高中物理变加速模型
高中物理 高中物理22个经典模型汇总 清晰实用

高中物理高中物理22个经典模型汇总清晰实用高中物理22个经典模型汇总与清晰实用一、引言高中物理作为理科学科的重要组成部分,是学生们接触自然科学的第一步,也是理解世界的窗口。
在学习高中物理的过程中,掌握经典模型是至关重要的。
经典模型能够帮助我们理解自然界的规律,为我们解决问题提供了基本的思路,更好地认识自然界的奥秘,也更好地应对未来的挑战。
本文将汇总高中物理22个经典模型,并探讨它们的清晰实用之处。
二、运动学1. 位移、速度、加速度模型位移、速度、加速度是运动的基本概念,它们之间的关系能够帮助我们描述物体的运动状态,从而解释各种日常运动现象。
2. 牛顿三定律牛顿三定律是力学的基础,这个模型能够帮助我们理解物体受力的情况,进而分析物体的运动状态。
3. 万有引力万有引力模型是物理学中重要的一部分,它描述了物体之间的引力大小与距离的关系,解释了宇宙中广泛存在的引力现象。
4. 匀变速直线运动匀变速直线运动模型描述了物体在力作用下的匀变速直线运动规律,让我们能够准确预测物体的位置随时间的变化。
5. 抛体运动抛体运动模型适用于空中物体在重力作用下的运动,可以帮助我们分析和计算各种投掷运动。
6. 圆周运动圆周运动模型帮助我们理解物体在圆周运动中受力的情况,解释了各种圆周运动中发生的现象。
7. 谐振谐振模型能够帮助我们理解谐振现象产生的原因,也让我们在实际应用中更好地利用谐振的特性。
三、动能和势能8. 动能与势能转化动能和势能的转化模型描述了物体在力的作用下,动能和势能之间相互转化的规律,为我们解释各种能量转化现象提供了理论依据。
9. 机械能守恒机械能守恒模型说明了在某些力场内,物体的机械能守恒,这个规律被广泛应用于各种动力学计算中。
四、波动10. 机械波机械波模型帮助我们理解机械波的传播规律,解释了声音、水波等机械波的传播特性。
11. 光的直线传播光的直线传播模型适用于介质中光的传播规律,让我们能够更好地理解光的传播路径。
高考物理:高中物理大题解题模型公式汇总!

高考物理:高中物理大题解题模型公式汇总!
一、匀变速直线运动
二、共点力平衡
三、牛顿运动定律
1.斜面模型
2.板块模型
3.传送带模型
四、曲线运动
ω增大,F增大。
五、天体运动
1.相关物理量的关系图
2.变轨模型
六、碰撞和动量守恒
1.弹性正碰
满足动量守恒定律和机械能守恒定律
解得:
2.冲击摆
七、带电粒子在电场中的运动
1.加速+偏转模型
电加速:
电偏转:
水平方向:
竖直方向:
偏转角:
荧光屏上的偏移量:
2.电场+重力场的叠加场
▲图中qE=mg,则θ=45°
八、带电粒子在磁场中的运动
1.找圆心、求半径、算时间
物理方程:
几何关系:
速度偏向角:
▲算时间:
2.磁聚焦“透镜”
磁场圆半径与轨迹圆半径相等,即
2.有效切割长度
▲三种情况中有效切割长度均为d 3.电磁感应中的杆+导轨模型
运动过程中:
先做a减小的加速运动,后做匀速:
十、理想变压器
十一、原子物理
1.光电效应
2.氢原子能级。
高中物理24个经典模型

高中物理24个经典模型高中物理中有许多经典的模型,这些模型帮助我们理解物理世界的运作原理。
本文将介绍高中物理中的24个经典模型,让我们一起来了解它们吧!1.单摆模型:单摆模型用来研究摆动的物体的运动规律。
它包括一个质点和一个细线,可以通过改变细线长度或质点的质量来研究摆动的周期和频率。
2.平抛运动模型:平抛运动模型用来研究水平投掷物体的运动轨迹和速度。
它假设没有空气阻力,只有重力作用。
可以通过改变初速度和仰角来研究物体的落点和飞行距离。
3.牛顿第一定律模型:牛顿第一定律模型认为在没有外力作用下物体将保持匀速直线运动或静止。
