1.4.1有理数的乘法2教案

合集下载

1.4.1有理数的乘法2教案

1.4.1有理数的乘法2教案

1.4.1有理数的乘法2教案1.4.1有理数的乘法(2)石锦东一、教学目标(一)、知识与技能使学生掌握多个有理数相乘的积的符号规律。

(二)、过程与方法通过学生亲身探索、归纳和验证,体验多个有理数相乘时积的符号的确定方法,培养实践能力和交流能力。

(三)、情感态度与价值观1、通过观察、思考、探究、发现,激发学生的好奇心和求知欲,让学生获得成功的喜悦。

2、通过探究和思考问题,使学生养成积极自觉的学习习惯。

二、教学重难点教学重点:乘法的符号规律教学难点:积的符号的确定三、教学方法和课型1、教学方法:合作探究法、讲练结合法2、课型:新授课四、教具准备多媒体五、教学过程(一)、创设情境,引入新知问题1:有理数乘法法则的内容是什么?教师提出问题,学生思考回答。

教师根据学生的回答情况加以补充。

问题2:计算:(1)、﹙-2﹚×3 ;(2)、﹙-2﹚×﹙-3﹚;(3)、4×﹙-?﹚;(4)、﹙-4﹚×﹙-?﹚.教师提出问题,学生思考回答。

教师根据学生的回答的情况加以订正,并提出问题:上节课主要学的是两个有理数相乘,那多个有理数相乘,积的符号又与什么有关?设计意图:通过复习有理数的乘法法则,为学习多个有理数相乘的积的符号规律做铺垫。

(二)、观察探究,形成新知问题3:观察下列各式,它们的积是正的还是负的?(1)、2×3×4×﹙-5﹚;(2)、2×3×﹙-4﹚×﹙-5﹚;(3)、2×﹙-3﹚×﹙-4﹚×﹙-5﹚;(4)、﹙-2﹚×﹙-3﹚×﹙-4﹚×﹙-5﹚.思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?学生思考,发表见解。

教师巡视,引导学生观察上面各题的计算结果,找一找积的符号与什么有关?师生共同归纳得出:几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。

1.4.1第2课时 有理数的乘法

1.4.1第2课时  有理数的乘法
7.8×(-8.1)×0×(-19.6)=?
几个数相乘,如果其中有因数为0,积等于( ).
探究点2:绝对值的性质及应用
例4:计算
四、课堂小结
通过本节课的学习你有哪些收获?
多个有理数相乘:
第一步:是否有因数0;
第二步:确定符号(奇负偶正);
第三步:绝对值相乘.
作业设计
教科书P32页练习第1、2题.
板书设计
第1.4.1单元
课 题 名 称
《有理数的乘法》
总课时数
2
第( 2 )课 时
教材及学情分析
教材分析:教材用一个思考引入,几个不是0的数相乘,从而让学生发现积的符号与负因数的个数之间的关系.
学情分析:1.学生已学习了有理数乘法法则,并会运用法则计算,为学生学习多个有理数相乘打下了基础.
2.学生已经具备了一定的自主探究能力,所以本节课中,主要采用学生自主学习、合作学习的方式,让他们主动参与、勤于动手、从而乐于探究.
教学目标
1、理解并掌握多个有理数相乘时积的符号的确定,能利用法则正确进行多个有理数乘法运算.
2、通过学生自学,小组讨论,师生答疑的方式促进学生归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力.
教学重点
理解并会运用多个有理数乘法法则.
教学难点
符号法则及对法则的理解.
教法
学法
师生互动,启发式和讲授式结合。
有理数的乘法(2)
多个有理数相乘:
第一步:是否有因数0;
第二步:确定符号(奇负偶正);
第三步:绝对值相乘.
教学反思
负数的倒数是 ________.
a的倒数是______.
二、学生自主探究
自学课本P31页,思考:

