希尔伯特-黄变换(Hilbert-Huang Transform,HHT)

合集下载

希尔伯特黄变换信号处理

希尔伯特黄变换信号处理

希尔伯特黄变换信号处理
希尔伯特黄变换(Hilbert Huang Transform,简称HHT)是一个信
号处理的方法,常常用于分析非线性和非平稳信号。

它是由黄其炎教
授于1996年开发的,因此也叫做黄变换。

HHT的主要目的是将复杂的信号分解成数个瞬时频率相近的固有模态
函数(Intrinsic Mode Function,简称IMF)。

IMF是自然界中任何非线性现象的基本构建块,因此它们的分析在很多领域都非常重要。

HHT算法通常包括以下几个步骤:
1. 将待处理的信号(无论是时域信号还是频域信号)分解成数个组成
部分,即IMF。

2. 对每个IMF进行希尔伯特变换,得到复信号。

3. 计算每个复信号在复平面上的相位角和振幅。

4. 根据每个IMF在时域上的相位角和振幅,重建原信号的相位角和振幅。

5. 最后,将所有IMF的相位角和振幅相加得到原信号的相位角和振幅。

HHT的优点在于它不需要对信号做任何假设或模型。

它可以处理时域
和频域的信号,非常适合于分析非线性和非平稳信号,例如心电图、语音、天气数据和金融数据等。

HHT也有一些缺点,比如计算复杂度比较高,有时候需要选择合适的参数来得到比较准确的结果。

总的来说,希尔伯特黄变换是一个非常有用的信号处理方法,可以帮助我们了解自然界中复杂的现象。

它在科学、工程和医学等领域都得到了广泛应用。

希尔伯特-黄变换说明及程序(标准程序)

希尔伯特-黄变换说明及程序(标准程序)

目录∙ 1 本质模态函数(IMF)∙ 2 经验模态分解(EMD)∙ 3 结论∙ 4 相关条目∙ 5 参考文献∙ 6 外部链接[编辑]本质模态函数(IMF)任何一个资料,满足下列两个条件即可称作本质模态函数。

⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。

⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。

因此,一个函数若属于IMF,代表其波形局部对称于零平均值。

此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。

因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。

[编辑]经验模态分解(EMD)EMD算法流程图建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。

我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。

如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。

为了解决非线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。

经验模态分解是将讯号分解成IMF的组合。

经验模态分解是借着不断重复的筛选程序来逐步找出IMF。

以讯号为例,筛选程序的流程概述如下:步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条(cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。

步骤 2 : 求出上下包络线之平均,得到均值包络线。

步骤 3 : 原始信号与均值包络线相减,得到第一个分量。

步骤 4 : 检查是否符合IMF的条件。

HHT方法

HHT方法

2038555、205088博世花倾城HHT,希尔伯特-黄变换希尔伯特一黄变换(Hilbert一HuangTransform,简称HHT)是由美籍华裔NordenE.Huang教授于1998年的一次国际会议上提出的一种新的处理非平稳信号的方法。

它是分析非稳态资料的一种独特分析方法,可用于地震工程、地球物理探测、潜艇设计、结构损害侦测、卫星资料分析、血压变化和心律不整等各项研究。

Hilbert一Huang变换是一种两步骤信号处理方法。

首先用经验模态分解方法(Emprical Modality Decomposition Method,简称EMD)获得有限数目的固有模态函数(Intrinsic Mode Funetion,简称IMF),然后再利用Hilbert变换和瞬时频率方法获得信号的时一频谱—Hilbert谱。

与传统的信号或数据处理方法相比,HHT具有如下特点:(1) HHT能分析非线性非平稳信号。

传统的数据处理方法,如傅立叶变换适合处理线性、平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。

历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。

HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。

(2) HHT具有完全自适应性。

HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。

这点不同于傅立叶变换和小波变换。

傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。

在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。

我们也没有理由认为所选的小波基能够反映被分析数据或信号的特性。

(3) HHT不受Heisenberg测不准原理制约——适合突变信号。

傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。

python希尔伯特黄变换的时频谱

python希尔伯特黄变换的时频谱

Python希尔伯特黄变换(Python Hilbert-Huang Transform,简称HHT)是一种复杂非线性信号分析方法,结合了希尔伯特变换和黄变换的优势,能够有效地对非线性和非平稳信号进行时频谱分析。

本文将从HHT的原理、基本步骤和Python实现方法三个方面进行介绍。

一、HHT的原理1.希尔伯特变换希尔伯特变换是一种将实数信号转换为解析信号的数学方法,通过对原信号进行傅立叶变换得到频谱信息,再对频谱信息进行一定的处理得到解析频谱,从而实现信号的解析表示。