这个模型帮助我们理解惯性的概念和物体运动状态的变化。
4.牛顿第二定律模型:牛顿第二定律模型描述了物体受力和加速度之间的关系。
它的数学表达式为F=ma,其中F表示物体受力,m表示物体质量,a表示物体加速度。
5.牛顿第三定律模型:牛顿第三定律模型表明对于每个作用力都存在一个等大反向的相互作用力。
这个模型帮助我们理解力的概念和物体之间的相互作用。
6.阻力模型:阻力模型用来研究运动物体与介质之间的相互作用。
它的大小与速度和物体形状有关,在物体运动时会减小其速度。
7.功率模型:功率模型描述了物体转化能量的速度和效率。
它等于功的大小除以时间,可以帮助我们理解物体能量的转变和利用。
8.热传导模型:热传导模型描述了热量在物体间传递的过程。
它通过研究热导率和温度差来解释热量传递的速率和方向。
9.摩擦力模型:摩擦力模型用来描述物体在接触面上滑动或滚动时的相互作用。
它的大小与物体之间的粗糙程度和压力有关,可以通过摩擦力模型来研究物体的运动和停止。
10.力矩模型:力矩模型用来研究物体旋转的平衡和加速度。
它的数学表达式为M=rF,其中M表示力矩,r表示力臂,F表示作用力。
11.浮力模型:浮力模型用来研究物体在液体或气体中的浮力。
它的大小等于液体或气体对物体的推力,可以帮助我们理解物体在液体中的浮沉和船只的浮力原理。
高中物理模型大全

高中物理模型大全引言在高中物理学习中,模型是我们理解和解释自然现象的重要工具。
通过建立模型,我们可以更好地理解物理规律和现象,并预测未知情况下的结果。
本文将介绍一些高中物理学习中常用的模型,帮助同学们更好地掌握物理知识。
1.简谐振动模型简谐振动模型是描述振动现象的重要模型。
在简谐振动模型中,假设振动系统回复力与位移成正比,且方向相反。
例如弹簧振子、摆钟等都可以使用简谐振动模型进行分析和计算。
2.牛顿第二定律模型牛顿第二定律模型是描述物体运动的基本模型。
根据牛顿第二定律,物体的加速度与受到的合外力成正比,与物体的质量成反比。
这个模型被广泛应用于解决各种运动问题,如自由落体、斜抛运动等。
3.热传导模型热传导模型是描述热传导现象的模型。
在热传导模型中,假设热量从高温物体传递到低温物体,传递速率与温度差成正比,与材料的热导率和截面积成反比。
这个模型可以用于解释热传导过程和计算热传导速率。
4.光的折射模型光的折射模型是描述光线在介质中传播时发生折射现象的模型。
根据斯涅尔定律,入射角、折射角和介质折射率之间存在一定的关系。
这个模型被应用于解决各种光学问题,如光的折射、全反射等。
5.电路模型电路模型是描述电流和电压分布的模型。
通过欧姆定律、基尔霍夫定律等原理,我们可以建立电路模型来分析电路中的电流和电压变化。
这个模型被广泛应用于解决电路中的各种问题,如串联电路、并联电路等。
6.引力模型引力模型是描述物体之间引力相互作用的模型。
根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
这个模型可以用于解释行星运动、地球引力等现象。
7.声音传播模型声音传播模型是描述声音在介质中传播的模型。
根据声波传播原理,声音的传播速度与介质的性质有关,一般来说,声速在固体中最大,在气体中最小。
这个模型可以应用于解释声音的传播和计算声音的传播速度。
8.磁场模型磁场模型是描述磁场分布和磁力作用的模型。
通过安培环路定理和洛伦兹力定律,我们可以建立磁场模型来分析磁场中的磁感应强度和磁力变化。
高中物理48个解题模型

