牛顿运动定律的应用题及答案
高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
2025高考物理 牛顿运动定律的综合应用

2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。
甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。
由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。
则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。
则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
大学物理牛顿运动定律及其应用习题及答案

第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:此题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx 〔k 为比例系数〕,求: 〔1〕此时作用于质点的力;〔2〕质点由1x x =处出发,运动到2x x =处所需要的时间。
解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-〔0F ,k 均为常量〕的作用下作直线运动,求: 〔1〕质点的加速度;〔2〕质点的速度和位置〔设质点开始静止于坐标原点处〕.解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)〔k 是常量〕的作用下沿X 轴运动,求质点在x 处的速度。
解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰5.一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-] 00000(1)k t m x tk k t t m m dx v v e dt mv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e= 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000vt k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未到达极限速度前运动方程为2mg kv ma -= 〔1〕雨滴下降到达极限速度后运动方程为20mg kv -= 〔2〕将v = 4.0 m/s 代入〔2〕式得2maxmg k v = 〔3〕 由〔1〕、〔3〕式 22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
牛顿运动三大定律的应用
牛顿运动定律应用(一)瞬时问题与动态分析 超重与失重要点精析要点一 瞬时问题1.如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可忽略不计. 当悬线被烧断的瞬间,甲、乙的加速度数值应为 ( )A.甲是0,乙是gB.甲是g,乙是gC.甲是0,乙是0D.甲是2g ,乙是g答案 B要点二 动态分析2.如图所示,一轻质弹簧一端系在墙上的O 点,另一端连接小物体,弹簧自由伸长到B 点,让小 物体m 把弹簧压缩到A 点,然后释放,小物体能运动到C 点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是( )A.物体从A 到B 速度越来越大,从B 到C 速度越来越小B.物体从A 到B 速度越来越小,从B 到C 加速度不变C.物体从A 到B 先加速后减速,从B 到C 一直减速运动D.物体在B 点受合外力为零 答案 C要点三 超重与失重3.下列关于超重和失重现象的描述中正确的是( )A.电梯正在减速上升,在电梯中的乘客处于超重状态B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态C.荡秋千时秋千摆到最低位置时,人处于失重状态D.“神舟”六号飞船在绕地球做圆轨道运行时,飞船内的宇宙员处于完全失重状态 答案 D题型探究题型1 瞬时问题【例1】如图如图(a)所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.