希尔伯特黄变换
希尔伯特黄变换信号处理

希尔伯特黄变换信号处理
希尔伯特黄变换(Hilbert Huang Transform,简称HHT)是一个信
号处理的方法,常常用于分析非线性和非平稳信号。
它是由黄其炎教
授于1996年开发的,因此也叫做黄变换。
HHT的主要目的是将复杂的信号分解成数个瞬时频率相近的固有模态
函数(Intrinsic Mode Function,简称IMF)。
IMF是自然界中任何非线性现象的基本构建块,因此它们的分析在很多领域都非常重要。
HHT算法通常包括以下几个步骤:
1. 将待处理的信号(无论是时域信号还是频域信号)分解成数个组成
部分,即IMF。
2. 对每个IMF进行希尔伯特变换,得到复信号。
3. 计算每个复信号在复平面上的相位角和振幅。
4. 根据每个IMF在时域上的相位角和振幅,重建原信号的相位角和振幅。
5. 最后,将所有IMF的相位角和振幅相加得到原信号的相位角和振幅。
HHT的优点在于它不需要对信号做任何假设或模型。
它可以处理时域
和频域的信号,非常适合于分析非线性和非平稳信号,例如心电图、语音、天气数据和金融数据等。
HHT也有一些缺点,比如计算复杂度比较高,有时候需要选择合适的参数来得到比较准确的结果。
总的来说,希尔伯特黄变换是一个非常有用的信号处理方法,可以帮助我们了解自然界中复杂的现象。
它在科学、工程和医学等领域都得到了广泛应用。
希尔伯特-黄变换说明及程序(标准程序)

目录∙ 1 本质模态函数(IMF)∙ 2 经验模态分解(EMD)∙ 3 结论∙ 4 相关条目∙ 5 参考文献∙ 6 外部链接[编辑]本质模态函数(IMF)任何一个资料,满足下列两个条件即可称作本质模态函数。
⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。
⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。
因此,一个函数若属于IMF,代表其波形局部对称于零平均值。
此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。
因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。
[编辑]经验模态分解(EMD)EMD算法流程图建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。
我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。
如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。
为了解决非线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。
经验模态分解是将讯号分解成IMF的组合。
经验模态分解是借着不断重复的筛选程序来逐步找出IMF。
以讯号为例,筛选程序的流程概述如下:步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条(cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。
步骤 2 : 求出上下包络线之平均,得到均值包络线。
步骤 3 : 原始信号与均值包络线相减,得到第一个分量。
步骤 4 : 检查是否符合IMF的条件。
希尔伯特_黄变换的统一理论依据研究

希尔伯特_黄变换的统一理论依据研究希尔伯特-黄变换是一种非线性数学变换方法,广泛应用于信号处理、图像处理、通信系统等领域。
在该变换中,原始信号通过一系列算法经过变换,得到频域上的新信号。
希尔伯特-黄变换存在着统一的理论依据,即希尔伯特-黄演化方程和希尔伯特-黄展开理论。
希尔伯特-黄演化方程是希尔伯特-黄变换的理论基础之一、根据这个方程,任意一个信号可以用希尔伯特傅里叶变换表示。
希尔伯特傅里叶变换是傅里叶变换的推广形式,它可以处理非周期信号,并且将实域信号转化为复域信号。
通过这个演化方程,我们可以将原始信号转化为频域上的希尔伯特信号,进而可以进行分析和处理。
希尔伯特-黄变换的统一理论依据就是将希尔伯特-黄演化方程和希尔伯特-黄展开理论结合起来。
根据这个理论,我们可以将原始信号先进行希尔伯特变换,得到希尔伯特信号,然后将希尔伯特信号按照不同频率分解为本征模态函数。