高中物理48个解题模型1. 牛顿第一定律:物体静止或匀速直线运动的模型2. 牛顿第二定律:力与加速度的关系模型3. 牛顿第三定律:作用力与反作用力相等的模型4. 动量守恒定律:动量守恒的模型5. 能量守恒定律:能量守恒的模型6. 弹性碰撞:弹性碰撞的模型7. 不完全弹性碰撞:不完全弹性碰撞的模型8. 重力:重力的模型9. 力的合成与分解:力的合成与分解的模型10. 位移、速度和加速度的关系:位移、速度和加速度的模型11. 滑动摩擦力:滑动摩擦力的模型12. 静摩擦力:静摩擦力的模型13. 飞行物体的运动:飞行物体的运动的模型14. 自由落体运动:自由落体运动的模型15. 匀加速直线运动:匀加速直线运动的模型16. 匀变速直线运动:匀变速直线运动的模型17. 圆周运动:圆周运动的模型18. 谐振运动:谐振运动的模型19. 电场:电场的模型20. 磁场:磁场的模型21. 电流:电流的模型22. 电阻:电阻的模型23. 电势差:电势差的模型24. 电场强度:电场强度的模型25. 磁感应强度:磁感应强度的模型26. 波的传播:波的传播的模型27. 声音的传播:声音的传播的模型28. 光的传播:光的传播的模型29. 光的折射:光的折射的模型30. 光的反射:光的反射的模型31. 镜子和透镜:镜子和透镜的模型32. 光的干涉:光的干涉的模型33. 光的衍射:光的衍射的模型34. 感应电动势:感应电动势的模型35. 恒定电流的磁场:恒定电流的磁场的模型36. 磁感应强度的方向:磁感应强度的方向的模型37. 磁场中带电粒子的运动:磁场中带电粒子的运动的模型38. 双光栅实验:双光栅实验的模型39. 天体运动:天体运动的模型40. 物体运动的分析:物体运动的分析的模型41. 土星环的形成:土星环的形成的模型42. 阻力的大小:阻力的大小的模型43. 万有引力:万有引力的模型44. 静电场:静电场的模型45. 静磁场:静磁场的模型46. 电磁感应:电磁感应的模型47. 电磁波:电磁波的模型48. 热力学:热力学的模型。
高中物理24个经典模型

高中物理24个经典模型高中物理领域有许多经典模型,这些模型帮助我们更好地理解和解释自然界中各种现象和规律。
以下是高中物理中的24个经典模型。
1.质点模型:物理中最简单的模型之一,将物体简化为一个几乎没有大小的点,用于研究物体的运动和力学性质。
2.弹簧模型:用来研究弹簧和弹性体的力学性质,它可以模拟很多弹性形变的现象。
3.质点弹簧模型:结合了质点和弹簧模型,用于研究弹簧振动和简谐振动的性质。
4.轨迹模型:用来描述运动物体的路径,常用的轨迹有直线运动、圆周运动、抛物线运动等。
5.平衡模型:用来研究物体处于平衡状态时的力学性质,如平衡条件、平衡位置等。
6.载体模型:用来研究物体在载体上的运动,常用的载体有斜面、轨道、绳子等。
7.力模型:用来描述物体受到的力,包括重力、摩擦力、弹力、拉力等。
8.力矩模型:用来研究物体围绕固定点转动的性质,描述物体受到的力矩和力矩平衡条件。
9.阻力模型:用来研究物体在流体中运动时受到的阻力,如空气阻力、水阻力等。
10.平衡力模型:用来描述物体受到多个力的作用时达到平衡的条件,如平衡力的合成和分解。
11.载荷模型:用来研究物体受到外力作用时的变形和应力分布,如悬链线、横梁等。
12.动力模型:用来研究物体的运动和力学性质,描述物体的动量和动量守恒定律。
13.动能模型:用来描述物体的能量和能量转化规律,包括动能和动能守恒定律。
14.位能模型:用来描述物体的势能和势能转化规律,包括重力势能、弹性势能等。
15.电路模型:用来研究电流、电压和电阻在电路中的分布和变化规律,如串联电路、并联电路等。
16.磁场模型:用来描述磁场和磁力在磁场中的分布和变化规律,如磁场线、磁感应强度等。
17.光学模型:用来研究光的传播、反射、折射、干涉等光学现象,如几何光学模型、波动光学模型等。
18.波动模型:用来研究波的传播和波动性质,包括机械波、电磁波等。
