四川成都七中 2018 年外地生招生考试数学试卷(含答案)

合集下载

17成都七中嘉祥外国语招生数学试题真卷 (2018年) A3

17成都七中嘉祥外国语招生数学试题真卷  (2018年)  A3
2.(工程问题)甲工程队每工作 5 天休息 1 天,乙工程队每工作 6 天休息 2 天。一项工程,甲工程队单独 做需要 62 天,乙工程队单独做需要 52 天,两队合作需要多少天?
1
分钟。
10.(工程间题)一个大水坑,每分钟从四周流掉(四壁渗透)一定数量的水、如果用 5 台水泵,5 小时就
能抽干水坑的水;如果 10 台水泵,3 小时就能抽干水坑的水。现在要 1 小时抽干水坑的水,问要用

水泵。
ニ、计算(每小题 5 分,共 25 分)
1.11 - 7 9 - 11 13 - 15 17 - 19 3 12 20 30 42 56 72 90
1.(最值问题)已知质数
P、q
满足
3P+5q=31,求
p 3q
1
的最大值

三、简答题(每小题 5 分,共 25 分)
1.(组合图形面积)如图,在一个 4×4 的正方形内,两个 1 圆周的半径分别是 2 cm2 和 4 cm2 。取π=3, 4
那么图中两个阴影部分的面积之差是多少平方厘米?
2.(数论)有一个首位数为 1 的六位数。如果把首位数从最左移到最右,其余 5 个数的顺序不变,则新数
姓名 密封 线
班级
学校
3.( 5
-
2
1) 2
20
-
4
1 2

99 100

3.2

0.24

1 5
4.
2017
20172017 2018

2017(4.3 87 4.487- 4.3
4.4)
四、解答题(每小题 10 分,共 20 分) 1.(行程问题)某旅行团从 A 市到 B 市有一天的路程,计划上午比下午多走 100 千米到 C 市吃午饭。由于 堵车,中午才赶到一个小镇,只行了原计划的三分之一。过了小镇,汽车赶了 400 千米,傍晚才停下来休 息。司机说,再走从 C 市到这里路程的二分之一就到达目的地了。问 A、B 两市相距多少千米?

四川省成都七中2018-2019学年高三(下)入学数学试卷(理科)(2月份)解析版

四川省成都七中2018-2019学年高三(下)入学数学试卷(理科)(2月份)解析版
������ ������
(2)已知在被抽取的女生中有 6 名高一(1)班的学生,其中 3 名对游泳有兴趣,现在从这 6 名学生中随机抽 取 3 人,求至少有 2 人对游泳有兴趣的概率. (3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如 下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取 2 人进行跟踪调查,记选中的 4 人中市级以 上游泳比赛获奖的人数为 ξ,求随机变量 ξ 的分布列及数学期望. 一 (10 ) 2 … …
解:由 2+i=z(1-i),得 z= ∴ ,

满足条件 S>-1,S=lg +lg +lg ,k=7 满足条件 S>-1,S=lg +lg +lg +lg ,k=9 满足条件 S>-1,S=lg +lg +lg +lg +lg =lg( × × × × )=lg =-lg11,k=11 不满足条件 S>-1,退出循环,输出 k 的值为 11. 故选:C. 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量 k 的值,模拟程序的运行过程, 分析循环中各变量值的变化情况,可得答案. 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答. 5.【答案】A
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
������(������������ ‒ ������������)2 2 (������ + ������)(������ + ������)(������ + ������)(������ + ������) K=

2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)(解析版)

2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)(解析版)