有理数的乘法2

有理数的乘法2
加法交换律:a+b=b+a
注意 1、乘法的交换律、结合律只涉及一种运 算,而分配律要涉及两种运算。 2、分配律还可写成: a×b+a×c=a×(b+c), 利用它有时也可以简化计算。 3、字母a、b、c可以表示正数、负数,也 可以表示零,即a、b、c可以表示任意 有理数。
15 ( 8) 例3、计算: 71 16
1、已知a、b互为相反数,c、d互为倒数,e是绝
1 对值最小的数,计算:(a+b)+ cd - (a+b)e
2、已知|x|=2,|y|=3,且xy<0,则x-y=
3、下列运算错误的是_____ D A.(-2)×(-3)=6
.
B.(-3)×(-2)×(-4)=-24
C.(-5)×(-2)×(-4)=-40
计算:
(-85)×(-25)×(-4)
=(-85)×[(-25)×(-4)]
=(-85)×100=-8500
7 1 15 1 8 7 7 8 = 15 8 7
7 8 = 15 8 7
B. a<0,b<0 D. a>0,b>0或a<0,b<0 B ) B. a,b至少有一个为0 D. a,b最多有一个为0
7.若ab=0,则一定有(
1 1 1 1 (1).( 1) ( 1) ( 1) ... ( 1) 101 100 99 2 100 99 98 1 解:原式= (- ) (- ) (- ) ... (- ) 101 100 99 2 100 99 98 1 = ... 101 100 99 2 1 = 101

有理数乘法的运算律及运用精品 【公开课教案】

有理数乘法的运算律及运用精品 【公开课教案】

1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.教学重难点:熟练运用运算律进行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提高【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

数学:1.4.1《有理数的乘法(2)》学案(人教版七年级上)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2、新知应用1、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×O× (-19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、—5×8×(—7)×(—0.25);(2)、5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。

2.几个数相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则BAC ∠的度数是( )A.105°B.115°C.125°D.135°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003x x +-= B.()31001003x x --= C.10031003x x -+= D.10031003x x --= 5.方程1﹣22x -=13x +去分母得( ) A.1﹣3(x ﹣2)=2(x+1)B.6﹣2(x ﹣2)=3(x+1)C.6﹣3(x ﹣2)=2(x+1)D.6﹣3x ﹣6=2x+26.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .57.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n8.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( )A .3×107B .30×106C .0.3×107D .0.3×1089.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 210.若8a =, 5b =,且 0a b +>,那么-a b 的值为( ) A .3或13 B .13或-13 C .3或-3 D .-3或-1311.如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A .+10℃B .﹣10℃C .+5℃D .﹣5℃12.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A.73610⨯B.83.610⨯C.90.3610⨯D.93.610⨯二、填空题13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.14.22.5°=________°________′;12°24′=________°.15.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为______.16.小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是________元 .17.﹣3xy ﹣x 3+xy 3是_____次多项式.18.填在如图各正方形中的四个数之间都有相同的规律,则a+b ﹣c 的值是_____.193-的相反数是_____.20.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)三、解答题21.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.22.解下列方程(1)2x+5=3(x ﹣1)(2).23.如图,点O 为原点,A ,B 为数轴上两点,AB=15,且OA :OB=2(1)A ,B 对应的数分别为 , .(2)点A ,B 分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A ,B 相距1个单位长度?(3)点AB 以(2)中的速度同时向右运动,点P 从原点O 以4个单位秒的速度向右运动,是否存在常数m ,使得3AP+2PB ﹣mOP 为定值?若存在,请求出m 值以及这个定值;若不存在,请说明理由.24.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >6且x <14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x 表示);(3)这辆出租车一共行驶了多少路程(结果用x 表示)?25.先化简,再求值:5(3a 2b-ab 2)-4(-ab 2+3a 2b ),其中a=12,b=-13. 26.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B(+1,+4),从D 到C 记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.27.已知a 、b 互为倒数,c 、d 互为相反数,2x =,且x 在数轴上表示的数在原点的左边. 求式子32339()4c d x ab+-⨯-+的值 28.如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB ,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【参考答案】***一、选择题1.A2.A3.D4.C5.C6.C7.C8.A9.B10.A11.D12.B二、填空题13.祠14.30 12.415.6016.417.四18.-12819.3﹣ SKIPIF 1 < 0 .解析:320. SKIPIF 1 < 0解析:①②④三、解答题21.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.22.(1)x=8;(2)x=423.﹣10 524.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车所在的位置是向东(7﹣12x)km;(3)这辆出租车一共行驶了(7172x-)km的路程.25.-11 3626.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.27.6428.(1)50°,40°;(2)2α-β=40°;(3)不成立,2α+2β=40°.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( )A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是( )A .直角B .锐角C .钝角D .以上三种都有可能4.方程x ﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A.3229x x -=+B.3(2)29x x -=+C.2932x x +=- D.3(2)2(9)x x -=+ 6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.现有一个长方形的周长为30cm ,这个长方形的长减少1cm ,宽增加2cm ,就可以变成一个正方形,设长方形的宽为x cm ,可列方程为( )A.2(30)1x x -=-+B.2(15)1x x -=-+C.2(30)1x x +=--D.2(15)1x x +=-- 7.若A 和B 都是五次多项式,则( )A.A+B 一定是多项式B.A ﹣B 一定是单项式C.A ﹣B 是次数不高于5的整式D.A+B 是次数不低于5的整式8.下列说法中正确的是( )A .4xy x y -+-的项是xy ,x ,y ,4B .单项式m 的系数为0,次数为0C .单项式22a b 的系数是2,次数是2D .1是单项式 9.下列结论正确的是( )A .x =2是方程2x+1=4的解B .5不是单项式C .﹣3ab 2和b 2a 是同类项D .单项式3ab 的系数是3 10.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.a b -<B.0ab <C.0a b +>D.b-a >011.如果a 与-3的和是0,那么a 是( ) A.13- B.13 C.-3 D.312.下列各组数中互为相反数的一组是( )A.3与13B.2与|-2|C.(-1) 2与1D.-4与(-2) 2二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.16.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd•x-p 2=0的解为________.17.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.18.若23a b =,则a b b +=_____. 19.用“>”“<”或“=”填空.(1)-56________-67;(2)-45________-35; (3)|-7|________0;(4)|-2.75|________|+234| 20.计算(﹣0.25)2007×(﹣4)2008=______.三、解答题21.如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 和ON 分别是∠AOC 和∠AOB 的平分线.(1) 试说明:∠AOB =∠COD ;(2) 若∠COD =36°,求∠MON 的度数.22.(1)如图,点C 、D 在线段AB 上,点C 为线段AB 的中点,若AC =5cm ,BD =2cm ,求线段CD 的长.(2)如图,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.23.(12分)阅读:我们知道, 于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时: 34x -≤解这个不等式,得:由条件,有: (2)当< 0,即 x < 3时,解这个不等式,得:由条件x < 3,有: < 3∴ 如图, 综合(1)、(2)原不等式的解为:根据以上思想,请探究完成下列2个小题:(1); (2)。