19.音响模型:用来研究声音的传播和声音的特性,如声音的频率、波长、音强等。
专题01 高中物理几种匀变速直线运动模型(解析版)

专题01几种匀变速直线运动模型1.[模型导航]【模型一】刹车模型1【模型二】“0-v-0”运动模型2【模型三】反应时间与限速模型61.先匀速,后减速运动模型--反应时间问题82.先加速后匀速运动模型--限速问题83.先加速后匀速在减速运动模型--最短时间问题9【模型四】双向可逆类运动模型10【模型五】等位移折返模型13【模型六】等时间折返模型152.[模型分析]【模型一】刹车模型【概述】指匀减速到速度为零后即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间【模型要点】(1)刹车问题在实际生活中,汽车刹车停止后,不会做反向加速运动,而是保持静止。
(2)题目给出的时间比刹车时间长还是短?若比刹车时间长,汽车速度为零.若比刹车时间短,可利用公式v= v0+at直接计算,因此解题前先求出刹车时间t0。
(3)刹车时间t0的求法.由v=v0+at,令v=0,求出t0便为刹车时间,即t0=-v0 a。
(4)比较t与t0,若t≥t0,则v=0;若t<t0,则v=v0+at。
(5)若t≥t0,则v=0,车已经停止,求刹车距离的方法有三种:①根据位移公式x=v0t+12at2,注意式中t只能取t;②根据速度位移公式-v20=2ax;③根据平均速度位移公式x=v0 2t.1据了解,CR300AF型复兴号动车组是拥有完全自主国产研发的中国标准动车组体系中的新车型。
该车型设计时速为300千米每小时,外观呈淡蓝色,运行平稳舒适、乘坐环境宽敞明亮、列车噪音低、振动小,除此之外复兴号动车组全车覆盖免费wifi,且每两个座椅有一个插座。
假设一列复兴号动车进站时从某时刻起做匀减速直线运动,分别用时3s、2s、1s连续通过三段位移后停下,则这三段位移的平均速度之比是()A.9:4:1B.27:8:1C.5:3:1D.3:2:1【解答】解:可将动车减速过程看作初速度为0的加速过程,根据匀变速直线运动规律可知最后3s、2s、1s连续通过三段位移的比为27:8:1,根据平均速度的计算公式v =x t,可知这三段位移的平均速度之比是9:4:1,故A正确,BCD错误;故选:A。
高中物理运动学加速度求解题常见模型及方法

高中物理运动学加速度求解题常见模型及方法引言:运动学是物理学的一个重要分支,研究物体的运动和运动规律。
在运动学中,加速度是一个关键概念,它描述了物体运动速度变化的快慢。
解决加速度相关问题需要理解常见的模型和方法。
本文将介绍高中物理中常见的加速度求解题的模型和方法。
一、直线运动加速度的求解模型及方法1. 匀加速直线运动:- 模型:匀加速直线运动的速度随时间的变化呈线性关系。
- 方法:根据速度随时间变化的关系,可以利用速度-时间图或速度-时间表求解加速度。
2. 自由落体运动:- 模型:自由落体运动是指只受重力作用的物体从静止位置开始下落的运动。
- 方法:可以利用重力加速度g来求解自由落体运动的加速度。
自由落体运动的加速度始终等于重力加速度g。
二、曲线运动加速度的求解模型及方法1. 简谐振动:- 模型:简谐振动描述了物体在一个约束力作用下沿一个路径往复运动的情况。
- 方法:可以利用力学模型来求解简谐振动的加速度,如弹簧振子的加速度可以通过Hooke定律和牛顿第二定律求解。
2. 圆周运动:- 模型:圆周运动是指物体在一个圆周轨迹上运动的情况。
- 方法:可以利用向心加速度来求解圆周运动的加速度,向心加速度的大小等于速度的平方除以半径。
结论:高中物理中,加速度求解问题常见的模型和方法包括匀加速直线运动、自由落体运动、简谐振动和圆周运动。
