一元二次函数方程和不等式教学设计
一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。
那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。
一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。
回顾下等比数列的性质。
生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
【教案】二次函数与一元二次方程、不等式+教学设计高一上学期数学人教A版(2019)必修第一册

二次函数与一元二次方程、不等式教学设计课题名称二次函数与一元二次方程、不等式姓名学校年级教材版本人教版A版一、教学目标1.使学生能够运用一元二次方程以及二次函数图像、性质解决实际问题。
2.渗透数形结合思想,进一步培养学生综合解题能力。
经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。
3.激发学生学习数学的热情,培养学生勇于探索的精神,同时体会事物之间普遍联系的辩证思想。
二、教学重难点重点:一元二次不等式的应用。
难点:一元二次方程的根的情况与二次函数图像与x轴的位置关系的联系,数形结合的运用。
三、教学方法讲授法、讨论法、练习法四、教学过程一、导入(复习导入)师生活动复习解一元二次不等式步骤:1、a变正,(二次项系数化为正数)2、判别式。
(利用一元二次方程,求出判别式的值)3、求根。
(根据判别式情况求出一元二次方程的根)4、画草图。
(利用二次函数绘制图像)5、求解集。
(根据数形结合的思想求不等式解集)复习上节课所学内容,检测学生学习情况。
二、新指探究利用一元二次不等式求解实际问题。
【例1】一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下关系:y=−2y2+220y若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在一个星期内大约应该生产多少辆摩托车?解:设这家工厂在一个星期内大约应该利用整条流水线生产x辆摩托车,根据题意得:−2y2+220y>6000移项整理,得:y2−110y+3000<0对于方程y2−110y+3000=0,∆=100>0,方程有两个实数根y1=50,y2=60画出二次函数y=y2−110y+3000的图像(图2.3-6),结合图象得不等式y2−110y+3000<0的解集为{y|50<y<60},从而原不等式的解集为:{y|50<y<60}。
最新人教版高中数学《一元二次函数、方程和不等式》单元教学设计

教学建议
二、从不同角度阐释不等式,揭示不等式的本质
回顾从一次函数的观点看一元一次方程和一元一次不等式的含义,体会三者的联系中蕴 含的一般规律:函数图像与x轴的交点的横坐标即是相关方程的根,在x轴上方或下方的 点横坐标的取值范围就是相应不等式的解集。 借助这个规律,探究二次函数与一元二次方程、不等式的关系,学生将不难从二次函数 图像的关键点上去寻找解决问题的“突破口”。
思想方法
数形结合 分类讨论 函数、模型
在探索发现重要不等式,在用几何方法解释实数的基 本事实、不等式的性质和基本不等式,在研究二次函数 与一元二次方程、不等式的解的情况时,都充分应用了 数与形结合的方法.
在探索或证明不等式的部分性质,在研究一元二次不 等式的解的情况时,都充分应用了分类讨论的思想方 法.
教学建议
三、重视不等式实际应用的教学,充分发挥不等式的工具价值
和等式一样,不等式也是重要的数学工具,它在解决包含不等关系的问题中发挥着重要 作用。而现实中存在大量的不等关系,因此应该重视不等式实际应用的教学,以使学生 更好地应用不等式解决实际问题。 引导学生对实际问题进行简化,用基本不等式的数学模型去理解和识别问题中的数量关 系,看它们是否符合模型中的条件,再示范如何使用基本不等式解决问题:还可以比较 基本不等式模型与方程模型在解决实际问题中的异同,使学生加深对前者的理解。
第二章 一元二次函数、方程和不
等式
《单元教学》教学设计
一 单元内容分析 二 学科素养解读 三 单元教学建议
一 单元内容分析
本章知识结构
单元内容
1.重点: (1)不等式的基本性质的发现过程及性质本身; (2)用函数观点理解方程、不等式是数学的基本思想方法。 2.难点: (1)类比等式的基本性质,发现不等式的基本性质: (2)用不等式的基本性质证明一些简单命题(包括用分析法证明基本不等式); (3)用基本不等式解决简单的最大值或最小值问题; (4)从二次函数观点看一元二次方程、不等式。