1.4.1有理数的乘法2 教案 2021—2022学年人教版数学七年级上册

1.4.1有理数的乘法2  教案 2021—2022学年人教版数学七年级上册

1.4.1 有理数的乘法2 教案一、教学目标1.理解有理数相乘的概念和规律。

2.学会有理数的乘法运算。

3.能够解决有理数的乘法运算问题。

二、教学准备1.教科书:人教版数学七年级上册2.教具:黑板、粉笔、计算器三、教学过程1. 导入新知•引导学生回顾上节课学习的有理数的乘法规则,并请同学们口头总结规律。

2. 新知的学习a. 概念讲解•老师通过黑板和示例,向学生讲解有理数相乘的概念。

•用语言解释,有理数乘法是两个有理数相乘的运算,根据正负数相乘的规律,正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。

•引导学生通过思考,总结有理数乘法的规律。

b. 规则总结•老师通过例题,向学生总结有理数乘法的规则。

•正数× 正数 = 正数•负数× 负数 = 正数•正数× 负数 = 负数c. 示例演练•老师通过示例,与学生一起完成有理数的乘法计算,引导学生掌握有理数乘法的运算方法。

3. 巩固练习a. 个人练习•让学生打开课本第X页,完成相应的练习题,巩固乘法计算的各类情况。

b. 小组合作•将学生划分为小组,每个小组共同解决一道有理数乘法练习题,鼓励小组成员相互合作、讨论,完成练习题。

c. 全班分享•随机抽取几个小组,让他们依次展示他们的解题过程和答案。

•学生之间相互评价,提出宝贵意见和建议。

4. 拓展练习•出示一些稍微复杂的有理数乘法练习题,让学生自主解决。

•鼓励学生运用乘法运算的规律,灵活解决问题。

5. 总结和评价•老师小结本节课的重点内容和学生的表现,对学生的掌握程度进行评价。

•鼓励学生在课后继续巩固习题的练习。

四、课后作业1.完成课本上的习题,确保对有理数乘法的规则和运算方法掌握透彻。

2.对课本中的例题进行复习,并总结课上学习的要点。

注意:本文档仅为教学参考,请根据实际教学情况进行适当调整和补充。

七年级数学上册《1.4.1有理数的乘法》教案(第2课时) (新版)新人教版

七年级数学上册《1.4.1有理数的乘法》教案(第2课时) (新版)新人教版
【总结】 有理数的乘法仍满足交换律,结合律和分配律.
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b=b·a
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c=a·(b·c)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘.
=(-3)××(-)×(-)×(-8)×(-1)
=-3××××8×1
=-9
例2 计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0
【提示】 不管数字有多么复杂,只要其中有一个为0,则积为0.
[活动3]
数学游戏 学生活动:按下列要求探索:
(1)任选两个有理数(至少有一个为负),分别填入□和○内, 并比较两个结果:
《1.4.1有理数的乘法》教案(第2课时)
教学任务分析




