高中物理:4.6《用牛顿运动定律解决问题(一)》教案1(新人教版必修1)
2019-2020学年高中物理 4.6 用牛顿运动定律解决问题(一)教案 新人教版必修1

6.用牛顿运动定律解决问题(一)知识纲要导引核心素养目标(1)掌握应用牛顿运动定律解决问题的基本思路和方法.(2)会用牛顿运动定律解决两类动力学问题.(3)应用牛顿运动定律解答实际生活中的问题.知识点一从受力确定运动情况1.牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况和受力情况联系起来.2.如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学规律确定物体的运动情况.思考1假设汽车紧急制动后,受到的阻力与汽车所受重力的大小差不多.当汽车以20 m/s的速度行驶时,突然制动,它还能继续滑行的距离约为多少?提示:F f=mg由牛顿第二定律得mg=ma,所以a=g由v2-v20=2ax得,x=-v202×-10m=20 m知识点二从运动情况确定受力情况1.已知物体的运动情况,根据运动学公式求出物体的加速度,再根据牛顿第二定律求出物体所受的合外力,进而知道物体受到其他力的情况.2.思路流程:思考2行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带.假定乘客质量为70 kg ,汽车车速为90 km/h ,从踩下刹车到完全停止需要的时间为5 s ,安全带对乘客的作用力大小约为多少?(不计人与座椅间的摩擦)提示:v 0=90 km/h =25 m/s由v =v 0+at 得,a =v 0t =255m/s =5 m/s 2由F =ma 得F =ma =70×5 N=350 N (1)力和运动联系的桥梁——加速度. (2)解题基础:受力分析、运动过程分析.核心一根据受力确定运动情况1.解题思路说明:受力分析与运动过程分析是前提,牛顿第二定律和运动学公式是工具,加速度是桥梁.2.根据物体的受力确定物体运动情况的解题步骤:(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力图.(2)根据力的合成与分解,求出物体所受的合外力(包括大小和方向).(3)根据牛顿第二定律列方程,求出物体运动的加速度.(4)结合物体运动的初始条件,选择运动学公式,求出所需的运动学量——任意时刻的位移和速度,以及运动轨迹等.从受力情况确定运动情况应注意(1)正方向的选取:通常选取加速度的方向为正方向,与正方向同向的力取正值,与正方向反向的力取负值.(2)方程的形式:牛顿第二定律F=ma,体现了力是产生加速度的原因,方程式不写成F -ma=0的形式.(3)单位制:求解时F、m、a采用国际单位制.例1 [2019·江苏连云港高一期末]滑草是近几年流行的一项运动,和滑雪一样能给运动者带来动感和刺激.如图甲为某一娱乐场中的滑草场地,图乙为其示意图,其中斜坡轨道AB长为64 m,倾角为37°,轨道BC为足够长的水平草地.一滑行者坐在滑草盆中自顶端A 处由静止滑下,滑草盆与整个滑草轨道间的动摩擦因数均为0.5,忽略轨道连接处的速率变化及空气阻力,g取10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)滑草者及草盆在AB段的加速度大小:(2)滑到B点时的速度大小;(3)滑草者及草盆在水平轨道上滑行的最远距离.【解析】(1)由牛顿第二定律:mg sin37°-μmg cos37°=ma1得a1=2 m/s2.(2)由运动学公式:v2B=2a1L1得v B=2×2×64 m/s=16 m/s.(3)在水平轨道上:μmg=ma2得a2=μg=5 m/s2而v2B=2a2x得x=v2B2a2=25.6 m.【答案】(1)2 m/s (2)16 m/s (3)25.6 m训练1 一个静止在水平地面上的物体,质量是2 kg ,在10 N 的水平拉力作用下沿水平地面向右运动,物体与水平地面间的动摩擦因数是0.2,g 取10 m/s 2.求:(1)物体在4 s 末的速度; (2)物体在4 s 内发生的位移. 解析:(1)设物体所受支持力为F N ,所受摩擦力为F f ,受力分析如图所示,由牛顿第二定律得F -F f =ma 1①F N =mg ②又F f =μF N ③联立①②③式得a 1=F -μmgm④a 1=3 m/s 2⑤设物体4 s 末的速度为v 1,则v 1=a 1t ⑥ 联立⑤⑥式得v 1=12 m/s ⑦ (2)设4 s 内发生的位移为x 1,则x 1=12a 1t 2 ⑧联立⑤⑧式得x 1=24 m ⑨ 答案:(1)12 m/s (2)24 m核心二 已知物体的运动情况求受到的力 1.解题思路:2.