电系统在城市轨道交通中更有效的发挥作用,必须保证继电保护的可靠性、选择性、灵敏性和速动性。
而直流系统短路计算正是城市轨道交通直流牵引供电系统设备选型及继电保护整定所必须具备的基础条件。
只有在直流系统短路计算之后,才能够进行直流系统设备选型与继电保护整定。
2 计算内容直流系统短路计算一般需要计算以下内容:(1) 正常情况下双边供电时,各供电区间任一点的直流短路电流。
(2) 任一中间牵引变电所解列时,由相邻牵引变电所构成大双边供电时的区间任一点的直流短路电流。
(3) 端头牵引变电所解列时,由次端头牵引变电所单边供电的区间任一点的直流短路电流。
3 计算方法直流牵引供电系统短路计算有两种方法:电路图法和示波图法,由于示波图法是建立在工程实践基础之上,通过对现场短路试验所拍摄的示波图进行数理分析,而计算出相关参数,因此本文仅应用电路图法进行直流系统短路计算。
(1) 电路图法这一方法是针对城市轨道交通直流牵引供电系统电源多、供电回路多、供电方式多、回路参数多的特点,按照实际供电网络画出等效电路图、进行网络变换,在供电网络中只包括电阻。
再将网络变换后的电路图利用基本定律—欧I,而不能计姆定律、基尔霍夫定律进行计算。
该方法只能计算稳态短路电流K算供电回路的时间常数τ和短路电流上升率di/dt,这是该计算方法的不足。
①用电路图法进行直流短路计算需要以下两个假设条件:a 牵引供电网络中,电源电压U相同。
b 牵引变电所为电源电压,其内阻ρ因不同的短路点而改变,不认为是一个固定值。
②用电路图法进行直流短路计算需要输入以下三个条件:a 牵引变电所直流母线电压U (V );b 牵引变电所内阻ρ(Ω);c 牵引网电阻R (Ω)。
(2) 牵引变电所内阻牵引变电所内阻包括以下四个部分设备的阻抗:交流中压电缆、牵引变压器、整流器、直流电缆。
下面介绍从北京地铁现场短路试验中心总结出来的,便于工程应用的经验公式(1-1),其计算结果包括了中压电缆和直流电缆。
经验计算公式如下:Tnd r nS U U k 9.01002⋅=ρ ( 1-1)式中 n U —直流侧额定电压(kV );d U —牵引变压器短路电压百分值;T S —变压器容量(MV·A);n —牵引整流机组台数;r k —内阻系数,根据短路点距离牵引变电所的不同距离,可取不同值。
4 计算过程分析各种供电方式下直流短路电流计算公式推导如下:(1) 一座牵引变电所单边供电(不考虑相邻牵引变电所的影响) ① 等效电路图,如图 1-8所示。
R图 1-8 一座牵引变电所单边供电直流短路等效示意图② 短路电流: 112K U I R R ρ=++( 1-2) 式中 U—牵引变电所母线电压(V);1ρ—牵引变电所内阻(Ω);1R —接触网电阻(Ω);2R —走行轨电阻(上下行并联)(Ω)。
(2) 一座牵引变电所单边供电(考虑相邻一座牵引变电所的影响) ① 等效电路图,如图 1-9所示。
2R4R R 2R 4R R图 1-9 一座牵引变电所单边供电直流短路等效示意图(考虑一座相邻牵引变电所的影响)② 网孔电流。
根据KVL 定律,对以上电路图可列方程: 网孔1:11121I R I U ρ-= 网孔2:222110I R I ρ-= 对以上方程求解得:1211122U I R R ρ=-( 1-3)12122I I R ρ=( 1-4)③ 总短路电流:1K I I ∑=( 1-5)④ 各变电所短路电流: 112I I I ρ=-( 1-6) 22I I ρ=( 1-7)式中 U—牵引变电所母线电压(V);1ρ、2ρ—牵引变电所内阻(Ω);R —接触网电阻(Ω); 2R 、4R —走行轨电阻(上下行并联)(Ω); 3R —接触网电阻(上下行并联)(Ω);11R —回路1自阻,11112R R R ρ=++(Ω);22R —回路2自阻,221234R R R ρρ=+++(Ω)。
(3) 两座牵引变电所双边供电(不考虑对侧接触网的影响,不考虑相邻牵引变电所的影响)① 等效电路图,如图 1-10所示。
R R 3R 4R +U 2_图 1-10 两座牵引变电所双边供电直流短路等效示意图(不考虑对侧接触网及相邻牵引变电所影响)② 网孔电流。