知识与技能
使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便
过程与方法
通过对问题的探索,培养观察、分析和概括的能力.
情感态度与
价值观
能面对数学活动中的困难,有学好数学的自信心
教学重点
合作交流,解读探究
交流讨论 不难得到结论:几个不为0的数乘, 积的符号由负因数这个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.
注意 只要有一个因数为0,则积为0.
例1 计算(-3)××(-)×(-)×(-8)×(-1)
【提示】先找出其中负因数的个数为5个,故积的符号为负,再将绝对值相乘.
用字母表示成:a(b+c)=a·b+a·c

2021年秋精品教案:1.4.1有理数的乘法(第2课时)

2021年秋精品教案:1.4.1有理数的乘法(第2课时)

有理数的乘法第2课时教学目标1掌握多个有理数相乘的运算方法2会进行有理数的乘法运算3通过对问题的探索,培养观察、分析和概括能力教学重点难点重点:多个有理数乘法运算符号的确定难点:正确进行多个有理数的乘法运算课前准备多媒体课件教学过程导入新课导入一:问题展示1有理数乘法法则:两数相乘,同号,异号,并把绝对值相乘任何数与0相乘,都得2乘积是的两个数互为倒数3两个有理数可以相乘,那么三个或多个有理数可以相乘吗若可以,如何计算导入二:上一节课,我们学习了有理数乘法法则,并学会了两个数相乘的方法,今天,我们一起来探究多个有理数相乘的方法探究新知1观察下列各式的积是正的还是负的2×3×4×-5,2×3×-4×-5,2×-3×-4×-5,-2×-3×-4×-5师生活动通过观察以上题目,归纳总结多个有理数相乘的法则课件展示下列问题思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系先分组讨论交流,再用自己的语言表达所发现的规律2总结:学生汇报交流的结果,教师用课件展示下列内容多个有理数相乘的法则:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数新知应用例1 你能一下子就看出下列式子的结果吗如果能,理由是什么××0×答案:0师生小结:几个数相乘,如果其中有因数为0,那么积等于0例2 教材第31页例3计算:1-3×56× (−95) ×(−14) ;2-5×6× (−45) ×14请你思考,多个不是0的数相乘,先做哪一步,再做哪一步师生活动让学生带着问题解答教材例题学生先独立在练习本上做,教师巡视,及时发现学生做题中出现的问题,当学生做完后集体订正答案教师:多个不是0的数相乘,先做哪一步,再做哪一步学生:多个不是0的数相乘,先确定积的符号,积的符号由负因数的个数决定:如果负因数的个数是奇数,则积的符号是负的,如果负因数的个数是偶数,则积的符号是正的;积的绝对值就是各因数绝对值的积课堂练习见导学案“当堂达标”参考答案41-4 2-1 36135解:原式=−2 0142 015×−2 0132 014×…×−9991 000=9992 015课堂小结1几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数2几个数相乘,如果其中有因数为0,那么积等于0板书设计教学反思多个有理数相乘,积的符号的确定是本节课的重点和难点在本节教学的“探究新知”这一环节上设置了4组练习题,先由学生独立完成练习,并思考“几个不是0的数相乘,积的符号与负因数的个数之间有什么关系”,再分组讨论得出积的符号与负因数的个数有关这一教学设计,既培养了学生的观察、概括能力,又做到了难点的有效突破。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1有理数的乘法(2)
石锦东
一、教学目标
(一)、知识与技能
使学生掌握多个有理数相乘的积的符号规律。

(二)、过程与方法
通过学生亲身探索、归纳和验证,体验多个有理数相乘时积的符号的确定方法,培养实践能力和交流能力。

(三)、情感态度与价值观
1、通过观察、思考、探究、发现,激发学生的好奇心和求知欲,让学生获得成功的喜悦。

2、通过探究和思考问题,使学生养成积极自觉的学习习惯。

二、教学重难点
教学重点:乘法的符号规律
教学难点:积的符号的确定
三、教学方法和课型
1、教学方法:合作探究法、讲练结合法
2、课型:新授课
四、教具准备
多媒体
五、教学过程
(一)、创设情境,引入新知
问题1:有理数乘法法则的内容是什么?
教师提出问题,学生思考回答。