(1)现将图(a)中L线剪断,求剪断瞬间物体的加速度.2(2)若将图(a)中的细线L改为质量不计的轻弹簧而其余情况不变,如图(b)所示,求剪断1L瞬间物体的加速度.2答案 (1)gsinθ (2)gtanθ题型2 程序法分板牙动态问题【例2】一个小球(小球的密度小于水的密度)从较高的位置落下来,落入足够深的水池中,在小球从静止下落,直到在水中下落到最大深度的过程中,下列小球速度随时间变化的图线可能正确的是 ( )答案 A题型3 超重与失重观点解题【例3】如图所示,在台秤的托盘上,放着一个支架,支架上挂着一个电磁铁A,电磁铁的正下方有一铁块B,电磁铁不通电时,台秤的示数为G.当接通电路,在铁块被电磁铁吸起的过程中,台秤的示数将( )A.不变B.变大C.变小D.忽大忽小答案 B题型4 运动建模【例4】一科研火箭从某一无大气层的行星的一个极竖直向上发射,由火箭传来的无线电信息表明:从火箭发射时的一段时间t内(火箭喷气过程),火箭上所有物体对支持物的压力或对其悬挂装置的拉力是火箭发射前的1.8倍,除此之外,在落回行星表面前的所有时间内,火箭里的物体处于失重状态,问从火箭发射到落回行星表面经过多长时间?(行星引力大小随距行星表面高度的变化可忽略不计)答案 3t跟踪训练1.如图所示,物体P以一定的初速度v沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P的加速度大小不断变化,方向也不断变化B.P的加速度大小不断变化,但方向只改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大答案 C2.某同学把一体重秤放在电梯的地板上,他站在体重秤上随电梯运动并观察体重秤示数的变化情况.下表记录了几个特定时刻体重秤的示数.(表内时间不表示先后顺序)若已知t 0时刻电梯静止,则下列说法错误的是( )A.t 1和t 2时刻该同学的质量并没有变化,但所受重力发生变化B.t 1和t 2时刻电梯的加速度方向一定相反C.t 1和t 2时刻电梯的加速度大小相等,运动方向不一定相反D.t 3时刻电梯可能向上运动 答案 A3.(2009·贵阳模拟)细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球 与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,如图所示.(已知cos 53°=0.6, sin 53°=0.8)以下说法正确的是( )A.小球静止时弹簧的弹力大小为53mg B.小球静止时细绳的拉力大小为53mgC.细线烧断瞬间小球的加速度立即为gD.细线烧断瞬间小球的加速度立即为53g答案 D4.如图甲所示为学校操场上一质量不计的竖直滑杆,滑杆上端固定,下端 悬空.为了研究学生沿杆的下滑情况,在杆顶部装有一拉力传感器,可显 示杆顶端所受拉力的大小.现有一学生(可视为质点)从上端由静止开始 滑下,5 s 末滑到杆底时速度恰好为零.以学生开始下滑时刻为计时起点, 传感器显示的拉力随时间变化情况如图乙所示,g 取10 m/s 2.求: (1)该学生下滑过程中的最大速率.(2)滑杆的长度.答案 (1)2.4 m/s (2)6.0 m。
高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)
第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。
“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。
2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。
人教版(2019)高中物理必修第一册同步练习:4.5牛顿运动定律的应用(含答案)
牛顿运动定律的应用一、单项选择题1.2018年10月23日,港珠澳大桥正式开通.建造大桥过程中最困难的莫过于沉管隧道的沉放和精确安装,每节沉管隧道重约G=8×108N,相当于一艘中型航母的重量.通过缆绳送沉管到海底,若把该沉管的向下沉放过程看成是先加速运动后减速运动,且沉管仅受重力和缆绳的拉力,则拉力的变化过程可能正确的是()C2.如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r 的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A 滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1B.1∶1C.3∶1 D.1∶3B3.