通过理解这些模型和方法,可以更好地解决与加速度相关的问题。
参考文献:[1] 高中物理课程标准. 人民教育出版社,2003.[2] 黄志伟, 李明. 高中物理实验教程. 人民教育出版社,2008.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理变加速模型 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】1、雨滴下落模型此模型在高中阶段为浅析层次,大学对其研究就非常有深度了。
简单来说雨滴下落受力相当复杂多变,在雨滴速度增加过程中除重力外的浮力、粘滞阻力、压差阻力等均发生变化,而这些变化使其速度最终恒定。
不然,地面将面目全非了。
但是,由于要分析上面那些阻力会用到高等数学的专业知识,高中阶段解决不了。
所以,我们就简化了此问题。
相差不多的说法可以这样:“雨滴下落随速度的增大其受到的合阻力将正比于速度的越高次方”。
在高中物理必修一教材中曾有这一内容的简单介绍。
例1:雨滴下落时所受阻力与雨滴速度有关,雨滴速度越大,所受阻力越大;则雨滴的最终下落速度将如何其运动为何种运动此外,雨滴下落速度还与雨滴半径的α次方成正比(1α2),假设一个大雨滴和一个小雨滴从同一云层同时下落,它们都下落,雨滴先到地面;接近地面时谁的速度较小?2、油中球的运动例2:钢球在很深的油槽中由静止开始下落,若油对球的阻力正比于其速率,则球的运动是()A.先加速后减速最后静止B.一直减速C.先加速后减速直至匀速D.加速度逐渐减小到零此模型类似于雨滴下落模型但是较为简单运动亦为“加速度变小的变加速后的匀速”。
3、蹦极、蹦床问题“蹦极”是一种非常刺激的极限运动。
蹦床则令人开心快乐;然而,其物理原理却如出一辙。
例3:“蹦极”是一种极限运动,人自身所受的重力使其自由下落,被拉伸的橡皮绳又会产生向上的力,把人拉上去,然后人再下落.正是在这上上下下的振荡中,蹦极者体会到惊心动魄的刺激,如图3-1-22所示.设一次蹦极中所用的橡皮绳原长为15m,质量为50kg的蹦极者运动到最低点时橡皮绳长为,当蹦极者停止振荡时橡皮绳长为,则蹦极者运动到最低点时受到橡皮绳的拉力为多大(g取10m/s2)先来分析其中人的运动变化吧!里面也有一段变加速。
后来还有一段变减速。
整个过程无论是运动、受力、能量均可以有考察的角度!例4蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量60kg的运动员,从离水平网面3.2m高处自由落下,着网后沿竖直方向蹦回到离水平网面50m高处。
已知运动员与网接触的时间1.2s。
若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。
4、机车启动问题机车起动分两类:(1)以恒定功率起动;(2)以恒定牵引力起动.其解题关键在于逐步分析v、a、F、p间关系,并把握由起动到匀速的临界条件F=f,即汽车达到最大速度的条件.该类问题的思维流程为:(1)以恒定功率起动的运动过程是:变加速(a↓)(a=0)匀速,在此过程中,F牵、v、a的变化情况:所以汽车达到最大速度时a=0,F=f,P=Fv m=fv m.(2)以恒定牵引力匀加速起动的运动过程是:匀加速⇒当功率增大到额定功率P m 后,变(1)汽车做匀加速运动的时间.(2)汽车匀速运动后关闭发动机,还能滑多远?5、弹簧振子和单摆的运动模型例6:如图所示,为一弹簧振子,O 为振动的平衡位置,将振子拉到位置C 从静止释放,振子在BC 间往复运动.已知BC 间的距离为20cm ,振子在4秒钟内振动了10次. (1)求振幅、周期和频率。