根据KVL 定律,对以上电路图可列方程: 网孔1:U R I =111 网孔2:U R I =222 对以上方程求解得: 111U I R =( 1-8)222U I R =( 1-9)③ 总短路电流:12K I I I ∑=+( 1-10)式中 U —牵引变电所母线电压(V );1ρ、2ρ—牵引变电所内阻(Ω);1R 、2R —接触网电阻(Ω);4R 、5R —走行轨电阻(上下行并联)(Ω); 11R —回路1自阻,11113R R R ρ=++(Ω); 22R —回路2自阻,22124R R R ρ=++(Ω)。
(4) 两座牵引变电所双边供电(考虑对侧接触网的影响,不考虑相邻牵引变电所的影响)① 等效电路图,如图 1-11所示。
4+_545图 1-11 两座牵引变电所双边供电直流短路等效示意图 (考虑对侧接触网的影响,不考虑相邻牵引变电所的影响)② 网孔电流。
根据KVL 定律,对以上电路图可列方程: 网孔1:11123I R I r U += 网孔2:22213I R I r U += 对以上方程可求得:12113311223U I R r r R R r =-+-( 1-11)11321223R r I I R r -=-( 1-12)③ 馈线短路电流。
星—三角变换电路图,如图 1-12所示。
图 1-12 星—三角变换电路图图中: 131123R R r R R R =++( 1-13) 232123R R r R R R =++( 1-14)123123R R r R R R =++( 1-15)馈线短路电流如下: 1112311()K I r I I r I R ++=( 1-16) 2212322()K I r I I r I R ++=( 1-17)112233K I r I r I R -=( 1-18)④ 总短路电流:12K K K I I I ∑=+( 1-19)⑤ 各变电所短路电流: 113K K I I I ρ=+ ( 1-20)223K K I I I ρ=-( 1-21)式中 U —牵引变电所母线电压(V );1ρ、2ρ—牵引变电所内阻(Ω);1R 、2R 、3R —接触网电阻( );4R 、5R —走行轨电阻(上下行并联)(Ω);11R —回路1自阻,111134R r r R ρ=+++(Ω);22R —回路2自阻,222235R r r R ρ=+++(Ω)。
(5) 两座牵引变电所双边供电(考虑对侧接触网和相邻牵引变电所的影响)① 等效电路图,如图 1-13所示。
② 网孔电流。
根据KVL 定律,对以上电路图可列方程: 网孔1:1112331I R I r I U ρ+-= 网孔2:22213420I R I r I ρ+-= 网孔3:333110I R I ρ-= 网孔4:444220I R I ρ-= 对以上方程求解得:1212113333111233222344()UI R r r R R R R r R ρρρ=---+--( 1-22)2111333212222344R r R I I R r R ρρ--=--( 1-23)454R 7R 9(a) 短路等效示意图45794U(b) 星—三角变换后等效示意图图 1-13 两座牵引变电所双边供电点直流短路等效示意图13133I I R ρ= ( 1-24)24244I I R ρ=( 1-25)③ 根据星—三角变换,可得各馈线短路电流:1112311()K I r I I r I R ++=( 1-26) 2212322()K I r I I r I R ++=( 1-27)112233K I r I r I R -=( 1-28)④ 总短路电流:12K K K I I I ∑=+( 1-29)⑤各变电所短路电流 1133K K I I I I ρ=+- ( 1-30) 2234K K I I I I ρ=--( 1-31) 33I I ρ= ( 1-32)44I I ρ=( 1-33)式中 U —牵引变电所母线电压(V );1ρ、2ρ、3ρ、4ρ—牵引变电所内阻(Ω);1R 、2R 、3R 、6R 、8R —接触网电阻(Ω);4R 、5R 、7R 、9R —走行轨电阻(Ω);11R —回路1自阻,111134R r r R ρ=+++(Ω);22R —回路2自阻,222235R r r R ρ=+++(Ω);33R —回路3自阻,333617R R R ρρ=+++(Ω);44R —回路4自阻,442894R R R ρρ=+++(Ω)。
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。