某消防队员从一平台上跳下,下落2 m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m,在着地过程中地面对他双脚的平均作用力估计为()A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍B4.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车闸到车完全停止需要的时间为5 s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)()A.450 N B.400 NC.350 N D.300 NC5.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道分别沿AM、BM 运动到M点;c球由C点自由下落到M点.则()A.a球最先到达M点B.c球最先到达M点C.b球最先到达M点D.b球和c球都可能最先到达MB6.在设计游乐场中“激流勇进”的倾斜滑道时,小组同学将划艇在倾斜滑道上的运动视为由静止开始的无摩擦滑动,已知倾斜滑道在水平面上的投影长度L是一定的,而高度可以调节,则()A.滑道倾角越大,划艇下滑时间越短B.划艇下滑时间与倾角无关C.划艇下滑的最短时间为2L gD.划艇下滑的最短时间为2L gC7.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车刹车前的速度为()A.7 m/s B.14 m/sC.10 m/s D.20 m/sB8.在汽车内的悬线上挂着一个小球m,实验表明当汽车做匀变速直线运动时,悬线将与竖直方向成某一固定角度θ,如图所示,若在汽车底板上还有一个跟它相对静止的物体M,则关于汽车的运动情况和物体M的受力情况分析正确的是()A.汽车一定向右做加速运动B.汽车的加速度大小为g sin θC.M只受到重力、底板的支持力作用D.M除受到重力、底板的支持力作用外,还一定受到向右的摩擦力的作用D9.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2gh t +mgB.m 2ght -mgC.m gh t +mgD.m gh t-mgA二、多项选择题10.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F 推第1块木块使它们共同加速运动时,下列说法中正确的是( )A .由右向左,两块木块之间的相互作用力依次变小B .由右向左,两块木块之间的相互作用力依次变大C .第2块木块与第3块木块之间的弹力大小为0.6FD .第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC11.绷紧的传送带长L =32 m ,铁块与带间动摩擦因数μ=0.1,g =10 m/s 2,下列正确的是( )A .若皮带静止,A 处小铁块以v 0=10 m/s 向B 运动,则铁块到达B 处的速度为6 m/s B .若皮带始终以4 m/s 的速度向左运动,而铁块从A 处以v 0=10 m/s 向B 运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B 处的速度为8 m/sABD12.如图所示,质量为m=1 kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s时,给物体施加一个与速度方向相反的大小为F=2 N的恒力,在此恒力作用下(取g=10 m/s2)()A.物体经10 s速度减为零B.物体经2 s速度减为零C.物体速度减为零后将保持静止D.物体速度减为零后将向右运动BC13.从某一星球表面做火箭实验.已知竖直升空的实验火箭质量为15 kg,发动机推动力为恒力.实验火箭升空后发动机因故障突然关闭,如图所示是实验火箭从升空到落回星球表面的速度随时间变化的图象,不计空气阻力,则由图象可判断()A.该实验火箭在星球表面达到的最大高度为320 mB.该实验火箭在星球表面达到的最大高度为480 mC.该星球表面的重力加速度为2.5 m/s2D.发动机的推动力F为37.50 NBC三、非选择题14.我国现在服役的第一艘航母“辽宁号”的舰载机采用的是滑跃起飞方式,即飞机依靠自身发动机从静止开始到滑跃起飞,滑跃仰角为θ.其起飞跑道可视为由长度L1=180 m的水平跑道和长度L2=20 m倾斜跑道两部分组成,水平跑道和倾斜跑道末端的高度差h=2 m,如图所示.已知质量m=2×104 kg的舰载机的喷气发动机的总推力大小恒为F=1.2×105 N,方向始终与速度方向相同,若飞机起飞过程中受到的阻力大小恒为飞机重力的0.15,飞机质量视为不变,并把飞机看成质点,航母处于静止状态.