(2)若规定从O 到C 的方向为正方向,试分析振子在从C →O →B 过程中所受回复力F ,加速度a 和速度υ的变化情况. 单摆亦然6、电磁感应中的导体棒运动模型滑杆问题可分为两类:一类是“动——电——动”类问题;一类是“电——动——电”类问题;每类又可分为单滑杆和双滑杆。
【模式“动——电——动”类问题剖析】例:7如图10所示:平行滑轨PQ 、MN 间距为L ,与水平方向成α角,质量m ,电阻为r 的导体,ab 紧贴在滑轨上并与PM 平行,滑轨电阻不计,整个装置处于与滑轨平面正交,磁感应强度为B 的匀强磁场中,滑轨足够长。
①导体ab α,ab 一旦运动,则ab “因动而电”,ab图1②ab 中有电流,在磁场中,因受安培力的作用,与ab 下滑的方向相反,随ab 棒下滑速度不断增大,因为E=BLv,I=,则电路中电流随之变大,安培阻力F=BL 变大,直到与G x 的合力为零,即加速度为零,以最大v max =收尾。
③此过程中,重力势能转化为ab 棒的动能mv max 2与回路中产生的焦耳热之和。
而焦耳热来自于电路中的电能,部分重力势能如何转化为电能的呢?由功能原理可知,能的转化是通过做功实现的,功是能量转化的量度。
经分析知,重力势能转化为电能是通过安培力做负功实现的,故安培力做了多少焦耳的功,就有多少重力势能转化为电能,电能又通过电场力做功转化为焦耳热。
故同一方程中,安培力做的功、电能、热量只能出现一次。
〖单滑杆典例分析〗例8.如图2所示,两个竖直放置的n 平行光滑金属导轨之间的距离为L ,电阻不计。
上端串联一个定值电阻R 。
金属杆ab 的电阻为r,质量为m ,匀强磁场的磁感应强度为B ,杆在重力作用下由静止开始运动。
求(1)出金属杆的最大速度。
(2) 已知金属杆达到最大速度时位移为s ,求此过程中 金属杆上产生的焦耳热。
解析:(1)ab 棒因重力作用由静止开始向下运动,导体棒一旦向下运动切割磁感线就会产生由a ——b 的感应电流,有电流又在磁场中就会受到向上的安培力。
随着导体棒速度的增大,向上的安培力也增大最终安培力等于重力,导体棒匀速运动。
E=BLV I=F 安=BIL=mg 联立有:v max =(1) 由能的转化和守恒规律可知:mgs=mv 2+QQ=mgs-mv 2〖双滑杆典例分析〗例9.如图3所示,两根相距为L 的两平行光滑金属长导轨固定在同一水平面上,并处于竖直方向的匀强磁场中,磁场的磁感应强度为B 。
ab 和cd 两根金属细杆的质量都等于m ,电阻都等于r ,导轨的电阻忽略不计,在大小均为F 的拉力作用下分别向相反方向滑动,经过时间T ,两杆同时达到大小相同的最大速度v m ,以后都做匀速直线运动。
(1) 当ab,cd 的速度均为v 1时,两杆的加速度为多大? (2)(3) 从开始到两杆同时达到大小相同的最大速度v m ,的过程流过ab 导线截面的电荷量。
解析:(1)ab 与cdE=E 1+E 2 E 1=2BLv 1 i 1==F 1=Bi 1L= a==-(2)当杆匀速运动时速度为v m =设在0~T 时间内,电流的平均值为i ,根据动量定理FT -BiLT=mv m此时间内流过细杆横截面积的电流q=iT q=-=-小结:在双滑杆问题中,依据右手定则判断两运动滑杆感应电动势的方向,如两电源为E =︱E 1-E 2︱ 常见问题如下图所示图3针对a图可以有以下几种情况:①v1=v2且运动方向相同,ab,bc两杆产生大小相等方向相反的电动势,故总电动势为零。
②v2>v1或者v2>v1且运动方向相同,ab,bc两杆产生大小不等方向相反的电动势,故总电动势为两电动势只差E=∣E1-E2∣。
③若两者的运动方向相反,总电动势就为二者电动势之和,E=E1+E2。