根据物体运动情况确定物体受力情况的解题步骤:(1)确定研究对象,对研究对象进行受力分析和运动过程分析,并画出物体的受力图. (2)选择合适的运动学公式,求出物体的加速度. (3)根据牛顿第二定律列方程求出物体所受的力. (4)根据力的合成和分解方法,求出所需求解的力. 例2某航空公司的一架客机,在正常航线上飞行时,突然受到强大的垂直气流的作用,使飞机在10 s 内下降1 800 m ,使众多乘客和机组人员受到伤害,如果只研究飞机在竖直方向上的运动,且假设这一运动是匀变速直线运动.(1)求飞机在竖直方向上产生的加速度为多大?(2)试估算质量为65 kg 的乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅. 【解析】 (1)飞机在竖直方向上做匀加速直线运动,由位移公式可以求得飞机的加速度.由位移公式x =12at 2得a =2x t 2=2×1 800100m/s 2=36 m/s 2.(2)飞机上的乘客受到重力和安全带的拉力两个力的作用,根据牛顿第二定律可求得安全带提供的拉力.设安全带提供的拉力为F ,由牛顿第二定律,F +mg =ma得F =m (a -g )=1 690 N.【答案】 (1)36 m/s 2(2)1 690 N从运动情况确定受力情况应注意(1)方向确定:由运动学规律求加速度,要特别注意加速度的方向,从而确定合外力的方向,不能将速度的方向和加速度的方向混淆.(2)题目中求的可能是合力,也可能是某一特定的力,一般先求出合力的大小、方向,再根据力的合成与分解求解.(3)已知运动情况确定受力情况,关键是对研究对象进行正确的受力分析,先根据运动学公式求加速度,再根据牛顿第二定律求力.训练2 质量为4 kg 的物体在一恒定水平外力F 作用下,沿水平面做直线运动,其速度与时间关系图象如图所示.g 取10 m/s 2,试求: (1)恒力F 的大小;(2)物体与地面间的动摩擦因数μ.解析:由图象可知物体0~2 s 做匀减速直线运动,设加速度大小为a 12 s ~4 s 做反向匀加速直线运动,设加速度大小为a 2.且恒力F 与初速度方向相反.由v t 图象得加速度大小分别为:a 1=5 m/s 2,a 2=1 m/s 2由牛顿第二定律得:F +μmg =ma 1 F -μmg =ma 2联立解得:F =m a 1+a 22=12 N动摩擦因数μ=a 1-a 22g=0.2答案:(1)12 N (2)0.21.用30 N 的水平外力F 拉一个静止放在光滑水平面上的质量为20 kg 的物体,力F 作用3 s 后消失,则第5 s 末物体的速度和加速度分别是( )A .v =4.5 m/s ,a =1.5 m/s 2B .v =7.5 m/s ,a =1.5 m/s 2C .v =4.5 m/s ,a =0D .v =7.5 m/s ,a =0解析:由牛顿第二定律得加速度a =F m =3020m/s 2=1.5 m/s 2,力F 作用3 s 时速度大小为v =at =1.5×3 m/s=4.5 m/s ,而力F 消失后,其速度不再变化,物体加速度为零,故C 正确.答案:C2.一个物体在水平恒力F 的作用下,由静止开始在一个粗糙的水平面上运动,经过时间t ,速度变为v ,如果要使物体的速度变为2v ,下列方法正确的是( )A .将水平恒力增加到2F ,其他条件不变B .将物体质量减小一半,其他条件不变C .物体质量不变,水平恒力和作用时间都增加为原来的两倍D .将时间增加到原来的2倍,其他条件不变解析:由运动学公式v =at ,当时间加倍速度亦加倍,故D 选项正确. 答案:D3.(多选)如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s 2,当热气球上升到180 m 时,以5 m/s 的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g =10 m/s 2.关于热气球,下列说法正确的是( )A .所受浮力大小为4 830 NB .加速上升过程中所受空气阻力保持不变C .从地面开始上升10 s 后的速度大小为5 m/sD .以5 m/s 匀速上升时所受空气阻力大小为230 N解析:刚开始竖直上升时,热气球受重力和空气的浮力,热气球的加速度为0.5 m/s 2,由牛顿第二定律可得热气球所受浮力大小为4 830 N ,A 项正确;热气球加速上升过程中所受空气阻力是不断变大的,热气球做加速度减小的加速运动,速度达到5 m/s 所用的时间要大于10 s ,B 、C 均错误;当热气球以5 m/s 匀速上升时,由受力平衡可得热气球所受空气阻力大小为230 N ,D 项正确.答案:AD 4.一间新房要盖屋顶,为了使下落的雨滴能够以最短的时间淌离屋顶,则所盖屋顶的顶角应为(设雨滴沿屋顶下淌时,可看成在光滑的斜坡上下滑)( )A .60°B .90°C .120° D.150°解析:由题意知,雨滴沿屋顶的运动过程中受重力和支持力作用,设其运动的加速度为a ,屋顶的顶角为2α,则由牛顿第二定律得a =g cos α.