二次函数与一元二次方程、不等式的应用 教学设计

二次函数与一元二次方程、不等式的应用教学设计一、教学目标1. 了解二次函数、一元二次方程和不等式的定义,掌握它们的基本性质;2. 能够应用二次函数、一元二次方程和不等式解决实际问题;3. 培养学生的分析和解决问题的能力。
二、教学重难点1. 二次函数的图象及其性质;2. 一元二次方程和不等式的解法;3. 如何应用二次函数、一元二次方程和不等式解决实际问题。
三、教学内容与步骤A. 二次函数的图象及其性质1. 了解二次函数的定义及其一般式;2. 讲解二次函数图象的一般特点以及平移、翻折和缩放变换;3. 教授二次函数的极值、零点、对称轴、单调性等性质;4. 在讲解中渗透应用题,如二次函数最大值最小值的应用等。
B. 一元二次方程和不等式的解法1. 复一元二次方程和不等式的基本知识;2. 介绍解一元二次方程的公式及应用;3. 讲解不等式的基本性质及其解法;4. 在讲解中渗透应用题,如如何通过一元二次方程和不等式解决实际问题等。
C. 应用二次函数、一元二次方程和不等式解决实际问题1. 联系生活实际,探究一些二次函数、一元二次方程和不等式的应用;2. 通过讲解相关问题和实例,引导学生思考应用能力,调动学生研究的积极性;3. 给学生一定的时间和空间独立完成相关问题,培养学生自学和探究问题的能力。
四、教学方法1. 讲授法;2. 示例法;3. 合作探究法。
五、教学工具与资料1. PPT;2. 教学视频;3. 课外阅读资料。
六、教学评价1. 对学生进行知识点检测、作业评定和课堂测验;2. 鼓励学生主动参与课堂讨论,以及积极思考和分析问题的能力。
七、教学安排本教学设计为某中学高中一年级数学二次函数、一元二次方程与不等式应用课程,为期两学时。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
一元二次函数方程和不等式教学设计(陈开懋)

课题:一元二次函数、方程和不等式(衔接课)华中师范大学第一附属中学陈开懋一、教案设计1.教案内容解读在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好.本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解读几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面.根据以上分析,本节课的教案重点确定为教案重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用.2.学生学情诊断本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.教案难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式.3.教案目标设置(1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系;(2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性;(3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养.4.教案策略分析本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆锥曲线等核心概念必然联系的高度,着眼于继续学习,而又必须遵循数学的自然顺序,避免后继内容的前移。
高中数学教案《二次函数与一元二次方程、不等式》

教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数、方程和不等式(衔接课)一、教学设计1.教学内容解析在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好.本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面.根据以上分析,本节课的教学重点确定为教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用.2.学生学情诊断本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式.3.教学目标设置(1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系;(2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性;(3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养.4.教学策略分析本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆锥曲线等核心概念必然联系的高度,着眼于继续学习,而又必须遵循数学的自然顺序,避免后继内容的前移。
