七年级上数学配套问题
人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4

人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4一. 教材分析《实际问题与一元一次方程——配套问题》是人教版七年级数学上册第三章第四节的内容。
本节课的主要任务是通过实际问题引导学生理解一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。
教材中给出了四个配套问题,分别是:购物问题、速度问题、利润问题和工程问题。
这些问题都是日常生活中常见的问题,通过这些问题让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析七年级的学生已经学习了代数的基础知识,对一元一次方程有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,更不知道如何运用一元一次方程解决问题。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为数学问题,并运用一元一次方程进行解答。
三. 说教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过一个购物问题引入本节课的内容,激发学生的学习兴趣。
2.知识讲解:讲解一元一次方程的解法,并通过实例让学生理解解法的步骤。
3.案例分析:分析教材中的四个配套问题,引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。
4.实践环节:让学生分组讨论,选取一个实际问题进行解决,培养学生的动手能力和团队协作能力。
数学人教版七年级上册“配套问题”

3.4.1实际问题与一元一次方程(配套问题)【学习目标】【学习重点】会找出配套问题中的相等关系,进一步列出一元一次方程,解决实际问题。
根据已知条件列出一元一次方程解决实际问题。
【学习难点】能找出配套问题中表示相等关系的句子。
【学习过程】一、复习旧知:1、请同学们回忆小学列方程解应用题有哪些步骤?2、注意:(1)、设未知数及作答时若有单位的一定要带单位。
(2)、方程中数量单位要统一。
二、探究新知活动一:抢答 1、有下面的句子你可以得到什么相等的式子? (1)、1个螺钉需要配2个螺母。
(2)、1个A部件和3个B部件配套。
(3)、1件上衣配1条裤子。
(4)、1个桌面配4个桌腿。
2、你还能举出其他的实例吗?与老师和同学分享一下吧!___________________________________________________________活动二:例1:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?分析:1、问题求的什么?你可以怎么设未知数?2、哪句话中隐含等量关系?怎么理解配套的意思?3、怎么列方程?螺钉数为个,生产的螺母数为个,螺母数= 螺钉数。
完整过程为:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母. 依题意得:解方程,得:答:应安排名工人生产螺钉,名工人生产螺母.活动三:以上这个问题聪明的你一定还有其他的方法?与老师和同学分享一下吧!三、合作与尝试1、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产出的螺栓和螺帽刚好配套(每一个螺栓要配两个螺帽)?2、一套仪器由一个A部件和三个B部件构成,用1 m3钢材可以做40个A部件或240个B部件。
现要用6 m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?3、某家具厂生产一种方桌,设计时1立方米的木材可做50个桌面,或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿,使用的木材使桌面、桌腿刚好配套,并指出共可生产多少张方桌?(一个桌面四条桌腿)四、课堂小结你学到了什么?(先想一想,然后再与老师和同学交流)____________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________________________________________________ ________________________________________________________________五、课外作业与提高(1)、必做题:教材P106 习题3.4:2,3题。
人教版七年级数学上册5.3第1课时配套问题与工程问题课件

解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.
数学人教版七年级上册一元一次方程---配套问题

引入新课 一套茶具由1把茶壶和6只茶杯组成, 请你在表格中填上合适的数据,使茶壶和 茶杯刚好配套. (大家填一填,看谁填的又快又好)
茶壶的 数目(把)
茶杯的 数目(只)
茶壶与茶杯之间配套的 数目关系 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6
1
产品类型
灯罩 栅板
单位产量
铝合金板 ( m2 )
总产量
4 12
x
4x
(11-x)
12(11-x)
3×栅板数目=2×灯罩数目
灯罩数目﹕ 栅板数目=3﹕2
基础训练
巩固应用
2.一套格栅灯具由3个圆弧灯罩和2块栅板间隔组成, 均可用铝合金板 冲压制成.已知1 m2铝合金板可以冲压4个圆弧灯罩或12块栅板. 现用11 m2 铝合金板制作这种格栅灯具,应分配多少平方米铝合金板制作圆弧灯罩, 多少平方米铝合金板制作栅板,恰好配成这种格栅灯具多少套?
15(30-x)=6×5 x
实际问题
一元一次方程
解 方 程
实际问题 的答案
应该安排10名工 艺师生产茶壶,20名 工艺师生产茶杯.
检验
一元一次方程 的解(x=a) x=10 30-x=20
解 一 元 一 次 方 程
代入方程成立 符合实际意义
例题示范
巩固新知
例1变式:生产这套茶具的主要材料是紫砂泥,用1千克紫 砂泥可做4把茶壶或12只茶杯.现要用6千克紫砂泥制作这些茶 具,应用多少千克紫砂泥做茶壶,多少千克紫砂泥做茶杯,恰 好配成这种茶具多少套?(1套茶具中1把茶壶配6只茶杯) 分析:
即 1 5 ( 3 0 x ) 65 x
两边约去15,得
七年级上数学配套问题