又因房屋的前后间距已定,设为2b ,则雨滴下滑经过的屋顶面长度x =b sin α,由x =12at 2得t =4bg sin2α,则当α=45°时,对应的时间t 最小,则屋顶的顶角应取90°,B 正确.答案:B5.[2019·山东潍坊高一联考]航模兴趣小组设计出一架遥控飞行器,其质量m =2 kg ,动力系统提供的恒定升力F =28 N .试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变.g 取10 m/s 2,试飞时,飞行器飞行t 1=8 s 时达到高度H =64 m .求飞行器所受阻力F f 的大小.解析:飞行器从静止开始做匀加速运动(受力分析如图所示),设加速度为a 1,则H =12a 1t 21.根据牛顿第二定律有F -F f -mg =ma 1代入数据得F f =4 N.答案:4 N 6.如图所示,一质量m =2 kg 的木块静止于水平地面上.现对物体施加一大小为10 N 的水平方向拉力.(g 取10 N/kg)(1)若地面光滑,求物体运动的加速度大小;(2)若物体与地面间动摩擦因数μ=0.1,求物体的加速度大小和经过2 s 物体的位移大小.解析:(1)据牛顿第二定律,有a =F m=5 m/s 2.(2)对木块受力分析如图所示,根据牛顿第二定律,有F -F f =ma ′,又F f =μF N =μmg。
物理:4.6《用牛顿运动定律解决问题(一)》 教案(新人教版必修1)

4.6 用牛顿运动定律解决问题〔一〕教案教学目标:1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解3.理解超重、失重的概念,并能解决有关的问题4.掌握应用牛顿运动定律分析问题的基本方法和基本技能教学重点:牛顿运动定律的综合应用教学难点:受力分析,牛顿第二定律在实际问题中的应用教学方法:讲练结合,计算机辅助教学教学过程:一、牛顿运动定律在动力学问题中的应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型〔两类动力学基本问题〕:〔1〕物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.〔2〕物体的运动情况,要求物体的受力情况〔求力的大小和方向〕.但不管哪种类型,一般总是先根据条件求出物体运动的加速度,然后再由此得出问题的答案.两类动力学基本问题的解题思路图解如下:可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。
点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如2/2,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤〔1〕认真分析题意,明确条件和所求量,搞清所求问题的类型.〔2〕选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.〔3〕分析研究对象的受力情况和运动情况.〔4〕当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定那么求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.〔5〕根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.〔6〕求解方程,检验结果,必要时对结果进行讨论.3.应用例析[例1]一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体〔大小不计〕从斜面顶端A 点由静止开始下滑,如下图〔g 取10 m/s 2〕〔1〕假设斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.〔2〕假设给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,那么小物体与斜面间的动摩擦因数μ是多少?解析:题中第〔1〕问是知道物体受力情况求运动情况;第〔2〕问是知道物体运动情况求受力情况。
高中物理 4.6 用牛顿运动定律解决问题教学设计1 新人教版必修1

§4.6用牛顿运动定律解决问题(一)一、内容及其解析1.内容:a、已知力求运动情况。
b、已知运动情况求力。
2.解析:不管已知力求运动情况,还是已知运动情况求力,都离不开牛顿第二定律作为桥梁。
二、目标及其解析1.进一步学习分析物体的受力情况,并能结合物体的运动情况进行受力分析。
2.能够从物体的受力情况确定物体的运动情况3.能够从物体的运动情况确定物体的受力情况三、教学问题诊断分析学生对匀变速直线运动或力的合成和分解掌握不到位都会影响到本节内容的解决。