(1)求飞机在水平跑道运动的时间;(2)求飞机在倾斜跑道上的加速度大小.解析:(1)设飞机在水平跑道的加速度大小为a1,由牛顿第二定律得F1-f=ma1解得a1=4.5 m/s2由匀加速直线运动公式L1=12at2解得t=45s.(2)设沿斜面方向的加速度大小为a2,在倾斜跑道上对飞机受力分析,由牛顿第二定律得F-f-mg sin θ=ma2,其中sin θ=hL2解得a2=3.5 m/s2.答案:(1)45s(2)3.5 m/s215.如图所示,有一质量m=1 kg的物块,以初速度v=6 m/s从A点开始沿水平面向右滑行.物块运动中始终受到大小为2 N、方向水平向左的力F作用,已知物块与水平面间的动摩擦因数μ=0.1.求:(取g=10 m/s2)(1)物块向右运动时所受摩擦力的大小和方向; (2)物块向右运动到最远处的位移大小;(3)物块经过多长时间回到出发点A ?(结果保留两位有效数字) 解析:(1)物块向右运动时所受摩擦力的大小 F f =μmg =1 N物块向右运动时所受摩擦力的方向水平向左. (2)物块向右运动时的加速度大小 a 1=F +Ff m=3 m/s 2物块向右运动到最远处时的位移大小 2a 1x =v 2,x =v22a1=6 m. (3)物块向右运动的时间:t 1=va1=2 s物块返回时的加速度大小:a 2=F -Ffm =1 m/s 2由x =12a 2t 2得物块返回过程的时间t 2=2xa2=23 s≈3.5 s 物块回到出发点A 的时间 t =t 1+t 2=5.5 s.答案:(1)1 N 水平向左 (2)6 m (3)5.5 s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的应用1.如图质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为A .0 B .大小为233g ,方向竖直向下 C .大小为233g ,方向垂直于木板向下 D .大小为33g ,方向水平向右 2.物块A 1、A 2、B 1和B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连结,两个装置都放在水平的支托物上,处于平衡状态,如图今突然撤去支托物,让物块下落,在除去支托物的瞬间,A 1、A 2受到的合力分别为1f F 和2f F ,B 1、B 2受到的合力分别为F 1和F 2,则 A .1f F = 0,2f F = 2mg ,F 1 = 0,F 2 = 2mgB .1f F = mg ,2f F = mg ,F 1 = 0,F 2 = 2mgC .1f F = mg ,2f F = 2mg ,F 1 = mg ,F 2 = mgD .1f F = mg ,2f F = mg ,F 1 = mg ,F 2 = mg3.如图所示,质量相同的木块A 、B ,用轻质弹簧连接处于静止状态,现用水平恒力推木块A ,则弹簧在第一次压缩到最短的过程中A .A 、B 速度相同时,加速度a A = a B B .A 、B 速度相同时,加速度a A >a BC .A 、B 加速度相同时,速度υA <υBD .A 、B 加速度相同时,速度υA >υB4.雨滴在下落过程中,由于水汽的凝聚,雨滴质量将逐渐增大,同时由于下落速度逐渐增大,所受阻力也将越来越大,最后雨滴将以某一速度匀速下降,在雨滴下降的过程中,下列说法中正确的是A .雨滴受到的重力逐渐增大,重力产生的加速度也逐渐增大B .雨滴质量逐渐增大,重力产生的加速度逐渐减小C .由于雨滴受空气阻力逐渐增大,雨滴下落的加速度将逐渐减小D .雨滴所受重力逐渐增大,雨滴下落的加速度不变5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s2.当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为A .a=1.0m/s2,F=260N B .a=1.0m/s2,F=330NC .a=3.0m/s2,F=110N D .a=3.0m/s2,F=50N6.物体从粗糙斜面的底端,以平行于斜面的初速度υ0沿斜面向上A .斜面倾角越小,上升的高度越大B .斜面倾角越大,上升的高度越大C .物体质量越小,上升的高度越大D .物体质量越大,上升的高度越大7.在粗糙水平面上放着一个箱子,前面的人用水平方向成仰角θ1的力F1拉箱子,同时后面的人用与水平方向成俯角θ2的推力F2推箱子,如图所示,此时箱子的加速度为a,如果此时撤去推力F2,则箱子的加速度A.一定增大B.一定减小C.