这种课的关键是整合和提升,形成基本套路并了解它在进一步学习中的基本价值。
这些都需要问题驱动,循序渐进,在师生互动中不断地归纳总结。
5.教学过程环节一:回顾师:同学们,我们初中学过一元一次不等式,同学们说说这个不等式023>-x 的解集是多少啊?生:32>x . 师:诶,怎么算出来的啊?哪位同学来说说?生:把2移到右边去,再不等式左右两边同时除以3.师:你的解题依据是什么呢?生:不等式的性质.师:很好,请坐,这位同学利用不等式的性质,从代数的角度把这个不等式解出来了,还有其它的解法吗?生:可以先画出一次函数的图象,从图象可以看出不等式的解集.师:好,我们先画图象,怎么画这个函数的图象?生:找两个点.师:找那两个点比较好?生:与坐标轴的交点.师:与x 轴的交点是多少?生:)0,32(. 师:这32是怎么出来的啊? 生:令0=y . 即023=-x ,这个方程的根.师:很好,与x 轴的交点的横坐标恰好是对应一次方程的根. 与y 轴的交点是多少? 生:令0=x . 得2-=y ,交点)2,0(-. 师:所以这个不等式的解集就是?生:32>x ,即图象在x 轴上方时所对应的x 的范围. 师:很好,请坐,由此可以看出一次函数、一次方程和一次不等式三者之间有着密切的联系,谁来概括一下?生:一次方程的根就是一次函数图象与x 轴交点的横坐标(即一次函数的零点), 一次不等式的解集就是一次函数图象在x 轴上方时所对应的x 的范围, 一次方程的根也是一次不等式解集的端点师:同学们再想一想,这三者之间为什么会有关系呢?生:……师:我们从代数表达式来看一看, 一次方程、一次不等式和一次函数,这个三个表达式有什么共同点?^……,都含有一次式,对吧,所以它们之间有关系.【评析】回顾初中知识,利用一次函数的图象理解一次方程和一次不等式. 由三个“一次”,类比引出课题,并为三个“二次”的研究提供思路.环节二:整合师:很好,一次函数、一次方程和一次不等式三者之间有着密切的关系. 我们再来看一下一元二次函数)0(2≠++=a c bx ax y ,一元二次方程)0(02≠=++a c bx ax 、一元二次不等式)0(02≠>++a c bx ax ,)0(02≠<++a c bx ax .师:从它们表达式来看,好像也有相同的部分,是什么呀?……,二次多项式,对吧?那么这三个二次之间是否也有类似三个一次之间的关系呢?这就是我们这节课要研究的内容,首先请同学们画画这个二次函数的图象. (板书课题) 画出二次函数322--=x x y 的图象.观看几何画板动画,随着动点C 横坐标x 的变化,纵坐标y 的变化情况.(1) 当x 取哪些值时,0=y ? (2)方程0322=--x x 的根为 ; 当x 取哪些值时,0>y ? 不等式0322>--x x 的解集为 ; 当x 取哪些值时,0<y ? 不等式0322<--x x 的解集为 .问题2:一元二次方程0322=--x x ,一元二次不等式0322>--x x 和一元二次函数322--=x x y ,三者之间有什么关系?动画展示:画一画看一看 说一说 变一变问题3:对于一般的一元二次方程、一元二次不等式和一元二次函数,三者之间有什么关系?小组合作探究:师:二次函数、方程和不等式三者之间有着密切的联系,函数是核心,图象是载体,可以通过函数的观点来处理方程和不等式问题.【评析】以具体的常系数的二次函数、方程、不等式为例,让学生通过类比三个“一次”,理解三个“二次”之间的内在联系,突出二次函数在“三个二次”中的中心地位。
并对一般情形的二次函数、方程和不等式之间的关系进行整合,培养学生的数学抽象、几何直观、逻辑推理等核心数学素养,具体策略是问题驱动,在教学中,鼓励学生自主探索、合作研究. 师:好,对于一个具体的一元二次不等式,我们会求解集,如果反过来,已知不等式的解集,你会求这个不等式吗?同学们思考这样的一个问题:【例1】已知关于x 的不等式02<++c bx x 的解集为)3,1(-,求实数c b ,的值.【评析】逆向变式,强化一元二次函数、方程和不等式的内在联系.生1:依题意,3,1-是对应一元二次方程02=++c bx x 的两根,将1-=x 和3=x 代一元二次函数 一元二次方程 一元二次不等式 图象入方程得,⎪⎩⎪⎨⎧=+⋅+=+-⋅+-0330)1()1(22c b c b ,即⎩⎨⎧=++=++-09301c b c b , 解得⎩⎨⎧-=-=32c b . 