四、教学支持条件分析1.在实际应用中帮助学生学会运用实例总结归纳一般问题解题规律的能力。
2.让学生认识数学工具在表达解决物理问题中的作用。
3.帮助学生提高信息收集和处理能力,分析、思考、解决问题能力和交流、合作能力。
五、教学过程设计(一)教学基本流程复习匀变速直线运动和力的合成与分解→引入用牛顿第二定律解题的步骤→分析例题→学生练习→小结(二)教学情景1、从受力确定运动情况例题1、一个静止在水平地面上的物体,质量是 2kg,在 6.4N的水平拉力作用下沿水平地面向右运动。
物体与地面间的摩擦力是4.2N。
求物体在4s末的速度和4s内的位移。
问题1:本题中给出了哪些已知量,要解决的问题是什么?问题2:本题中的研究对象应该是谁?问题3:你怎么知道物体做的是匀变速直线运动?设计意图:已知力如何求物体的运动情况2、根据运动情况确定物体的受力例2、一个滑雪的人质量是 75 kg,以v0=2m/s的初速度沿山坡匀加速滑下,山坡的倾角θ=30°。
在 t=5s的时间内滑下的路程x=60m,求滑雪人受到的阻力(包括摩擦和空气阻力)问题1:本题中给出了哪些已知量,要解决的问题是什么?问题2:本题中的研究对象应该是谁?设计意图:已知运动情况如何确定物体的受力解析:根据力的分解合成原理,可知N与G的合力一定沿斜面向下且大于阻力F。
如图所示,仔细作图可发现规律,利用已知力的大小和角度关系可以求解出N与G的合力。
高中物理4.6《用牛顿运动定律解决问题(一)》精品教案新人教版必修1

必修一4.6 用牛顿运动定律解决问题(一)教案1.教材分析《用牛顿运动定律解决问题(一)》是人教版高中物理必修一第4章第6节教学内容,主要学习两大类问题:1已知物体的受力情况,求物体的运动情况,2已知物体的运动情况,求物体的受力情况。
掌握应用牛顿运动定律解决问题的基本思路和方法。
本节内容是对本章知识的提升,又是后面知识点学习的基础。
2.教学目标1.知道应用牛顿运动定律解决的两类主要问题。
2.掌握应用牛顿运动定律解决问题的基本思路和方法。
3.能结合物体的运动情况对物体的受力情况进行分析。
4.能根据物体的受力情况推导物体的运动情况。
5.会用牛顿运动定律和运动学公式解决简单的力学问题。
3.教学重点1.已知物体的受力情况,求物体的运动情况。
2.已知物体的运动情况,求物体的受力情况。
4.教学难点1.物体的受力分析及运动状态分析和重要的解题方法的灵活选择和运用。
2.正交分解法。
5.学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。
有些学生对于受力分析及运动情况有一定的基础,但是两者结合起来综合的应用有些困难,需要详细的讲解。
6.教学方法1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习7.课前准备1.学生的学习准备:预习课本相关章节,初步把握应用牛顿运动定律解决问题的基本思路和方法。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
课时安排:2课时8.教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标[学生活动]同学们先思考例题一、例题二,简单的写出解题过程。
[提问]上述两个例题在解题的方法上有什么相同之处?有什么不同之处?在第二个例题中为什么要建立坐标系?在运动学中,我们通常是以初速度的方向为坐标轴的正方向;在解决静力学的问题时,通常使尽量多的力在坐标轴上,在利用牛顿运动定律解决问题时要建立坐标系与上述的情况相比,有什么不同吗?设计意图:步步导入,吸引学生的注意力,明确学习目标。
高中物理必修一4.6用牛顿运动定律解决问题(一)教学设计新人教版必修1

G 是已知的,那
师:不要急, 有些同学无头绪的原因是你们只看到力的大小为已知量,
却忽略了还有角
度有关系也是已知量。请大家慢慢思考。
生: 根据力的分解合成原理,可知 N 与 G的合力一定沿斜面向下且大于阻力 F。如图所
示,仔细作图可发现规律,利用已知力的大小和角度关系可以求解出
N 与 G的合力。
N
F阻
运动。
师: 好,下面请同学们各自完成速度和位移的求解。 学生各自完成剩余的工作,教师给五分钟时间。大部分学生均可以轻松完成
扩展问题: 如果该题中摩擦力大小未知,告诉你物体与地面间的动摩擦因数是
0.2 ,则结果
又该如何?
二、根据运动情况确定物体的受力
例 2、一个滑雪的人质量是 75 kg,以 v0= 2m/s 的初速度沿山坡匀加速滑下,山坡的倾 角θ = 30°。在 t =5s 的时间内滑下的路程 x= 60m,求滑雪人受到的阻力(包括摩擦和空 气阻力)
受的合外力与速度是在同一直线上从而知物体的合外力是在水平方向上,于是有
N=G。
师: 知道了合外力后我们可以做什么?