希尔伯特变换的核心是求出原信号的解析函数,即原信号的复数形式,其中实部是原信号本身,虚部是原信号的希尔伯特变换。

希尔伯特变换在信号处理领域有着广泛的应用,能够提取信号的瞬时特征,对非平稳信号进行时频分析具有很高的效果。

2.黄变换黄变换是一种局部线性和非线性信号分解方法,可以将非线性和非平稳信号分解成若干个固有模态函数(Intrinsic Mode Function,简称IMF)的线性组合。

黄变换首先对原信号进行极值点的提取,然后通过极值点之间的插值得到包络线,再将原信号减去包络线得到一维信号,并对得到的一维信号进行数据挑选和插值,最终得到IMF。

多次重复以上步骤,直到原信号能够被分解为若干个IMF,再通过IMF的线性组合得到原信号的近似表示。

3.HHT的结合HHT将希尔伯特变换和黄变换结合在一起,利用希尔伯特变换提取信号的瞬时特征,再通过黄变换将信号分解成若干个IMF,从而能够更准确地描述信号的时频特性。

HHT的优势在于能够适用于非线性和非平稳信号,对信号的局部特征具有很好的描述能力,因此在振动信号分析、生物医学信号处理等领域有着广泛的应用。

二、HHT的基本步骤1.信号分解HHT首先对原信号进行希尔伯特变换,得到信号的瞬时频率特征,然后通过黄变换将信号分解成若干个IMF。

2.IMF的提取针对得到的IMF,需要对每个IMF进行较为严格的判别,确定其是否符合IMF的特征:极值点交替出现、包络线对称、局部频率单调。

希尔伯特黄变换及其应用

希尔伯特黄变换及其应用

希尔伯特黄变换及其应用希尔伯特黄变换及其应用希尔伯特黄变换(Hilbert-Huang Transform,HHT)是一种用于分析非线性和非平稳信号的方法,它由黄其森(Norden E. Huang)和希尔伯特(Hilbert)共同提出。

该方法通过将信号分解为一组固有模态函数(Intrinsic Mode Functions,IMF)来提取信号中的模式和趋势。

本文将介绍希尔伯特黄变换的应用,并详细讲解其中的几个应用领域。

应用一:信号处理•希尔伯特黄变换可以用于音频信号处理,通过提取信号的固有模态函数,可以分离出音频信号中的主要频率成分,从而实现去噪、降噪等处理。

•在图像处理中,希尔伯特黄变换可以用于边缘检测和纹理分析。

通过提取图像的固有模态函数,可以分离出图像中的纹理信息和边缘信息,从而实现图像增强和分割等操作。

应用二:地震学•地震学中的信号分析是一项重要的任务,希尔伯特黄变换可以用于地震信号的分析和处理。

通过将地震信号分解为固有模态函数,可以提取出地震信号中的地震波的时频特征,从而实现地震信号的分类和识别。

•希尔伯特黄变换还可以用于地震信号的时频谱分析,通过将地震信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到地震信号的时频谱图,从而更好地理解地震信号的时频特性。

应用三:医学工程•在医学工程中,希尔伯特黄变换可以用于生物信号的分析和处理,如心电图(ECG)和脑电图(EEG)等。

通过将生物信号分解为固有模态函数,可以提取出信号中的重要特征,如心跳频率、脑电波的频率等,从而实现疾病的诊断和监测。

•希尔伯特黄变换还可以用于生物信号的时频谱分析,通过将生物信号分解为固有模态函数,并对每个分量进行傅里叶变换,可以得到信号的时频谱图,从而更好地分析信号的时频特性。

应用四:金融市场•在金融市场中,希尔伯特黄变换可以用于股票价格的分析和预测。

通过将股票价格分解为固有模态函数,可以提取出股票价格的趋势和周期成分,从而更好地预测股票价格的走势。

希尔伯特黄变换和经验模态分解

希尔伯特黄变换和经验模态分解

希尔伯特黄变换和经验模态分解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!希尔伯特黄变换和经验模态分解:理论与应用导言希尔伯特黄变换(Hilbert-Huang Transform,HHT)和经验模态分解(Empirical Mode Decomposition,EMD)是近年来在信号处理领域备受关注的两大方法。