2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)一、选择题(本大题共12小题,共60.0分)1.设集合{A=x|1<x<2},{B=x|x<a},若A⊆B,则a的取值范围是()A. B. C. D.2.若f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式为()A. B. C. D.3.设α是第三象限角,化简:=()A. 1B. 0C.D. 24.设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系为()A. B. C. D.5.若函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,则f(1)的值为()A. 0B. 1C. 2D. 36.已知函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,则g(2)+g()的值为()A. 4B. 2C. 1D. 07.直角坐标系内,β终边过点P(sin2,cos2),则终边与β重合的角可表示成()A. ,B. ,C. ,D. ,8.已知函数f(x)=,,,,在定义域上单调递减,那么a的取值范围是()A. B. C. D.9.如图,在△ABC中,已知=,P为AD上一点,且满足=m+,则实数m的值为()A.B.C.D.10.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A. 2B. 4C. 5D. 1011.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x[-3,-2]时,f(x)=x2+4x+3,则y=f[f(x)]+1在区间[-3,3]上的零点个数为()A. 1个B. 2个C. 4个D. 6个12.设e为自然对数的底数,则函数f(x)=e x(2-e x)+(a+2)•|e x-1|-a2存在三个零点,则a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.函数f(x)=+lg(3x+1)的定义域为______.14.tan=______.15.在△ABC中,∠A=60°,a=4,b=4,则B等于______.16.已知,,,,且,则cos(x+2y)=______.三、解答题(本大题共6小题,共70.0分)17.(1)化简求值:(log32+1og92)(log43+1og83)+2;(2)已知x-x-1=-,求x3-x-3的值.18.已知=(1,2),=(-3,2),当k为何值时:(1)k+与-3垂直;(2)k+与-3平行,平行时它们是同向还是反向?19.声音通过空气的振动所产生的压强叫声压强,简称声压,单位为帕(Pa).把声压的有效值取对数来表示声音的强弱,这种表示声音强弱的数值叫声压级.声压级以符号S PL表示,单位为分贝(dB),公式为:S PL(声压级)=(dB),式中p e为待测声压的有效值,p ref为参考声压,在空气中参考声压p ref一般取值2×10-5Pa.根据上述材料,回答下列问题.(1)若某两人小声交谈时的声压有效值p e=0.002Pa,求其声压级;(2)已知某班开主题班会,测量到教室内最高声压级达到90dB,求此时该班教室内声压的有效值.20.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若函数f(x)在[0,π]上取最小值时对应的角度为θ,求半径为2,圆心角为θ的扇形的面积.21.已知定义域为R的函数f(x)=-+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t(1,2),不等式f(-2t2+t+1)+f(t2-2mt)≤0有解,求m的取值范围.22.已知函数f(x)=sin(x R).任取t R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t).(Ⅰ)求函数f(x)的最小正周期及对称轴方程(Ⅱ)当t[-2,0]时,求函数g(t)的解析式(Ⅲ)设函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中实数k为参数,且满足关于t的不等式k-5g(t)≤0有解.若对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围参考公式:sinα-cosα=sin(α-)答案和解析1.【答案】A【解析】解:在数轴上画出图形易得a≥2.故选:A.在数轴上画出图形,结合图形易得a≥2.本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解.2.【答案】B【解析】解:∵f(x)=2x+3,∴g(x+2)=f(x)=2x+3=2(x+2)-1,即g(x)=2x-1故选:B.由g(x+2)=f(x),把f(x)的表达式表示为含有x+2的基本形式即可.本题考查了求简单的函数解析式的问题,是基础题.3.【答案】C【解析】解:∵α是第三象限角,可得:cosα<0,∴=-,∵cos2α+cos2αtan2α=cos2α+cos2α•=cos2α+sin2α=1.∴=-1.故选:C.原式利用单项式乘以多项式法则计算,再利用同角三角函数间基本关系化简,结合角的范围即可得到结果.此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.4.【答案】B【解析】解:∵a=0.60.4,c=0.40.4,由幂函数的性质可得a>c,∵b=0.40.6,c=0.40.4,由指数函数的性质可得b<c,∴b<c<a.故选:B.直接利用指数函数与幂函数的单调性进行大小比较.本题考查指数函数与幂函数的图象与性质,是基础题.5.【答案】B【解析】解:∵函数f(x)满足f(x)-2f(2-x)=-x2+8x-8,∴f(1)-2f(1)=-1+8-8,∴f(1)=1.故选:B.