生: 用 a
F合 求出物体的加速度 m
2
a=1.1m/s ,然后根据匀变速直线运动规律求解物体
的速度和位移。
师: 你怎么知道物体做的是匀变速直线运动? 生:因为物体所受的合外力是恒定的, 所以加速度也是恒定的, 物体做的是匀变速直线
高中物理 专题4.6 用牛顿运动定律解决问题(一)教案 新人教版必修1

专题4.6 用牛顿运动定律解决问题(一)学习 目标1.进一步学习物体的受力情况,并能结合物体的运动情况进行受力分析。
2.知道动力学的两类问题:从受力确定运动情况和从运动情况确定受力。
理解加速度是解决两类动力学问题的桥梁。
3.掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学公式解决有关问题。
一、从受力确定运动情况 1.解题思路:2.解题步骤:(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力图。
(2)根据力的合成与分解,求出物体所受的合外力(包括大小和方向)。
(3)根据牛顿第二定律列方程,求出物体运动的加速度。
(4)结合物体运动的初始条件,选择运动学公式,求出所需求的运动学量——任意时刻的位移和速度以及运动轨迹等。
【示范题】(2017·重庆八中高一检测)质量为4kg 的物体放在与水平面成30°角、足够长的粗糙斜面底端,物体与斜面间的动摩擦因数μ=3作用在物体上的外力与斜面平行,随时间变化的图像如图所示,外力作用在物体上的时间共8s,取10m/s 2)求:(1)物体所受的摩擦阻力为多大?(2)物体在0~4s内的加速度为多少?运动的位移为多少?(3)物体从运动到停止走过的总位移为多少?【规范解答】(1)如图,对物体进行受力分析可得:G1=mgsin30°=20N,F N=G2Fμ=μF N= 20N答案:(1)20 N (2)5 m/s240 m (3)120 m1.(拓展延伸)【示范题】中,如果前4s F是水平作用在物体上,物体将如何运动?【解析】若F是水平作用在物体上,则物体受力如图所示,则F xF y=Fsin30°=30NFμ′=μ(G2+F y+30)N=37.32NG1+Fμ′=(20+37.32)N=57.32N>F x=52N,故物体静止。
答案:物体静止2.质量为2kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等。
人教高中物理必修一 4.6用牛顿运动定律解决问题(一)教案

第六节 用牛顿定律解决问题(一)
一、教学目标 1.知识与技能
(1)掌握应用牛顿运动定律解决问题的基本思路和方法。
(2)学会根据牛顿运动定律,由物体的受力求解有关物体运动状态参量。
(3)学会根据物体运动状态参量的变化,求解有关物体的受力情况。
2.过程与方法
(1)经历归纳推理,得出牛顿运动定律解题的一般思路和方法。
(2)通过学习,规范自己的解题步骤和过程。
3.情感、态度与价值观
(1)培养自己具体问题具体分析的科学、严谨的态度。
(2)培养学生运用所学知识解决实际问题的知识迁移能力。
二、设计思路
牛顿运动定律的应用是本章的重点,也是一个难点,而且是力学中常用的很重要的方法之一,通过本堂课的学习,要使学生掌握牛顿运动定律解题的思路和方法,以及如何利用所学知识去分析、解决实际问题,提高自己的综合运用能力,以实现知识的迁移。
设计流程
教学过程中,充分发挥学生的学习积极性,注重对学生的归纳、推理能力的培养。
三、教学重点、难点
重点:如何将运动的状态参量与受力能正确分析并联系起来。
难点:运动的状态参量的确定与受力分析。
四、教学资源 多媒体。
高中物理4.6用牛顿运动定律解决问题(一)教案新人教版必修1

用牛顿运动定律解决问题(一)5.通过收集展示资料,了解牛顿定律对社会.帮助学生提高信息收集和处.帮助内,物体做加速运动,加速度增大,速度减小内,物体做加速运动,加速度减小,速度增大2=30°,滑雪板与雪地内速度由5.0 m/s1.0×10 1.5×105N,求列车教学过程设计若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。
(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。
3.在应用牛顿运动定律解题时,经常会遇到绳、杆、弹簧和橡皮条(绳)这力学中常见的模型。
全面、准确地理解它们的特点,可帮助我们灵活、正确地分析问题。
共同点(1)都是质量可略去不计的理想化模型(2)都会发生形变而产生弹力。
(3)同一时刻内部弹力处处相同,且与运动状态无关。
不同点(1)绳(或线):只能产生拉力,且方向一定沿着绳子背离受力物体;不能承受压力;认为绳子不可伸长,即无论绳所受拉力多大,长度不变。
绳的弹力可以突变:瞬间产生,瞬间消失。
(2)杆:既可承受拉力,又可承受压力;施力或受力方向不一定沿着杆的轴向。