希尔伯特黄变换


而且能够表示可变的频率。因此,新方法突破了傅立叶变
换的束缚。用Hilbert谱可以进一步定义边际谱为:
(12)
H H,tdt
这里由HHT得到的边际谱与Fourier频谱有相似之 处,从统计观点上来看,它表示了该频率上振幅 (能量)在时间上的累加,能够反映各频率上的能 量分布,但因为瞬时频率定义为时间的函数,不 同以往Fourier等需要完整的振荡波周期来定义局 部的频率值,而且求取的能量值不是全局定义的 。因此对信号的局部特征反映更准确,在这方面 优于Fourier谱。尤其是在分析非平稳信号时,这 种
2.4 Hilbert谱和边际谱
• 在IMF定义和EMD的基础上,Huang等人系统地
提出了一种分析信号的新理论或新方法。它包
括两个大组成部分,EMD和与之相应的Hilben
谱分析方法。即首先用EMD将任意信号s(t)分解
成有限个IMF的和
n
s(t)cjtrnt
j1
然后分别对每一个IMF分量用Hilbert变换进行谱 分析。最后得到信号的瞬时频率表示:
2.2时间特征尺度
• 现在有三种测量时间尺度的方法:相邻两过零点间隔 的时间尺度,相邻两极值点间隔的时间尺度,相邻两 曲率极值点间隔的时间尺度。三种情况中,时间间隔 都是用来局部测量事物时间变化的。局部极值时间间 隔和曲率时间间隔尺度代表了整个波形,无论波形是 否穿过零线。Huang等人分析认为,时间尺度代表了 信号的局部震荡尺度,并且仅表示一种震荡模式。这 种震荡从一个极值点到另一个相反的极值点,因此时 间尺度是震荡本身所隐含的尺度,称为特征时间尺度。 EMD方法使用的时间尺度是极值点间隔,它当然提供 了一个很好的对时间尺度测量的方法。所谓的局部是 特征尺度是指信号重量邻近极大值点或者极小值点的 时间间隔。HHT分析方法是通过对信号本身的局部特 征进行分析,从局部特征时间尺度入手,获得不同时 间尺度特征的有限个IMF分量。

希尔伯特-黄变换方法


IMF 1; iteration 2 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
residue 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
IMF 1; iteration 1 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
residue 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
IMF 1; iteration 1 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
residue 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
IMF 1; iteration 1 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
residue 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 90 100 110 120
residue 1 0.5 0 -0.5 -1 10 20 30 40 50 60 70 80 90 100 110 120
IMF 1; iteration 4 1 0.5 0 -0.5 -1 10 20 30 40 50 60 70 80 90 100 110 120

希尔伯特·黄变换

HHT-希尔伯特·黄变换1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。

HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HAS)。

简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。

与传统的信号或数据处理方法相比,HHT具有如下特点:(1)HHT能分析非线性非平稳信号。

传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。

历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。

HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。

(2)HHT具有完全自适应性。

HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。

这点不同于傅立叶变换和小波变换。

傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。

在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。

希尔伯特黄变换算例2

希尔伯特黄变换算例2电⼒⼯程信号处理应⽤希尔伯特黄变换【⽬的】1.了解希尔伯特黄变换的理论知识及应⽤领域2.⽤Matlab软件仿真,验证希尔伯特黄变换的优点【希尔伯特黄变换】希尔伯特黄变换(Hilbert-Huang transform, HHT)⾸先采⽤EMD⽅法将信号分解为若⼲个IMF分量之和,然后对每个IMF分量进⾏Hilbert变换得到的瞬时频率和瞬时幅值,从⽽得到信号的Hilbert谱,Hilbert谱表⽰了信号完整的时间-频率分布,是具有⼀定的⾃适应的时频分析⽅法。

与前⾯的⼩波分析⽅法相⽐,避免了⼩波分析基选取的困难。

分析⾮线性、⾮平稳信号采⽤基于经验模态分解的HHT⽅法可以较好地分析信号的局域动态⾏为和特征。

由于HHT⽅法的种种特点,其在机械振动、⽣物医学、故障诊断、海洋学科、地震⼯程学以及经济学各学科中得到了⼴泛应⽤。

在电⼒系统领域中,HHT⽅法可⽤于谐波分析、同步电机参数辨识、低频震荡分析、电能质量检测、磁铁谐振过电压辨识等⽅⾯和超⾼速⽅向保护等⽅⾯。

HHT⽅法在电⼒系统中的应⽤还在进⼀步的研究和探索中。

【EMD 分解】对于⼀个时间序列()x t ,其经验模态分解过程如下:(1)确定原始信号()x t 的所有极⼤值点和极⼩值点;(2)采⽤样条函数求出()x t 的上、下包络线,并计算均值()m t ;(3)做差()()()h t x t m t =-;(4) ()h t 是否满⾜终⽌条件,若不满⾜将()h t 作为新的输⼊信号转⾄第(1)步,否则转为第(5)步;(5)令()c h t =,c 即为⼀个IMF 分量,做差()r x t c =-;(6) r 是否满⾜终⽌条件,若不满⾜则将r 作为新的输⼊信号转⾄第(1)步,若满⾜则EMD 分解过程结束,不能提取的为残余量。