在f(x)-2f(2-x)=-x2+8x-8中,令x=1,能求出f(1)的值.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.【答案】D【解析】解:若函数g(x)与f(x)=a x(a>0,a≠1)的图象关于直线y=x对称,故函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,故g(x)=log a x(a>0,a≠1),故g(2)+g()=log a2+=log a2-log a2=0,故选:D.由已知可得函数g(x)与f(x)=a x(a>0,a≠1)互为反函数,即g(x)=log a x(a>0,a≠1),结合对数的运算性质,可得答案.本题考查的知识点是反函数,函数求值,对数的运算性质,难度中档.7.【答案】A【解析】解:∵β终边过点P(sin2,cos2),即为(cos (-2),sin (-2))∴终边与β重合的角可表示成-2+2kπ,k Z,故选:A.由P(sin2,cos2),即为(cos (-2),sin(-2)),即可求出.本题考查了终边相同的角和诱导公式,属基础题.8.【答案】C【解析】解:根据题意,函数f(x)的定义域为(0,+∞),y=x+在(0,1]为减函数,则[1,+∞)上为增函数,y=3-x在(0,+∞)上为减函数,又由函数y=x+与y=3-x有2个交点:(,)和(1,2),若函数f(x)=在定义域上单调递减,必有0<a≤或a=1,即a的取值范围为(0,]{1};故选:C.根据题意,分析函数f(x)的定义域为(0,+∞),再分析函数y=x+和函数y=3-x在(0,+∞)上的单调性,求出两个函数的交点,据此分析可得答案.本题考查分段函数的单调性,关键是分析分段函数解析式的形式,属于基础题.9.【答案】B【解析】解:如图,又=,所以又=m+,由平面向量基本定理可得,解得m=故选:B.由题设,可将用两向量表示出来,已知中已有足=m+,可根据平面向量基本定理建立起m的方程,从而求出m的值.本题考查平面向量基本定理的应用,根据向量的三角形法则与平行四边形法则把用两向量表示出来,是解答本题的关键.10.【答案】D【解析】解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(-r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P (rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=-r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选:D.以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.11.【答案】C【解析】解:∵当x[-3,-2]时,f(x)=x2+4x+3=(x+2)2-1[-1,0];又f(x)为R上的偶函数,∴当x[2,3]时,f(x)[-1,0];又f(x+2)=f(x),∴f(x)为以2为周期的函数,由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],由f[f(x)]+1=0得到f[f(x)]=-1,于是可得f(x)=0或±2(舍弃),由f(x)=0可得x=±1,±3,所以y=f[f(x)]+1在区间[-3,3]上的零点个数为4.故选:C.由题意,偶函数f(x)在区间[-3,3]上的值域为[-1,0],确定f(x)=0,即可得出y=f[f(x)]+1在区间[-3,3]上的零点个数.本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.考查的知识点是根的存在性及根的个数判断,其中根据已知条件分析函数的性质,进而判断出函数零点的分布情况是解答本题的关键.12.【答案】D【解析】解:设t=e x-1,则e x=t+1,则f(t)=(t+1)(1-t)+(a+2)|t|-a2=1-t2+(a+2)|t|-a2,令m=|t|=|e x-1|.则f(m)=-m2+(a+2)m+1-a2,∵f(x)有三个零点,∴等价为f(m)=-m2+(a+2)m+1-a2,有两个根,一个根在(0,1)内,另一个根在[1,+∞),则,得得1<a≤2,即实数a的取值范围是(1,2],故选:D.利用换元法设m=|t|=|e x-1|.转化为一元二次函数根的分布,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用一元二次函数根的分布是解决本题的关键.综合性较强.13.【答案】,【解析】解:要使f(x)有意义,则:;∴;∴f(x)的定义域为.故答案为:.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,对数函数的定义域.14.【答案】2-【解析】解:tan=tan(-)===2-,故答案为:2-.利用两角差的正切公式求得tan=tan(-)的值.本题主要考查两角差的正切公式的应用,属于基础题.15.【答案】45度【解析】解:∵在△ABC中,∠A=60°,a=4,b=4,∴由正弦定理=得:sinB=,又a=4>b=4,∴60°=A>B,∴B=45°.故答案为:45°.利用正弦定理=即可求得sinB,再由a>b知A>B,从而可得答案.本题考查正弦定理,在△ABC中,a>b知A>B是关键,属于基础题.16.【答案】1【解析】解:设f(u)=u3+sinu.由①式得f(x)=2a,由②式得f(2y)=-2a.因为f(u)在区间上是单调增函数,并且是奇函数,∴f(x)=-f(2y)=f(-2y).∴x=-2y,即x+2y=0.∴cos(x+2y)=1.故答案为:1.设f(u)=u3+sinu.根据题设等式可知f(x)=2a,f(2y)=-2a,进而根据函数的奇偶性,求得f(x)=-f (2y)=f(-2y).进而推断出x+2y=0.进而求得cos(x+2y)=1.