教师根据学生的回答情况加以补充。

问题2:计算:
(1)、﹙-2﹚×3 ;(2)、﹙-2﹚×﹙-3﹚;
(3)、4×﹙-½﹚;(4)、﹙-4﹚×﹙-½﹚.
教师提出问题,学生思考回答。

教师根据学生的回答的情况加以订正,并提出问题:上节课主要学的是两个有理数相乘,那多个有理数相乘,积的符号又与什么有关?
设计意图:通过复习有理数的乘法法则,为学习多个有理数相乘的积的符号规律做铺垫。

(二)、观察探究,形成新知
问题3:观察下列各式,它们的积是正的还是负的?
(1)、2×3×4×﹙-5﹚;
(2)、2×3×﹙-4﹚×﹙-5﹚;
(3)、2×﹙-3﹚×﹙-4﹚×﹙-5﹚;
(4)、﹙-2﹚×﹙-3﹚×﹙-4﹚×﹙-5﹚.
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生思考,发表见解。

教师巡视,引导学生观察上面各题的计算结果,找一找积的符号与什么有关?
师生共同归纳得出:
几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。

(简称:奇负偶正)
设计意图:通过这一组问题不仅让学生巩固上节课学习的乘法法则,而且让学生观察到随着负因数的逐渐增加,积的符号和负号的个数有关,从而培养学生观察问题、归纳结论的习惯。

(三)、应用新知,加深理解
问题4:
例3:计算:
(1)、﹙-3﹚×5/6×﹙-9/5﹚×﹙-1/4﹚;
(2)、﹙-5﹚×6×﹙-4/5﹚×1/4;
做题前让学生先思考:多个不是0的数相乘,先做哪一步,再做
哪一步?
教师引导学生思考,归纳得出:先确定符号,再把各个乘数的绝对值相乘,作为积的绝对值。

教师引导学生,共同完成计算。

设计意图:学生既巩固了有理数的乘法运算,又可以熟悉多个有理数相乘的运算方法。

(四)、自主学习,探索新知
问题6:你能看出下式的结果吗?如果能,请说明理由。

7.8×﹙-8.1﹚×0×﹙-19.6﹚.
学生思考回答。

教师引导学生根据已有的知识进行解答,得出几个数相乘,其中有一个因数为0的特殊规律。

学生填空:几个数相乘,如果其中有因数为0,积等于0.
设计意图:使学生在巩固多个有理数相乘的基础上,能够从含有0因数的特殊性出发,得出结果为0.
(五)、练习巩固
教科书第32页练习题
学生独立完成计算。

教师找三位同学到黑板板演。

师生一起讲评。

设计意图:巩固所学新知。

(六)、归纳小结,布置作业
师生共同归纳:
1、多个有理数相乘的积的符号规律:
几个不是0的数相乘,负因数的个数是偶数时,积是正数,负因数的个数是奇数时,积是负数。

(简称:奇负偶正)
几个数相乘,如果其中有因数为0,积等于0.
2、多个有理数相乘的解题步骤:
第一步:是否有因数0;
第二步:奇负偶正;
第三步:绝对值相乘。

作业:
教科书第38页习题1.4第7题(1)、(2)、(3)
设计意图:巩固本节课的知识,使学生加深印象,对知识脉络有更清晰地认识,并纳入自己的知识结构中。

(七)教学反思:
让学生主动参与学习,让学生在快乐中获取知识,我觉得本节课还是达到了预期的教学目标,学生的参与率比较高,课堂气氛较活跃,学生的思维在围着本节课的内容转,从学生回答问题、总结法则和板演的情况看,效果也较好。

这节课在我看来是比较成功的也是比较顺利的一节课,成功的原因在于课前我对学生已有的知识经验分析透彻。

可见,我们的教学只有建立在学生的认知水平和已有的知识经验基础之上才能高效率的完美的进行。

总结归纳时,学生往往更注重归纳本节课的知识体系,这个时候我告诉学生几个地方要求同学们合作完成学习任务的时候,大部分同学还没有一种这样的意识,合作不是很好,告诫同学们不管在学习上还是在今后的生活工作中,善于与人合作是很重要的,希望同学们今后朝这方面努力,并且表扬几个合作交流的比较好的同学,让大家学有榜样。

不足:课堂气氛有待提高,给学生解释负因数的概念,讲解要简洁清楚,不要重复。

相关文档
最新文档