通过这种方式,我们可以得到信号在不同频率上的分量,并且可以对这些分量进行分析和处理。
希尔伯特-黄变换的统一理论依据的研究工作主要集中在两个方面。
首先,研究者们对希尔伯特-黄演化方程进行了深入研究,探索了其数学性质和特性。
其次,研究者们对希尔伯特-黄展开理论进行了改进和扩展,提出了一系列新的方法和算法,用于更准确地分解信号并提取特征。
希尔伯特-黄变换的统一理论依据具有很大的理论和应用价值。
首先,它为非线性时序信号分析提供了一种新的方法和工具,能够更加准确地描述和处理信号。
其次,它在图像处理、通信系统等领域有广泛应用,能够提高系统的性能和效果。
同时,该理论的研究也促进了相关领域的发展,推动了信号处理的理论研究和应用创新。
总结起来,希尔伯特-黄变换的统一理论依据包括希尔伯特-黄演化方程和希尔伯特-黄展开理论。
通过这个理论,我们可以将原始信号转化为频域上的希尔伯特信号,并将希尔伯特信号按照不同频率分解为本征模态函数。
这个理论的研究对于非线性时序信号分析和处理有重要意义,也在图像处理、通信系统等领域有广泛应用。
希尔伯特黄变换获取时频谱, python

希尔伯特黄变换(Hilbert-Huang Transform, HHT)是一种非线性、非平稳信号分析方法,能够有效地获取信号的时频谱信息。
在信号处理和振动分析领域,HHT被广泛应用于信号的时间-频率特征提取、故障诊断、模式识别等方面。
而Python作为一种功能强大的编程语言,为HHT的实现提供了便利条件。
下面将介绍希尔伯特黄变换的基本原理及其在Python中的实现。
1. 希尔伯特变换希尔伯特变换是对信号进行解析的一种数学方法,其核心是通过与原始信号相关的虚部信号来构建解析信号。
希尔伯特变换可以将实部信号与虚部信号相互转换,从而实现对信号的时域和频域分析。
希尔伯特变换的数学表示如下:\[H(x(t)) = P \left( \frac{1}{\pi t} \right) \ V \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\tau \]其中,\(x(t)\)为原始信号,\[H(x(t))\]为对应的希尔伯特变换,\(P\)表示柯西主值,\(V\)表示广义积分。
在时频分析中,希尔伯特变换可以用于提取信号的振幅和相位信息,从而实现时域和频域特征的全面分析。
2. 黄变换黄变换是由我国科学家黄次寅于1998年提出的一种基于希尔伯特变换的信号分析方法。
与传统的傅立叶变换和小波变换相比,黄变换更适用于非线性和非平稳信号的分析。
黄变换包括两个核心步骤:经验模态分解(EMD)和希尔伯特谱分析。
EMD是将复杂信号分解成若干个本征模态函数(EMD),而希尔伯特谱分析是在每个本征模态函数上进行希尔伯特变换,从而获取每个本征模态函数的时频特征。
3. 希尔伯特黄变换希尔伯特黄变换是将希尔伯特变换与黄变换相结合的一种信号分析方法。
希尔伯特黄变换主要包括以下步骤:1) 对原始信号进行EMD分解,得到若干个本征模态函数;2) 对每个本征模态函数进行希尔伯特变换,得到每个本征模态函数的时频谱信息;3) 将每个本征模态函数的时频谱信息相加,得到原始信号的时频谱分布。
希尔伯特黄变换学习资料

EMD存在的问题
Hilbert-Huang变换在分析非稳定信号时具有 良好的自适应性,信号进行EMD分解得到的基本模 式分量,能够表现出信号内在的物理意义,该方法已 广泛应用于各个领域。但是,与小波变换等信号处理 方法相比, Hilbert-Huang变换仍处于发展阶段,其 理论及算法还需要完善。经验模态分解 EMD (Empirical Mode Decomposition)方法是 一种启发式算法,带有很大的经验成分。它在数学上 有许多根本性的问题尚未解决,主要的问题集中 EMD算法改进、模态混叠、基本模式分量筛分停止 条件、端点效应等四个方面。
2、平稳随机信号
狭义平稳:随机过程的任何n维分布函数或概率密度函数与时间起 点无关。 对任意正整数n和任意实数τ, n维概率密度函数满足:
f n x1 , x2 , xn ;t1 , t2 , tn f n x1 , xn ;t1 , t2 , tn
平稳过程的统计特性不随时间的推移而不同。
[5]罗奇峰, 石春香. Hilbert—Huang 变换理论及其计算 中的问题[J]. 同济大学学报: 自然科学版, 2003, 31(6): 637-640.