(3)弹簧:既可承受拉力,又可承受压力,力的方向沿弹簧的轴线。
受力后发生较大形变;弹簧的长度既可以变长(比原来长度大),又可以变短。
其弹力F与形变量(较之原长伸长或缩短的长度)x的关系遵守胡克定律F=kx(k为弹簧的劲度系数)。
弹力不能突变(因形变量较大,产生形变或使形变消失都有一个过程),故在极短时间内可认为形变量和弹力不变。
当弹簧被剪断时,其所受弹力立即消失。
(4)橡皮条(绳):只能受拉力,不能承受压力(因能弯曲)。
其长度只能变长(拉伸)不能变短.受力后会发生较大形变(伸长),其所受弹力F与其伸长量x的关系遵从胡克定律F=kx。
弹力不能突变,在极短时间内可认为形变量和弹力不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.6 用牛顿运动定律解决问题(一)从容说课牛顿运动定律是经典力学的基础,它在科学研究和生产技术中有着广泛的应用.本节在前两节探究和总结牛顿第二定律的基础上,结合日常生活中出现的问题,展示了用牛顿第二定律解决实际力学问题的基本思路和方法.将问题类型分为两类,这两类问题正是从牛顿第二定律的表达式F=ma所涉及的F和a 开始的,F代表物体的受力情况,a代表物体的运动学参量,由等式左边可以求出右边,也可以由等式的右边求出左边,即可以根据物体的受力情况确定物体的运动情况,也可以根据物体的运动情况确定物体的受力情况.因此牛顿第二定律是联系力和运动的桥梁,反映着力和运动的定量关系.加速度与力、质量的关系是客观存在的,它反映了自然界的规律.已知受力情况和初始条件——物体的位置和速度,就可以求出以后任何时刻物体的位置和速度.这在人们头脑中形成了“机械决定论”.受力分析和运动过程分析是解决动力学的前提.找到加速度是解题的突破口,因此,解题时应抓住“加速度”这个桥梁不放,确定过渡方向.学习中要通过具体问题的分析,熟练掌握解题思路,提高自己解决实际问题的能力.通过这一节的教学,应当熟悉用牛顿第二定律的公式解题.为了求得合外力,要应用力的合成或分解的知识;为了求得加速度,要应用运动学的知识.本节课在高中物理中的地位非常重要,应该加以强化,练习的选择应该根据学生的实际情况,做到循序渐进,重在落实知识的应用,培养学生正确分析问题的方法.三维目标知识与技能1.知道应用牛顿运动定律解决的两类主要问题.2.掌握应用牛顿运动定律解决问题的基本思路和方法.3.能结合物体的运动情况对物体的受力情况进行分析.4.能根据物体的受力情况推导物体的运动情况.5.会用牛顿运动定律和运动学公式解决简单的力学问题.过程与方法1.通过实例感受研究力和运动关系的重要性.2.通过收集展示资料,了解牛顿定律对社会进步的价值.3.培养学生利用物理语言表达、描述物理实际问题的能力.4.帮助学生提高信息收集和处理能力,分析、思考、解决问题的能力和交流、合作能力.5.帮助学生学会运用实例总结归纳一般问题的解题规律的能力.6.让学生认识数学工具在表达解决物理问题中的作用.情感态度与价值观1.初步认识牛顿运动定律对社会发展的影响.2.初步建立应用科学知识的意识.3.培养学生科学严谨的求实态度及解决实际问题的能力.教学重点1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.教学难点1.物体的受力分析及运动状态分析和重要的解题方法的灵活选择和运用.2.正交分解法.教具准备多媒体教学设备.课时安排2课时教学过程[新课导入]利用多媒体投影播放汽车的运动,行星围绕太阳运转,“神舟”五号飞船的发射升空及准确定点回收情景、导弹击中目标的实况录像资料.学生观看录像,进入情景师:我国科技工作者能准确地预测火箭的变轨、卫星的着地点,他们靠的是什么?生:牛顿运动定律中力和运动的关系.师:利用我们已有的知识是否也能研究这一类问题?生:不能,因为这样一类问题太复杂了,应该是科学家的工作.师:一切复杂的问题都是由简单的问题组成的,现在我们还不能研究如此复杂的运动,但是我们现在研究问题的方法将会对以后的工作有很大的帮助.我们现在就从类似的较为简单的问题入手,看一下这一类问题的研究方法.[新课教学]一、从受力情况分析运动情况师:大家看下面一个例题.多媒体投影展示例题,学生分析讨论,尝试解决例题:一个静止在水平地面上的物体,质量是2 kg,在6.4 N的水平拉力作用下沿水平地面向右运动.物体与地面间的摩擦力是4.2 N.求物体在4 s末的速度和4 s内的位移.师:本题研究对象是谁?生:本题的研究对象是在水平面上运动的物体.师:它共受几个力的作用?生:它一共受到四个力的作用,分别是物体的重力,方向竖直向下;地面对它的支持力,方向垂直地面向上,这两个力的合力为零;水平向右的拉力和水平向左的摩擦力.师:物体所受的合力沿什么方向?大小是多少?生:物体所受的合力沿物体的运动方向即向右,大小等于F-f=6.4 N-4.2 N=2.2 N.师:本题要求计算位移和速度,而我们只会解决匀变速运动问题.