可能不变D.不是增大就是减小,不可能不变8.如图一物体恰能在一个斜面体上沿斜面匀速下滑,可以证明出此时斜面不受地面的摩擦力作用,若沿斜面方向用力向下推此物体,使物体加速下滑,则斜面受地面的摩擦力是A.大小为零B.方向水平向右C.方向水平向左D.无法判断大小和方向9.如图所示,质量分别为m A、m B的两个物体A、B,用细绳相连跨过光滑的滑轮,将A置于倾角为θ的斜面上,B悬空.设A与斜面、斜面与水平地面间均是光滑的,A在斜面上沿斜面加速下滑,求斜面受到高出地面的竖直挡壁的水平方向作用力的大小.10.如图所示,质量M = 10kg的木楔静置于粗糙的水平地面上,木楔与地面间的动摩擦因数μ = 0.02.在木楔的倾角为θ = 30°的斜面上,有一质量m = 1.0kg的物块由静止开始沿斜面下滑,当滑行路程s = 1.4m时,其速度υ = 1.4m/s在这个过程中木楔没有移动,求地面对木楔的摩擦力的大小和方向(取g = 10m/s2).11.如图所示,质量M = 8kg的小车放在水平光滑的平面上,在小车左端加一水平恒力F,F = 8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m = 2kg的小物块,物块与小车间的动摩擦因数μ = 0.2,小车足够长.求从小物块放上小车开始,经过t = 1.5s小物块通过的位移大小为多少?(取g = 10m/s2).12.如图所示,将一物体A轻放在匀速传送的传送带的a点,已知传送带速度大小υ= 2m/s,ab = 2m,bc = 4m,A与传送带之间的动摩擦因素μ = 0.25.假设物体在b点不平抛而沿皮带运动,且没有速度损失.求物体A从a点运动到c点共需多长时间?(取g =10m/s2,sin37° = 0.6,cos37° = 0.8)13.放在水平地面上的一物块,受到方向不变的水平推力F 作用,力F 的大小与时间t 的关系、物块速度υ与时间t 的关系如图所示.取g = 10m/s 2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数14.一辆客车在某高速公路上行驶,在经过某直线路段时,司机驾车作匀速直线运动。
司机发现其正要通过正前方高山悬崖下的隧道,遂鸣笛,5s 后听到回声;听到回声后又行驶10s 司机第二次鸣笛,3s 后听到回声。
请根据以上数据帮助司机计算一下客车的速度,看客车是否超速行驶,以便提醒司机安全行驶。
已知此高速公路的最高限速为120km/h ,声音在空气中的传播速度为340m/s 。
15.如图所示,物体B 放在物体A 的水平表面上,已知A 的质量为M ,B 的质量为m ,物体B 通过劲度系数为k 的弹簧跟A 的右侧相连当A 在外力作用下以加速度a 0向右做匀加速运动时,弹簧C 恰能保持原长l 0不变,增大加速度时,弹簧将出现形变.求:(1)当A 的加速度由a 0增大到a 时,物体B 随A 一起前进,此时弹簧的伸长量x 多大?(2)若地面光滑,使A 、B 一起做匀加速运动的外力F 多大?16.一圆环A 套在一均匀圆木棒B 上,A 的高度相对B 的长度来说可以忽略不计。
A 和B 的质量都等于m ,A 和B 之间的滑动摩擦力为f (f < mg )。
开始时B 竖直放置,下端离地面高度为h ,A 在B 的顶端,如图所示。
让它们由静止开始自由下落,当木棒与地面相碰后,木棒以竖直向上的速度反向运动,并且碰撞前后的速度大小相等。
设碰撞时间很短,不考虑空气阻力,问:在B 再次着地前,要使A 不脱离B ,B至少应该多长?17.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .(重力加速度为g )18.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。
桌布的一边与桌的AB 边重合,如图。
已知盘与桌布间的动摩擦因数为μ与桌面间的动摩擦因数为2μ。
现突然以恒定加速度a 面,加速度方向是水平的且垂直于AB 边。
若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)19.原地起跳时,先屈腿下蹲,然后突然蹬地。
过程(视为匀加速),加速过程中重心上升的距离称为“加速距离地后重心继续上升,在此过程中重心上升的最大距离称为“现有下列数据:人原地上跳的“加速距离”d 1=0.50m , “竖度”h 1=1.0m ;跳蚤原地上跳的“加速距离”d 2=0.00080m , “竖度”h 2=0.10m 。