EMD优缺点
EMD优点
EMD存在的问题
EMD算法改进
模态混叠
条件
基本模式分量筛分停止
端点效应
EMD的优点
EMD有以下优点:
k
(1)由IMF分量的一系列瞬时频率
[3] Chen Q H, Huang N E, Xu Y S. A B-spline approach for empirical mode decompositions. Advances in Computational Mathematics,2006(24):171~19.
python希尔伯特黄变换的时频谱

Python希尔伯特黄变换(Python Hilbert-Huang Transform,简称HHT)是一种复杂非线性信号分析方法,结合了希尔伯特变换和黄变换的优势,能够有效地对非线性和非平稳信号进行时频谱分析。
本文将从HHT的原理、基本步骤和Python实现方法三个方面进行介绍。
一、HHT的原理1.希尔伯特变换希尔伯特变换是一种将实数信号转换为解析信号的数学方法,通过对原信号进行傅立叶变换得到频谱信息,再对频谱信息进行一定的处理得到解析频谱,从而实现信号的解析表示。
希尔伯特变换的核心是求出原信号的解析函数,即原信号的复数形式,其中实部是原信号本身,虚部是原信号的希尔伯特变换。
希尔伯特变换在信号处理领域有着广泛的应用,能够提取信号的瞬时特征,对非平稳信号进行时频分析具有很高的效果。
2.黄变换黄变换是一种局部线性和非线性信号分解方法,可以将非线性和非平稳信号分解成若干个固有模态函数(Intrinsic Mode Function,简称IMF)的线性组合。
黄变换首先对原信号进行极值点的提取,然后通过极值点之间的插值得到包络线,再将原信号减去包络线得到一维信号,并对得到的一维信号进行数据挑选和插值,最终得到IMF。
多次重复以上步骤,直到原信号能够被分解为若干个IMF,再通过IMF的线性组合得到原信号的近似表示。
3.HHT的结合HHT将希尔伯特变换和黄变换结合在一起,利用希尔伯特变换提取信号的瞬时特征,再通过黄变换将信号分解成若干个IMF,从而能够更准确地描述信号的时频特性。
HHT的优势在于能够适用于非线性和非平稳信号,对信号的局部特征具有很好的描述能力,因此在振动信号分析、生物医学信号处理等领域有着广泛的应用。
二、HHT的基本步骤1.信号分解HHT首先对原信号进行希尔伯特变换,得到信号的瞬时频率特征,然后通过黄变换将信号分解成若干个IMF。
2.IMF的提取针对得到的IMF,需要对每个IMF进行较为严格的判别,确定其是否符合IMF的特征:极值点交替出现、包络线对称、局部频率单调。
希尔伯特黄变换及其应用
希尔伯特黄变换及其应用希尔伯特黄变换及其应用希尔伯特黄变换(Hilbert-Huang Transform,HHT)是一种用于分析非线性和非平稳信号的方法,它由黄其森(Norden E. Huang)和希尔伯特(Hilbert)共同提出。
该方法通过将信号分解为一组固有模态函数(Intrinsic Mode Functions,IMF)来提取信号中的模式和趋势。
本文将介绍希尔伯特黄变换的应用,并详细讲解其中的几个应用领域。
应用一:信号处理•希尔伯特黄变换可以用于音频信号处理,通过提取信号的固有模态函数,可以分离出音频信号中的主要频率成分,从而实现去噪、降噪等处理。
•在图像处理中,希尔伯特黄变换可以用于边缘检测和纹理分析。
通过提取图像的固有模态函数,可以分离出图像中的纹理信息和边缘信息,从而实现图像增强和分割等操作。
应用二:地震学•地震学中的信号分析是一项重要的任务,希尔伯特黄变换可以用于地震信号的分析和处理。
通过将地震信号分解为固有模态函数,可以提取出地震信号中的地震波的时频特征,从而实现地震信号的分类和识别。
•希尔伯特黄变换还可以用于地震信号的时频谱分析,通过将地震信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到地震信号的时频谱图,从而更好地理解地震信号的时频特性。
应用三:医学工程•在医学工程中,希尔伯特黄变换可以用于生物信号的分析和处理,如心电图(ECG)和脑电图(EEG)等。
通过将生物信号分解为固有模态函数,可以提取出信号中的重要特征,如心跳频率、脑电波的频率等,从而实现疾病的诊断和监测。
•希尔伯特黄变换还可以用于生物信号的时频谱分析,通过将生物信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到信号的时频谱图,从而更好地分析信号的时频特性。