这个物体的运动是匀变速运动吗?依据是什么?生:这个物体的运动是匀加速运动,根据是物体所受的合力保持不变.师:经分析发现该题属于已知受力求运动呢,还是已知运动求受力呢?生:是已知受力情况求物体的运动情况.师:通过同学们的分析,在分析的基础上,画出受力分析图,并完整列出解答过程.多媒体显示学生的受力分析图(如图4-6-1)图4-6-1师:受力分析的图示对研究这一类问题很有帮助,特别是对一些复杂的受力分析问题,所以同学们在今后的受力分析的过程中,一定要养成画受力分析草图的好习惯.投影展示学生的解题过程解:由牛顿第二定律F=ma可以求出物体的加速度a== =1.1 m/s2求出了物体的加速度a,由运动学公式就可以求出4 s末的速度v和4 s内发生的位移x v=at=1.1×4 m/s=4.4 m/s,x=at2=×1.1×16 m=8.8 m.师:在求物体的运动过程时,我们是怎样进行处理的?生:先求出物体的受力情况,根据物体所受的合力,求出物体的加速度.师:对,物体的加速度是联系受力情况和运动情况的桥梁,因为根据受力情况可以求出加速度,运动情况中也包含加速度.师:如果把例题中的条件变化一下,力F的方向变为斜向上30°,那么此时物体的加速度应该怎样求解?生1:根据牛顿第二定律:a== m/s2=0.45 m/s2.师:他计算的对不对.生2:不对.因为当物体所受的拉力方向发生变化时,物体对地面的压力也随之变化,同时物体与地面间的摩擦力也将发生变化,摩擦力应该比刚才情况下要小.师:这位同学分析得非常好,大家一定要注意的是当一个力发生变化时,看它的变化会不会影响其他力的变化.大家把这个问题的具体结果做出来.【课堂训练】1.把变化条件后的例题结果做出来.2.质量为2 kg的物体,置于水平光滑平面上,用16 N的力与水平面成30°角斜向上或斜向下加在这个物体上,求两种情况下物体的加速度大小之比是___________.二、从运动情况确定受力多媒体展示例2一个滑雪的人,质量是75 kg,以v0=2 m/s的初速度沿山坡匀加速滑下,山坡的倾角θ=30°.在t=5 s的时间内滑下的路程x=60 m.求滑雪人受到的阻力(包括摩擦和空气阻力).师:本题属于哪类力学问题?生:本类属于已知运动情况分析物体的受力情况.师:人共受几个力的作用?各力方向如何?生:滑雪人受到三个力的作用,人的重力,方向竖直向下;山坡对他的支持力,方向垂直山坡向上;滑雪人受到的阻力,方向沿山坡向上.师:它们之中哪个力是待求量?哪个力实际上是已知的?待求力是哪个?人所受的合力沿什么方向?生:它们中重力和支持力实际上是已知的,待求的力是人受到的阻力.人所受的合力方向沿山坡向下.师:画出物体的受力分析示意图,写出具体的解题步骤.多媒体展示学生的受力示意图(如图4-6-2)图4-6-2师:本题中物体受力方向较为复杂,物体沿斜面方向匀加速下滑,我们应当如何建立坐标系求合力?大家讨论一下这个问题.学生讨论,投影展示学生答案生:沿平行于斜面和垂直于斜面分别建立坐标系的x轴和y轴,使合力的方向落在x轴的正方向上,然后求合力比较方便.师:具体的解答过程是什么?生:如图所示建立坐标系,把重力G沿x轴方向和y轴方向进行分解,得到:G x=mg sinθ,G y=mg cosθ,人沿山坡做的是匀加速运动,由运动学公式:x=v0t+at2解出a=,代入数值得:a=4 m/s2根据牛顿第二定律得:F阻=G x-ma=mg sinθ-ma代入数值得:F阻=67.5 N.师:(总结)1.两题都需画受力图,都要利用牛顿第二定律和运动学公式,画受力图是重要的解题步骤.不同之处是例1先用牛顿第二定律求加速度,而例2先用运动学公式求加速度.2.例2中物体受力方向较为复杂,建立平面直角坐标系后,就可以用G x和G y代替G,使解题方便.3.因为加速度的方向就是物体所受合外力的方向,所以以加速度的方向为正方向,会给分析问题带来很大方便.【课堂训练】一个空心小球从距离地面16 m的高处由静止开始落下,经2 s小球落地,已知球的质量为0.4 kg,求它下落过程中所受空气阻力多大?(取g=10 m/s2)分析与解答:以空心小球为研究对象,根据它的运动情况可知,其下落时加速度大小为:a==8 m/s2<g说明小球在下落过程中受到向上的空气阻力作用,小球的受力情况如图4-6-3所示.依据牛顿第二定律可知:mg-f=ma图4-6-3所以小球所受空气阻力大小为:f=mg-ma=0.8 N.说明:(1)这是一道已知物体的运动情况,确定物体的受力情况的习题.(2)本题可根据需要加一问:若小球落地后竖直向上反弹到6 m高度,设空气阻力大小不变,则小球反弹上升的时间为多少?反弹的初速度为多少?所加这一问属于第一类问题,且注意此时空气阻力方向向下.(3)物体的运动路径是竖直方向的直线,如各类竖直方向的抛体运动往往要考虑空气阻力(空气阻力总是与运动方向相反);又如升降机内随升降机一起变速上升和下降的物体的运动,这时会出现超重、失重现象.[小结]1.