生2:依题意,3,1-是对应一元二次方程02=++c bx x 的两根,由韦达定理有⎩⎨⎧=⨯--=+-c b 3131,解得⎩⎨⎧-=-=32c b . 师:很好,请坐. 根据三个“二次”之间的关系,不等式的解集就是函数图象在x 轴下方时,所对应的x 的取值范围,所以3,1-正好是图象与x 轴交点的横坐标,也就是方程02=++c bx x 的两个根,从而根据韦达定理,可以求出c b ,的值. (画图分析) 环节三:提升辩证唯物主义告诉我们,任何事物都是运动、变化、发展的,当我们将方程和不等式中常系数改为字母时, 随着字母取值的不同,方程的根和不等式的解会发生相应的变化,这类方程和不等式称为含参方程和含参不等式,下面我们一起来研究两个含参问题.师:我们再把前面那个具体的方程变一下,系数上加一个参数,同学们思考这样的一个问题:【例2】已知关于x 的方程0322=+-ax x ,一根小于1,另一根大于1,求实数a 的取值范围.【评析】含参二次方程问题,继续对二次方程和二次函数进行整合提升,用函数的观点来处理方程问题. 生1:设32)(2+-=ax x x f ,则0)1(<f ,解之得2>a . 师:有不同意见吗?生2:不对,应该还要0>∆.师:诶,生2好像说得很有道理呢?还有其它观点吗?生3:我觉得生1是对的,因为0>∆的作用是控制图象与x 轴有两个交点,而这是开口向上的抛物线,0)1(<f 也能保证与x 轴有两个交点.师,同学们同意哪位同学的说法?生:曾子轩.师:很好,题目要求这个方程的两根,一个小于1,一个大于1,根据函数与方程的关系,方程的根就是函数图象与x 轴交点的横坐标,我们可以通过控制二次函数的图象来控制方程的根,也就是要保证函数图象与x 轴的交点,一个在1的左侧,一个在1的右侧. 只需要0)1(<f ,就可以控制住这个二次函数的图象了,当然如果把0>∆加进去,可不可以?也是可以的. 我们从代数的角度来检验一下,看两种解法的答案是否一样?法1:202-4)1(>⇒<=a a f法2:2330124202-4)1(2>⇒⎩⎨⎧>-<⇒>-=∆>⇒<=a a a a a a f 或. 师:这是一个方程问题,我们可以根据函数与方程的关系将它转化为函数问题来处理. 师:我们再把前面那个具体的不等式也变一下,系数上加一个参数,同学们思考这样的一个问题:【例3】若不等式0322>+-ax x 对任意]3,1[-∈x 恒成立,求实数a 的取值范围. 【评析】含参二次不等式问题,继续对二次不等式和二次函数进行整合提升,用函数的观点来处理不等式问题.组内学生相互讨论,分析解题思路,再让学生先分析.学生分析:只需二次函数32)(2+-=ax x x f ,在]3,1[-∈x 这一段的图象位于x 轴上方,应分三种情况讨论,当对称轴在区间的左边、中间和右边.师:非常不错啊,刘钰欣同学将这个不等式问题等价转化为函数图象问题,只需要函数图象在]3,1[-∈x 这一段的图象位于x 轴上方即可. 如何保证图象在x 轴上方呢?我们边看动画一起来分析.动画展示:随着a 的取值变化,函数图象与x 轴的位置关系.师:当对称轴在区间的左边时,怎么样就能保证图象在x 轴上方?生:只需要0)1(>-f ,师:很好,因为当对称轴在区间的左边时,函数在]3,1[-∈x 这一段的图象是上升的,即y 随着x 的增大而增大,只需要最小值0)1(>-f 即可.师:当对称轴在区间的里面时,怎么样就能保证图象在x 轴上方?生:0<∆.师:还可以通过什么来控制?生:0)(>a f .师:就是函数的最小值大于零即可.师:再来看,当对称轴在区间的右边时,怎么样就能保证图象在x 轴上方?生:只需要0)3(>f ,师:很好,因为当对称轴在区间的右边时,函数在]3,1[-∈x 这一段的图象是下降的,即y 随着x 的增大而减小,只需要最小值0)3(>f 即可.下面同学们把具体的解答过程写出来,找一个同学上黑板完成具体过程:生:记32)(2+-=ax x x f ,这个函数的对称轴为a x =,则当1-<a 时,只需要024)1(>+=-a f ,解得2->a , 又1-≤a ,所以12-≤<-a ;当31<<-a 时,只需要01242<-=∆a ,解得33<<-a ,又31<<-a , 所以31<<-a ;当3>a 时,只需要0612)3(>-=a f ,解得2<a ,与3≥a 矛盾.综上:32<<-a .师:找个同学来点评一下.生:答案正确,但解题过程有点不对,没有讨论1-=a 和3=a 的情况.师:很好,这两种情况,可以加在哪里比较好.生:加在中间.师:很好,对于含参问题,我们除了要选择恰当的分类讨论标准之外,还应该注意分类讨论还应做到不重不漏..师:好,这是一个不等式问题,我们仍然将它转化为一个函数问题来处理.