应用四:金融市场•在金融市场中,希尔伯特黄变换可以用于股票价格的分析和预测。
通过将股票价格分解为固有模态函数,可以提取出股票价格的趋势和周期成分,从而更好地预测股票价格的走势。
希尔伯特黄变换和经验模态分解
希尔伯特黄变换和经验模态分解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!希尔伯特黄变换和经验模态分解:理论与应用导言希尔伯特黄变换(Hilbert-Huang Transform,HHT)和经验模态分解(Empirical Mode Decomposition,EMD)是近年来在信号处理领域备受关注的两大方法。
希尔伯特黄变换
1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert 谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。
HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HSA)。
简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。
HHT的特点是基于信号局部特征的,能对信号进行自适应的、高效的分解,而且它特别适用于分析非线性、非平稳信号,具有重要的理论价值和广阔的应用前景。
与以往的分析方法不同的是其频率的定义不是采用整个正弦波作为定义,而是采用瞬时频率。
为了使得到的瞬时频率有物理意义,黄研究了在何条件下瞬时频率才有意义,并定义了固有模态函数(IMF);并且选用了EMD的分解方式,从而能够对各种信号自适应的进行分解,包括非线性、非平稳的数据也能够分析,这是经典的傅里叶分析方法所不能的。
一个固有模态函数是满足以下两个条件的函数:(1)在整个数据区间内,极值点的数目与过零点的数目相等或至多相差1个;(2)在任意一点处,由局部极大值点定义的包络以及由局部极小值点定义的包络的均值为零。
EMD方法通过不断的剔出极大值和极小值连接上下包络的均值将原信号分解为(1)其中 Cj (t)为一个IMF分量,rj(t) 为残余分量,一般为信号的平均趋势,为常数序列或单调序列。
希尔伯特—黄变换局瞬信号分析理论的研究
希尔伯特—黄变换局瞬信号分析理论的研究希尔伯特—黄变换局瞬信号分析理论的研究引言近年来,随着科学技术的不断发展,人类对信号分析的需求也越来越迫切。
传统的频域和时域分析方法在处理非平稳和非线性信号时存在一定的局限性。
希尔伯特—黄变换局瞬信号分析理论作为一种新兴的信号分析方法,正在蓬勃发展,并在多个领域得到广泛应用。
本文将探讨希尔伯特—黄变换局瞬信号分析理论的基本原理、方法以及其在电力系统、金融市场等领域的应用。
一、希尔伯特—黄变换基本原理希尔伯特—黄变换(Hilbert-Huang Transform, HHT)由美国华盛顿大学的黄其煜教授首次提出,是一种将非线性和非平稳信号转化为时频域瞬态信息的方法。
HHT由希尔伯特变换(Hilbert Transform)和本征模态分解(Empirical Mode Decomposition, EMD)两部分组成。
希尔伯特变换用于将信号从时域转换为分析频域,而本征模态分解则用于将信号分解为一系列本征模态函数(Intrinsic Mode Functions, IMF),每个IMF都代表不同频率的局部信号。
二、希尔伯特—黄变换的方法1. 希尔伯特变换:希尔伯特变换是对时域信号进行处理的关键步骤。
它是通过与原始信号进行卷积操作,得到解析信号的虚部,并通过解析信号的相位来计算瞬时频率。
希尔伯特变换的实质是对信号进行包络提取。
2. 本征模态分解:本征模态分解是希尔伯特—黄变换的第二个关键步骤。
它通过一系列的迭代过程将信号分解为多个单调且封闭的振动模态。
每个振动模态的频率是递减的,而模态之间是相互正交且线性无关的。
三、希尔伯特—黄变换在电力系统领域的应用1. 故障诊断:希尔伯特—黄变换可以用于电力系统的故障诊断。
通过分析电力系统中的非平稳信号,可以快速准确地定位故障点,提高故障诊断的效率。
2. 电力质量分析:希尔伯特—黄变换可以对电力质量进行分析,识别电力系统中的异常波形,如电压闪烁、谐波等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2发1收和2发7收所的信号的成像图