假想人具有与跳蚤相等的起跳加速度,而“为0.50m ,则人上跳的“竖直高度”是多少?20.一水平的浅色长传送带上放置一煤块(可视为质点)之间的动摩擦因数为μ带以恒定的加速度a 0开始运动,当其速度达到v 0 运动的加速度的大小为a ,A 在沿斜面方向由牛顿第二定律有:-F T = m A aB 在竖直方向由牛顿第二定律有:F T -m B g =上两式得:a =(m A sinθ-m B )gm A +m B,F T =)g对斜面的压力为 = m A gcosθ, 斜面体的受力在水平方向有:F+F T cosθ = F N1F fa m =m F f=2m/s 2,B从静止开始运动.小车在推力F 和f 的作用下加速,加速度为a M = MF F f- = 0.5m/s 2,初速度为υ0 = 1.5m/s设经过时间t 1,两者达到共同速度υ,则有:υ = a m t 1 = υ0+a M t 1代入数据可得:t 1 = 1s ,在这t 1时间内物块向前运动的位移为s 1 = 12a m t 21以后两者相对静止,相互作用的摩擦力变为静摩擦力将两者作为一个整体,在F 的作用下运动的加速度为a ,则F =(M+m )a 得a = 0.8m/s2在剩下的时间t 2 = t-t 1 = 0.5s 时间内,物块运动的位移为s 2 =υt 2+12at 2,得s 2 = 1.1m .可见小物块在总共1.5s 时间内通过的位移大小为s = s 1+s 2 = 2.1m . 12. t =2.4s 13. μ=0.414. 答案:设客车行驶速度为v 1,声速为v 2,客车第一次鸣笛时客车离悬崖的距离为L 。
由题意:在第一次鸣笛到听到回声的过程中,应有:55221⨯=⨯-v v L当客车第二次鸣笛时,客车距离悬崖的距离为151⨯-='v L L同理:33221⨯=⨯-'v v L 即:33)15(2211⨯=⨯-⨯-v v v L得:3.241421==v v (m/s) v 1=24.3m/s=87.5km/h ,小于120km/h ,故客车未超速。
15. (1)x=m (a-a 0)/k (2)F=(M+m )a 016. 答案:释放后A 和B 相对静止一起做自由落体运动,B 着地前瞬间的速度为ghv 21=B 与地面碰撞后,A 继续向下做匀加速运动,B 竖直向上做匀减速运动。
它们加速度的大小分别为:m f mg a A -=和m fmg a B +=B 与地面碰撞后向上运动到再次落回地面所需时间为B a v t 12=在此时间内A 的位移2121t a t v x A +=要在B 再次着地前A 不脱离B ,木棒长度L 必须满足条件 L ≥ x联立以上各式,解得 L≥hf mg g m 222)(8+17. 【解】系统静止时,弹簧处于压缩状态,分析A 物体受力可知: F 1 = m A gsinθ,F 1为此时弹簧弹力,设此时弹簧压缩量为x 1,则F 1 = kx 1,得x 1 =k g m A θsin在恒力作用下,A 向上加速运动,弹簧由压缩状态逐渐变为伸长状态. 当B 刚要离开C 时,弹簧的伸长量设为x 2,分析B 的受力有:2 =m B gsinθ,得x 2 =m Bgsinθk设此时A 的加速度为a ,由牛顿第二定律有:-m A gsinθ-kx 2 = m A a ,得a =F-(m A +m B )gsinθm AA 与弹簧是连在一起的,弹簧长度的改变量即A 上移的位移,故有d = x 1+x 2,即:d =(m A +m B )gsinθk18.解:设圆盘的质量为m ,桌长为l ,在桌布从圆盘上抽出的过程中,盘的加速度为1a ,有11`ma mg =μ桌布抽出后,盘在桌面上作匀减速运动,以a 2表示加速度的大小,有22`ma mg =μ②设盘刚离开桌布时的速度为v 1,移动的距离为x 1,离开桌布后在桌面上再运动距离x 2后便停下,有11212x a v =③22212x a v =④盘没有从桌面上掉下的条件是 1221x l x -≤ ⑤设桌布从盘下抽出所经历时间为t ,在这段时间内桌布移动的距离为x ,有atx 21= ⑥ 21121t a x = ⑦而121x l x +=⑧由以上各式解得 g a 12212μμμμ+≥⑨19. 用a 表示跳蚤起跳的加速度,v 表示离地时的速度,则对加速过程和离地后上升过程分别有 v 2=2ad 2 v 2=2gh 2若假想人具有和跳蚤相同的加速度a ,令V 表示在这种假想下人离地时的速度,H 表示与此相应的竖直高度,则对加速过程和离地后上升过程分别有V 2=2ad 1 V 2=2gH由以上各式可得H=h 2d 1d 2代人数值,得 H=63m20解:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0。