环节四:展望师:同学们,今天莅临我们课堂的还有一位神秘嘉宾,大家想不想见一下?生:想.师:掌声有请.嘉宾:学弟,学妹们好,首先自我介绍一下,我是现在高三(15)班的刘今欣同学,很高兴走进学弟学妹们的课堂,和大家一起交流、学习.嘉宾:大家都知道一元二次函数是中考的压轴题,那么,我们今天学习的二次函数、二次方程和二次不等式在以后的高中学习中有什么作用呢?课前,陈老师给我布置了一个任务,让我归纳整理一下. 二次函数、二次方程和二次不等式在高中数学其它领域的应用. 其实三个“二次”及其相关问题的处理方法广泛应用于高中数学的各大核心模块:如数列、三角函数、立体几何、解析几何、导数等.下面重点以三个“二次”在解析几何中的应用为例,让同学们对三个“二次”在以后学习中的地位和作用有所了解.【案例1】直线1:+=kx y l 与双曲线1222=-y x C :的右支交于不同的两点B A 、,求实数k 的取值范围.解:联立方程22121y kx x y =+⎧⎨-=⎩,消去y ,得到x 的一元二次方程 .022)2(22=++-kx x k ……①直线l 与双曲线C 的右支交于不同两点,等价于方程①有两个不相等的正实数根.即对应二次函数图象与x 轴有两个交点,且交点在y 轴右侧. 我们可以通过以下几个条件控制二次函数的图象.2222220,(2)8(2)0,20220.2k k k k k k ⎧-≠⎪∆=-->⎪⎪⎨->-⎪⎪>⎪-⎩ 解得k 的取值范围是22k -<<【案例2】(2016年江苏高考第19题)试题和答案如下:已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠.⑴ 设2a =,12b =① 求方程()2f x =的根; ② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 略.解:⑴ ① ()122xx f x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=, 则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 令122x x t =+,则由20x>可得12222x x t ⨯=≥, 原问题等价于不等式2+4t mt -≥0,对任意的t 在),2[+∞上恒成立,记2()+4f t t mt =-,当对称轴02≤m ,即0≤m 时,显然成立; 当对称轴220≤<m ,即40≤<m 时,只需(2)820f m =-≥,即40≤<m ; 当对称轴22>m ,即4>m 时,只需216044m m ∆=-≤⇒-≤≤,与4>m 矛盾; 综上,40≤<m ,所以实数m 的最大值为4.【案例3】(2016年全国Ⅱ卷文科高考第11题)试题和答案如下:函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5 (C )6 (D )7 解:因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5, 以上是最终可以转化为二次函数、二次方程和二次不等式的题目,其实还有更多的考题是考其他类型的方程、不等式问题,也可以用函数的观点,数形结合的思想来处理,如 【案例4】(2016年山东卷文理高考第15题,填空压轴)试题和答案如下:已知函数=)(x f 2,,24,,x x m x mx m x m ⎧≤⎪⎨-+>⎪⎩其中0>m .若存在实数b ,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是_______.解:画出函数图像如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >时间关系,我暂时只讲这么多,欢迎同学们以后常来找我交流,预祝学弟学妹们早日适应华师一的学习. 也预祝大家在这个顶尖中学度过愉快而又成功的三年高中生活!【评析】结课:从高中数学的核心问题中回望基础,让学生加深对三个“二次”作用的理解,并试图产生对进一步学习的期待.师:很好,谢谢这位学长. 高中数学中的许多问题,都与三个“二次”直接有关或间接有关. 二次函数、二次方程和二次不等式的研究方法为研究其它函数、方程和不等式提供了套路. 以后,对于其它类型的方程和不等式问题,我们仍然可以用函数的观点来处理.师:这里其实还蕴含着一种重要的数学思想方法,同学们说说,是什么?生:数形结合,师:著名数学家华罗庚专为数形结合思想写了一首诗,我们一起来朗诵一下.数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事非。