x 10 5 20 40 3.5 60 80 100 120 1 140 160 0.5 0 3 2.5 2 1.5 4.5 4
-3
20
40
60
80
100
120
140
160
180
200
Page 13
用1发2收所得的信号以及3发4收所得的信号成像如下图:
x 10 16 20 14 40 12 60 10 80 100 120 140 160 8 6 4 2 0
20 40 60
250
200
150 80 100 120 50 140 160 0
100
20
40
60
80
100
120
140
160
180
200
Page 6
接收到的信号经过希尔伯特黄变换后的共焦成像图
0.6 20 40 60 80 100 0.2 120 140 160 0.1 0.5
0.4
0.3
突破在于固有模态函数(Intrinsic Model Function或 者IMF)的提出和经验模式分解法(EMD)的引入 对每个IMF进行Hilbert变换即可得到有意义的瞬时频 率,从而给出频率随时间变化的精确表达
Page 4
HHT分析流程图
Page 5
原本的9发8收共焦成像图
-4
20
40
60
80
100
120
140
160
180
200
Page 14
2发1收和6发1收所的信号的成像图
x 10 7 20 40 60 80 100 120 140 160 6
-4
5
4
3
2
1
20
40
60
80
100
120
140
160
180
200
0
Page 15
经过多组信号成像之后我发现: 用同一个天线发,其他两个天线收所得的信号就能得 到一个交叉的点,也就是,这样可以看到肿瘤的大概 位置。 但是用不同的天线发,不同的天线收,就只能得到两 条线,没有办法确定肿瘤的位置。
Page 8
由以上两个图可以看出,信号经过希尔伯特黄变换之后,信号 有加强,但是并不明显。 但是可以看到肿瘤的位置处信号的能量更集中了,肿瘤的位置 和大小也更清楚了,但是这个变化会不会太微小,不足以确定 这是一个更好的方法? 还想请老师指点。 因此,我试着用老师之前教我的方法做了仅有两个信号进行成 像,得到的结果如以下几幅图所示。
2500
3000
3500
4000
Page 11
只用这两个信号所成的像
x 10 5.5 20 40 60 80 100 120 140 0.5 160 20 40 60 80 100 120 140 160 180 200 5 4.5 4 3.5 3 2.5 2 1.5 1
-4
Page 12
想age 17
谢谢!
Page 18
Page 2
希尔伯特黄变换
它是非线性、非平稳信号的一大突破。 它是从信号自身的角度出发,自适应地对 信号进行分解,从瞬时频率的角度出发
Page 3
希尔伯特黄变换
其主要任务是描述信号的频谱含量如何随时间进行变 化的
而最终目的是建立一种分布,以便能在时间和频率上 同时表示信号的能量或者强度。
Page 16
下一步工作计划:
对于肿瘤检测的时频分布进行进一步研究分析 对徐立师兄的博士论文进行研读之后,在他的论文多 肿瘤成像仿真中,对于两个肿瘤排列在一条竖直的位 置上时,是无法成功的进行成像的,因此,我想可以 试着用时频分析的方法试一下对这种情况下的肿瘤进 行检测
接着徐立师兄的工作进行特征奇点的研究
希尔伯特黄变换研究进展
报告人:李钦伟 指导老师:肖夏
时间:2014年04月03日
主要内容: 1. 希尔伯特黄分析方法的原理及优势 2.原始的共焦成像图与信号经过希尔伯特黄变换之后的共 焦成像图进行对比 3.信号经过希尔伯特黄变换后的瞬时振幅图像
4.仅用两个信号进行成像的结果
5.对得到结果的思考以及下一步工作的规划
20
40
60
80
100
120
140
160
180
200
0
Page 7
接收到的信号经过希尔伯特黄变换后的共焦成像图
0.55 20 0.5 40 60 80 0.3 100 120 140 0.1 160 20 40 60 80 100 120 140 160 180 200 0.25 0.2 0.15 0.45 0.4 0.35
Page 9
1发2收信号振幅图像
9 8 7 6 5 4 3 2 1 0 0 x 10
-5
500
1000
1500
2000
2500
3000
3500
4000
Page 10
1发6收信号振幅图像
4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 x 10
-4
0
500
1000
1500
2000