七年级上数学配套问题应用题练习1、包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?5、某车间每天能生产甲种零件450个或乙种零件300个,已知3个甲种零件与5个乙种零件刚好配套,现要在21天中使所生产的零件全部配套,那么该如何安排生产?6、敌我两军相距25km/h,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,战斗是在开始追击后几小时发生的?7、小王在静水中的划船速度为12km/h,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度。
8、姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐出发去追妹妹。
问:多少分钟后能追上?9、小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。
小王的速率是3.7千米/小时,那么小张的速率是多少?10、甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。
甲乙两车分别用10分钟、6分钟追上骑车人。
甲车速率是24千米/小时,乙车速率是30千米/小时,问两车出发时相距多少千米?11、一支军队排成1.2千米队行军,在队尾的张明要与在最前面的营长接洽,他用6分钟时间追上了营长。
七年级上册数学配套问题

4x+7=5(x-1)+3 或4x+7=5x-2 解这个方程,得x=9 4x+7=4×9+7=43
答;这个车队有9辆车,这批货物共有43吨.
41-x X+ =Biblioteka 0 2解这个方程,得x=19
41-x=41-19=22 答:安排22人抬,19人挑,可使扁担和人数 相配不多不少。
练习2:汽车队运送一批货物,每辆装4吨还 有7吨未装;每辆装5吨,最后一辆车余下2 吨未装满。这个车队有多少辆车?这批货物 共有多少吨? 解;这个车队有x辆车, 则这批货物共有(4x+7)吨
义务教育教科书
第三章 一元一次方程
数学
七年级
上册
3.4 实际问题与一元一次方程(1)
四、课堂练习
练习1:一套仪器由一个A部件和三个B部件构 成. 用1 m3钢材可以做40个A部件或240个B部件. 现要用6 m3钢材制作这种仪器,应用多少钢材做 A部件,多少钢材做B部件,恰好配成这种仪器 多少套?
解:设应用 x m3钢材做A部件,(6-x) m3 钢材 做B部件. 依题意得: 3×40 x=240 (6-x) . 解方程,得: x=4.
答:应用4 m3钢材做A部件,2 m3 钢材做B部件, 配成这种仪器160套.
练习3:41人参加运土劳动,有30根扁担,安排多 少人抬,多少人挑,可使扁担和人数相配不多不少? 解:设有x人挑土,根据题意,得
人教版数学七年级上册《“配套”问题》教案1

人教版数学七年级上册《“配套”问题》教案1一. 教材分析《“配套”问题》是人教版数学七年级上册的一章内容,主要讲述了配套问题的解法和相关应用。
本章通过实际问题引入配套概念,使学生了解并掌握成套物品的搭配问题。
教材内容由浅入深,从简单到复杂,让学生在解决实际问题的过程中,体会数学的乐趣,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对于一些基本的运算和数学概念有一定的了解。
但面对实际问题,部分学生可能还缺乏解决问题的思路和方法。
因此,在教学过程中,需要关注学生的个体差异,针对不同层次的学生进行引导和启发,帮助他们建立解决实际问题的信心。
三. 教学目标1.知识与技能:让学生掌握配套问题的解法,能够独立解决简单的配套问题。
2.过程与方法:通过解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极参与数学学习的积极性。
四. 教学重难点1.重点:配套问题的解法及其应用。
2.难点:如何将实际问题转化为数学模型,并运用配套问题的解法进行求解。
五. 教学方法采用问题驱动的教学方法,以学生为主体,教师为主导。
通过引导学生观察、分析、思考、讨论,激发学生的学习兴趣,培养学生的独立解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.教材:《人教版数学七年级上册》。
3.学具:笔记本、铅笔、橡皮。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如“小明有3红球和2蓝球,他想用这些球组成不同颜色的组合,请问他有多少种组合方式?”引起学生的兴趣,引导学生思考如何解决这类问题。
2.呈现(10分钟)教师引导学生观察问题,并提出解决思路。
让学生尝试用数学语言描述问题,从而引出配套概念。
例如,将红球和蓝球看作两个集合,求解两个集合的组合问题。
3.操练(10分钟)教师给出一些简单的配套问题,让学生独立解决。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)