具体流程如图1所⽰。

EMD 分解过程图1 EMD 分解流程图对于分解总阶数为n 的时间序列,最后可以表⽰成1()()()ni i x t c t r t ==+∑式中,()r t 为残余函数,它是以单调函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

希尔伯特-黄变换(Hilbert-Huang Transform,HHT)0 前言传统的数据分析方法都是基于线性和平稳信号的假设,然而对实际系统,无论是自然的还是人为建立的,数据最有可能是非线性、非平稳的。

希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种经验数据分析方法,其扩展是自适应性的,所以它可以描述非线性、非平稳过程数据的物理意义。

1 HHT简介[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]HHT的发展。

1995年,Norden E.Huang为研究水表面波构思出一种所谓“EMD--HSA”的时间序列分析法,通过这种方法他发现水波的演化不是连续的,而是突变、离散、局部的。

1998年,Norden E.Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。

HHT是一种新的分析非线性非平稳信号的时频分析方法,由两部分组成:第一部分为经验模态分解(Empirical Mode Decomposition,EMD)(the sifting process,筛选过程),它是由Huang提出的,基于一个假设:任何复杂信号都可以分解为有限数目且具有一定物理定义的固有模态函数(Intrinsic Mode Function,IMF;也称作本征模态函数);EMD方法能根据信号的特点,自适应地将信号分解成从高到低不同频率的一系列IMF;该方法直接从信号本身获取基函数,因此具有自适应性,同时也存在计算量大和模态混叠的缺点。

第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,HSA),利用Hilbert变换求解每一阶IMF 的瞬时频率,从而得到信号的时频表示,即Hilbert谱。

简单说来,HHT处理非平稳信号的基本过程是:首先,利用EMD方法将给定的信号分解为若干IMF,这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的时间-频率-能量分布,即Hilbert谱。

在HHT中,为了能把复杂的信号分解为简单的单分量信号的组合,在进行EMD方法时,所获得的IMF 必须满足下列两个条件:1)在整个信号长度上,一个IMF的极值点和过零点数目必须相等或至多只相差一点。

2)在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零,也就是说IMF的上下包络线对称于时间轴。

满足上述两个条件的IMF 就是一个单分量信号。

连续时间信号)(t x 的Hilbert 变换)(ˆt x 定义为:τττπτττππd t x d t x t t x t x ⎰⎰+∞∞-+∞∞--=-=*=)(1)(11)()(ˆ.2 HHT 理论经验模态分解(Empirical Mode Decomposition ,EMD )对于给定的信号,Huang 所介绍的EMD 方法是:(1)首先找到信号的极大值和极小值,用三次样条插值拟合上下包络线)(t u 和)(t v ,计算上下包络线在每一点上的平均值,从而获得一平均值曲线1m ,即2/)]()([1t v t u m +=;(2)设分析信号为)(t x ,用)(t x 减去平均值)(1t m ,即11)(m t x h -=.如果,1h 满足IMF 的两个条件,那么1h 就是)(t x 的第一个IMF 分量;否则,将1h 作为原始信号,重复(1)(2),得上下包络的平均值11m ,再判断11111m h h -=是否满足IMF 的两个条件;若不满足,重复循环k 次,得到k k k m h h 1)1(11-=-,直到k h 1满足IMF 的两个条件。

记1c 为信号)(t x 经EMD 得到的第1个IMF 分量。

其中,有两种不同的筛分停止标准:①类似柯西收敛准则的()()∑∑=-=--=Tt k Tt kk k h h h SD 021102111;当k SD 小于一个预定值时,筛选停止。

②筛分次数预先选定,在s 次连续筛选内,当零点数和极点数相等或最多相差一个,筛选过程将停止。

困难:如何设定筛选次数?(3)将1c 从)(t x 中分离出来,得到11)(c t x r -=;将1r 作为原始数据,重复(1)~(3),得到)(t x 的第2个IMF 分量2c ;重复循环n 次,得到信号)(t x 的n 个IMF 分量,则有n ni i r c t x +=∑=1)(式中n r 称为残余分量,分解结束时是一个恒定值或单调函数,代表信号的平均趋势。