b图与a图的不同仅在于两滑杆的长度不同,当同速运动时产生的电动势不同,然其余问题依据动力学、电场、稳恒电流、动能定理或者功能原理或者能量守恒的知识解题即可。
【模式“电——动——电”类问题剖析】如图10水平放置的光滑平行金属导轨MN、PQ间距为L,其上放置一电阻为R,质量为m 的金属棒ab,导轨左端接内电阻不计,电动势为E的电源形成回路。
整个装置放置竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与开关①当开关刚闭合时,棒ab因通电受安培力F安=BIL图4“因电而动”。
②棒ab一旦获得速度,立即产生了感应电动势,“因动而生电”,感应电动势与原电路电源电动势相反,随着导体棒速度的增大,加速度逐渐减小。
③导体棒ab做复杂的变加速运动,当电源电动式大小等于感应电动式时,F合=0时,加速度a=0,棒ab速度达最大值,故ab运动的收尾状态为匀速直线运动v max=。
〖单滑杆典例分析〗例11.两根间隔L=的平行光滑金属轨道固定在同一水平面上,轨道的左端接入电源和开关,质量m=的均匀金属棒横跨在两根轨道之间并静止在轨道的a处,电源两极已在图中标出,E=3V,r=Ω。
整个装置放在竖直方向的匀强磁场中,B=,当接通开关S时,金属细棒由于受到磁场力的作用而向右运动,到如图所示的b处,且v=3m/s。
求:从接通开关S到细运动到b的过程中,电路截面中通过的电荷量。
解析:当ab 棒“因电而动”之后,又“因动而生电”产生与原电动势方向相反的电动势,故电路中E=E 0-E ′,又因v 变,故E ′变化,故电路中电流时刻改变,安培力F 2不恒定,所以导体棒做a 减小的变加速运动。
解:设电路中平均电流为IBILt=mv It=Q故Q==〖双滑杆典例剖析〗例12.如图5所示,电源的电动势为U ,电容器的电容为C ,K 是单刀双掷开关,MN ,PQ 是两根位于同一水平面内的平行光滑长导轨,它们的电阻可以图略不计,两导轨间距为L ,导轨处于磁感应强度为B 的均匀磁场中,磁场方向垂直于导轨所在的平面并指向图中纸面向里的方向。
L 1和L 2是两根横放在导轨上的导体小棒,它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,质量分别为m 1和m 2,且m 1<m 2,开始时两根小棒静止在导轨上,现将开关K 先向1,然后合向2,求: (1)L 1与L 2的最终速度。
(2)整个过程产生的焦耳热。
解析:电建K 合向2后,电容器放电,电路简化为下图: 两杆则“因电而动”但由于电容器放电电流会随 时间衰减,导体棒也会“因动而生电”产生与电容器方向相反的电势差,阻碍电容器放电;开始时两棒安培力相等,但因反向感应电流而产生的安培力,则最终二者应共速,并使两棒产生的电动势均等于电容器放电后两端电压,棒中电流为零最终匀速运动。
设两杆中平均电流分别为i 1和i 2,有BLi 1t+Bli 2t=(m 1+m 2)v BL Q ′=(m 1+m 2)v …………①1 2 L 2 L 1 图5图6Q=CU…………②Q′=Q-q…………③当电容器放电后电压等于感应电动势时满足:E′=E…………④E′=BLV…………⑤E=…………⑥q=BLvCBL(U-BLv)C=(m1+m2)vBLUC-v=(m1+m2)vBLUC=v(m1+m2+B2L2C)v=(2)电容器开始放电时,所具有的电能为:W=CU2放电完成后,电容器所具有的电能为W1==两棒最终的动能和为:W1=(m1+m2)v2=(m1+m2)整个过程中的焦耳热损耗为:△W=W0-(W1+W2)=综观以上问题设计的各种情形,我们发现尽管题目情景千变万化,但实质无非是动力学问题或者能量问题。