在这次教学活动中,我尝试了多种方法引导学生学习《实际问题与一元一次方程》这一章节。首先,通过生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在讲授过程中,我注重理论与实践相结合,让学生在实际问题中感受一元一次方程的魅力。
在教学中,我发现有些学生在从实际问题抽象出一元一次方程时存在困难。为了帮助他们突破这个难点,我采用了案例分析、分组讨论等形式,让学生在互动中加深理解。同时,我特别强调了解方程的基本步骤,引导学生通过对比错误解法和正确解法,掌握解题方法。
人教版七年级上册3.4实际问题与一元一次方程-配套问题(教案)
一、教学内容
人教版七年级上册3.4实际问题与一元一次方程-配套问题,主要包括以下内容:
1.理解一元一次方程在解决实际问题中的应用;
2.学会根据实际问题列出一元一次方程;
3.掌握解一元一次方程的方法,如移项、合并同类项、系数化为1等;
4.解决涉及单价、数量、总价等实际问题,如购物问题、行程问题等;
5.通过解决实际问题,提高学生运用养目标
1.提升学生数学抽象、逻辑推理和数学建模的核心素养,使学生能够从实际问题中抽象出一元一次方程,并用方程解决实际问题;
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识,增强对数学在实际生活中作用的认知;
3.培养学生合作交流、思考问题的习惯,提高学生分析问题、解决问题的能力,培养批判性思维和创新意识;
-难点一:识别实际问题中的关键信息,如购物问题中的单价、数量和总价,学生可能难以把握这些信息之间的关系,需要通过具体实例和图示帮助学生理解。
-难点二:将实际问题转化为方程时,学生可能会对如何选择变量、如何表达数量关系感到困惑。教学中应通过多个示例,指导学生如何进行变量选择和方程构建。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学配套问题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
七年级上数学配套问题
包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?
分析:1.设安排生产圆片工人为()人,则安排长方片( )人
2.生产圆片的总数为()片,生产长方片的总数为()片
3.如何配套圆片总数:长方片总数=():()
4.列式:
用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?
分析:1.设生产瓶身用铝片()张,则生产瓶底用铝片()张
2.生产瓶身总数为()个,生产瓶身总数为()个
3.如何配套瓶身总数:瓶底总数=():()
4,。
列式
某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产A零件,多少天生产B 零件?
分析:1.设用()天生产A零件,用()天生产B零件
2生产A零件总数()个,生产B零件总数()个
3.如何配套 A零件总数:B零件总数=():()
4.列式
车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?
分析:设分配生产甲零件()人,分配生产乙零件()人
生产甲零件总数()个,生产乙零件总数()个
如何配套甲零件总数:乙零件总数=():()
列式:
敌我两军相距25km,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,战斗是在开始追击后几小时发生的
分析:设()小时发生战斗
当发生战斗时我军行进了()千米,敌军行进了()千米
针对行程问题,画出行程图:
列式:
小王在静水中的划船速度为12km/h,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度。
分析:1设此河水流速度为()km/h,顺流时速度为()km/h,逆流时速度为()km/h
2.顺流时总共所走的路程为()km,逆流时总共所走的路程为()km
3.等量关系:
4.列式:
姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐出发去追妹妹。
问:多少分钟后能追上
分析:1.设()分钟后追上
2.当追上时妹妹总共步行了()米,姐姐总共步行()米
3.等量关系:
4.列式:
小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。
小王的速度是3.7千米/小时,那么小张的速度是多少
分析: .小王所走的路程为()千米,半程为()千米,则小张的路程为()千米,此时可求小张的速度()千米每小时
列式:
一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。
为了回到队尾,在追上营长的地方等待了18分钟。
如果他从最前头跑步回到队尾,那么用多少时间
分析:1.设所用时间为()分钟
2.由路程和时间可以求出张明的速度为()千米每分钟,部队行军的速度为()千米每小时
3.从最前头跑到最尾,张明所走的路程加部队所走的路程就是部队的长度
4.列式
6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。
15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。
问:(1)哥哥在离家多远处追上弟弟
(2)哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?
甲, 乙两地间河流长为90千米,A, B两艘客船同时启航,如果相向而行3小时相遇,同向而行15小时A船追上B船,求船在静水中的速度。
一只船的燃料最多用6小时,去时顺水,速度每小时15千米,回来时逆流,速度每小时12千米,这只船最多行出多少千米就需要往回开?
甲乙两车分别从两地同时相向开出。
甲车经过6小时到达A地,甲车经过10小时到达B地。
(1)相遇时,乙车行了360千米。
求两地距离。
(2)相遇时,乙离目的地还有360千米。
求两地距离。
(3)相遇时,乙比甲多行360千米。
求两地距离。
(4)两车在离中点处360千米相遇,求两地距离。
(5)5分钟后两车又相距360千米。
求两地距离。