上面的分解过程可以解释为尺度滤波过程,每一个IMF 分量都反映了信号的特征尺度,代表着非线性非平稳信号的内在模态特征。

Hilbert 谱分析(Hilbert Spectrum Analysis ,HSA )获得了信号的IMF 分量以后,即可对每一阶IMF 做Hilbert 变换;设)(t c i 的Hilbert 变换为)(ˆt c i ,则有τττπτττππd t c d t c t t c t c i i i i ⎰⎰+∞∞+∞∞-=-=*=--)(1)(11)()(ˆ从而,信号)(t x 的解析信号(analytic signal )为)()()(ˆ)()(t j i i i i i e t a t cj t c t z θ=+= 这里)(ˆ)()(22t c t c t a i i i +=,即瞬时振幅;⎪⎪⎭⎫ ⎝⎛=)()(ˆ)(t c t c arctg t i i i θ,即瞬时相位。

解析信号的极坐标形式反映了Hilbert 变换的物理含义:它通过一正弦曲线的频率和幅值调制获得局部的最佳逼近。

根据瞬时频率的定义,IMF 分量的瞬时频率为dt t d t i i )()(θω=,dt t d t f i i )(21)(θπ=. 于是,⎰==+=T i i dt t j i t j i i i i e t a e t a t c j t c t z 0)()()()()(ˆ)()(ωθ.对每一阶IMF 作Hilbert 变换,并求出相应的解析函数的幅值谱和瞬时频率,从而原始信号)(t x 可以表示为∑∑∑∑====⎰====n i dt j i n i n i ni t j i i i i i e t a e t a t z t c t x 1111)()(Re )(Re )(Re )()(ωθ其数学表达式反映了HHT 是FT 的一种扩展形式。

上式反映了信号幅值、时间和瞬时频率之间的关系。

信号的幅值可表示为时间、瞬时频率的函数),(t H ω,从而获得信号幅值的时间、频率分布——Hilbert 谱,即∑=⎰=n i dt j i i e t a t H 1)(),(ωω 进而,对时间积分可获得信号的Hilbert 边际谱⎰=T dt t H h 0),()(ωω.),(t H ω描述了信号的幅值在整个频率上随时间和频率的变化规律;而)(ωh 描述了信号在每个频率上的总振幅(或能量)。

3 HHT 的优点与传统的信号或数据处理方法相比,HHT具有如下特点:(1)HHT能分析非线性非平稳信号。

传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。

历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。

HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,适用于分析非线性非平稳信号。

(2)HHT具有完全自适应性。

HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。

这点不同于傅立叶变换和小波变换。

傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。

在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。

我们也没有理由认为所选的小波基能够反映被分析数据或信号的特性。

(3)HHT不受Heisenberg测不准原理制约——适合突变信号。

傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。

这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定的不便。

而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很高的精度,这使它非常适用于分析突变信号。

(4)HHT的瞬时频率是采用求导得到的。

傅立叶变换、短时傅立叶变换、小波变换有一个共同的特点,就是预先选择基函数,其计算方式是通过与基函数的卷积产生的。

HHT不同于这些方法,它借助Hilbert变换求得相位函数,再对相位函数求导产生瞬时频率。

这样求出的瞬时频率是局部性的,而傅立叶变换的频率是全局性的,小波变换的频率是区域性的。

4 HHT存在的问题HHT的关键技术是EMD方法,然而EMD存在以下几个困难:1)包络曲线和均值曲线的拟合。

Huang的方法在整个数据长度上采用三次样条插值拟合包络曲线,在数据长度大且波动剧烈的情况下,其计算量将是很大的,这种方法要占用大量的机时,实时性太差。

采用不同的包络算法会产生不同的IMF,如何包络算法的优劣?如何判断采用某种包络算法,EMD是收敛的(即经过有限次“筛选”获得有限阶IMF)?[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]2)边界处理问题。

对有限长信号的分析一般都会遭遇边界处理问题,如小波分解等。

但小波分解中的边界处理误差,如果采用直接时间算法不会在各小波分量间传递,而HHT的分解过程注定了其边界处理结果将在分解过程中一直传播下去,引起结果的较大摆动,这就决定了研究 HHT 边界处理算法的重要性。

3)模态混叠。

由于EMD 分解过程可解释为尺度滤波的过程,因此获得的)~1(n i C i =在尺度上表现为从小到大变化,解释为频率就是从高频到低频的分解过程。

但i C 未必严格单调从小到大变化,可能会产生尺度交叉现象,其结果有可能产生尺度混叠的现象。

4)筛法。

筛法是HHT 的核心,它包括两方面的问题:一是筛法的依据问题,即筛法有没有可靠的理论依据,如果筛法没有将会导致分析结果不唯一或者错误;二是筛法的效率问题,就是要提高筛法的速度。

相关文档
最新文档