总结受力分析的方法,让学生能够正确、快速地对研究对象进行受力分析.2.强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3.根据学生的实际情况,对这部分内容分层次要求,不可能在一节课中就把这类问题解决好了,应该着重放在基本问题的分析和基本思路的掌握上.4.思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木,学生素质的培养就成了镜中花,水中月.[课外训练]1.一物块从粗糙斜面底端,以某一初速度开始向上滑行,到达某位置后又沿斜面下滑到底端,则物块在此运动过程中A.上滑时的摩擦力小于下滑时的摩擦力B.上滑时的加速度小于下滑时的加速度C.上滑时的初速度小于下滑时的末速度D.上滑时的时间小于下滑时的时间2.静止在光滑水平面上的物体受到一个水平拉力F作用后开始运动.F随时间t变化的规律如图4-6-4所示,则下列说法中正确的是图4-6-4A.物体将一直朝同一个方向运动B.物体将做往复运动C.物体在前2 s内的位移为零D.第1 s末物体的速度方向发生改变3.如图4-6-5所示,当车厢向前加速前进时,物体M静止于竖直车厢壁上.当车厢的加速度增大时图4-6-5A.静摩擦力增大B.车厢竖直壁对物体的弹力增大C.物体M仍相对于车静止D.物体的加速度也增大4.钢球在很深的油槽中由静止开始下落,若油对球的阻力正比于其速率,则球的运动是A.先加速后减速最后静止B.先加速运动后匀速运动C.先加速后减速最后匀速D.加速度逐渐减小到零5.如图4-6-6所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1 kg.(取g=10 m/s2,sin37°=0.6,cos37°=0.8)图4-6-6(1)求车厢运动的加速度并说明车厢的运动情况;(2)求悬线对球的拉力.参考答案1.D2.A3.BCD4.BD5.解析:小球和车厢这两个物体相对静止,表明同一瞬时具有相同的速度和加速度,可以根据小球的状态分析受力情况,确定小球的加速度,即车厢的加速度,从而来确定车厢的运动情况.求出车厢的加速度后,还要注意车厢的运动方向有两种可能.(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道得较多,故应以球为研究对象.球受两个力作用:重力m g和线的拉力F,由于球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向,作出平行四边形如图4-6-7所示.球所受的合外力为F合=mgtan37°.由牛顿第二定律F合=ma可求得球的加速度为a= =g tan37°=7.5 m/s2,加速度方向水平向右.由此可判断车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.图4-6-7(2)由图4-6-7可得,线对球的拉力大小为F== N=12.5 N.说明:通过此题进一步体验加速度在联系物体受力情况和运动情况中所起的桥梁作用.[布置作业]教材第91页问题与练习.板书设计5 用牛顿运动定律解题活动与探究探究活动的主题:牛顿运动定律的适用条件.牛顿运动定律虽然是一个伟大的定律,但它也有自己适用的条件.通过对其适用条件的了解,使学生进一步完整地掌握这个规律,并且为参考案例:牛顿运动定律的适用范围17世纪以来,以牛顿运动定律为基础的经典力学不断发展,在科学研究和生产技术上得到了极其广泛的应用,取得了巨大的成就.这一切不仅证明了牛顿运动定律的正确性,甚至使有些科学家认为经典力学已经达到十分完善的地步,一切自然现象都可以由力学来加以说明,过分地夸大了经典力学的作用.但是,实践表明,牛顿运动定律和所有的物理定律一样,只具有相对的真理性.1905年,著名的美籍德国物理学家爱因斯坦(1879~1955)提出了研究匀速相对运动体系的狭义相对论,引起了物理学的一场巨大革命.他指出,经典力学中的绝对时空观并不是直接从观察和实验中得出的.实际上时间、空间和观察者是相对的.根据相对论原理,物体的质量也不是恒定不变的,而是随着物体运动状态的变化而变化.1916年爱因斯坦又发表了研究加速相对运动的广义相对论.运用这些理论所得出的结论和实验观察基本一致.这表明:对于接近光速的高速运动的问题,经典力学已不再适用,必须由相对论力学来研究.经典力学可以看作是相对论力学在运动速度远小于光速时的特例.从20世纪初以来,原子物理学发展很快,发现许多新的物理现象(如光子、电子、质子等微观粒子的波粒二象性)无法用经典力学来说明.后来,在普朗克(1858~1947)、海森堡(1901~1976)、薛定谔(1887~1961)、狄拉克(1902~1984)等物理学家的努力下创立了量子力学,解决了经典力学无法解决的问题.因此经典力学可以看作是量子力学在宏观现象中的极限情况.总之,“宏观”“低速”是牛顿运动定律的适用范围.。