本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想.17.【答案】解:(1)(log32+1og92)(log43+1og83)+2=+5=•+5=+5=.(2)∵x-x-1=-,∴x2+x-2+2=(x+x-1)2=(x-x-1)2+4=+4=,∴x2+x-2=.∴x3-x-3=(x-x-1)(x2+x-2+1)=×=-.【解析】(1)利用指数与对数运算性质即可得出.(2)利用乘法公式即可得出.本题考查了指数与对数运算性质、乘法公式,考查了推理能力与计算能力,属于基础题.18.【答案】解:(1)由题意可得k+=(k-3,2k+2),-3=(10,-4),由k+与-3垂直可得(k -3,2k+2)•(10,-4)=10(k-3)+(2k+2)(-4)=0,解得k=19.(2)由k+与-3平行,可得(k-3)(-4)-(2k+2)×10=0,解得k=-,此时,k+=-+=(-,),-3=(10,-4),显然k+与-3方向相反.【解析】(1)由题意可得k +和-3的坐标,由k+与-3垂直可得它们的数量积等于0,由此解得k的值.(2)由k +与-3平行的性质,可得(k-3)(-4)-(2k+2)×10=0,解得k的值.再根据 k+和-3的坐标,可得k +与-3方向相反.本题主要考查两个向量的数量积公式的应用,两个向量共线、垂直的性质,属于中档题.19.【答案】解:(1)由声压有效值p e=0.002Pa,根据S PL==40dB∴两人小声交谈时声压级为40dB(2)根据声压级S PL=90=,可得P e=帕.∴教室内最高声压级达到90dB,求此时该班教室内声压的有效值为P e=帕.【解析】(1)利用公式,代入P e=0.002帕,P mf=2×10-5帕,即可求得结论;(2)利用公式,代入P e=0.002帕,S pl=80分贝,即可求得结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,属于基础题.20.【答案】解:(Ⅰ)根据函数f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图可得2×(-)+φ=0,求得φ=,∴f(x)=2sin(2x+).(Ⅱ)∵函数f(x)的周期为π,在[0,π]上,当x=时,f(x)取最小值-2,此时对应的角度为θ=,结合半径为2,则圆心角为θ的扇形的面积为θ•r2=••4=.【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.(Ⅱ)求出θ,根据半径为2,求出圆心角为θ的扇形的面积.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,属于中档题.21.【答案】解:(1)∵f(x)是R上的奇函数,∴f(0)=-+=0,∴a=1.(2)f(x)=-+,故f(x)是R上的减函数.证明:设x1,x2是R上的任意两个数,且x1<x2,则f(x1)-f(x2)=-=,∵x1<x2,∴0<<,∴>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2),∴f(x)在R上是减函数.(3)∵f(x)是奇函数,f(-2t2+t+1)+f(t2-2mt)≤0有解,∴f(t2-2mt)≤-f(-2t2+t+1)=f(2t2-t-1),又f(x)是减函数,∴t2-2mt≥2t2-t-1在(1,2)上有解,∴m≤=-++.设g(t)=-++,则g′(t)=--<0,∴g(t)在(1,2)上单调递减,∴g(t)<g(1)=.∴m的取值范围是(-∞,].【解析】(1)根据f(0)=0求出a的值;(2)根据函数单调性的定义证明;(3)根据奇偶性和单调性列出不等式,从而得出m的范围.本题考查了函数奇偶性、单调性的应用,函数最值的计算,属于中档题.22.【答案】解:(Ⅰ)对于函数f(x)=sin(x R),它的最小正周期为=4,由=kπ+,求得x=2k+1,k Z,可得f(x)的对称轴方程为x=2k+1,k Z.(Ⅱ)当t[-2,0]时,①若t[-2,-),在区间[t,t+1]上,M(t)=f(t)=sin,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+sin.②若t[-,-1),在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(-1)=-1,g(t)=M(t)-m(t)=1+cos.③若t[-1,0],在区间[t,t+1]上,M(t)=f(t+1)=sin(t+1)=cos t,m(t)=f(t)=sin t,g(t)=M(t)-m(t)=cos t-sin.综上可得,g(t)=,,,,,,.(Ⅲ)函数f(x)=sin的最小正周期为4,∴M(t+4)=M(t),m(t+4)=m(t).函数h(x)=2|x-k|,H(x)=x|x-k|+2k-8,对任意x1[4,+∞),存在x2(-∞,4],使得h(x2)=H(x1)成立,即函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集.∵h(x)=|2|x-k|=,①当k≤4时,h(x)在(-∞,k)上单调递减,在[k,4]上单调递增.故h(x)的最小值为h(k)=1;∵H(x)在[4,+∞)上单调递增,故H(x)的最小值为H(4)=8-2k.由8-2k≥1,求得k≤.②当4<k≤5时,h(x)在(-∞,4]上单调递减,h(x)的最小值为h(4)=2k-4,H(x)在[4,k]上单调递减,在(k,+∞)上单调递增,故H(x)的最小值为H(k)=2k-8,由,求得k=5,综上可得,k的范围为(-∞,]{5}.【解析】(Ⅰ)根据正弦函数的周期性和图象的对称性,求得函数f(x)的最小正周期及对称轴方程.(Ⅱ)当t[-2,0]时,分类讨论求得M(t)和m(t),可得g(t)的解析式.(Ⅲ)由题意可得函数H(x)=x|x-k|+2k-8在[4,+∞)上的值域是h(x)在[4,+∞)上的值域的子集,分类讨论求得k的范围.本题主要考查正弦函数的周期性,指数函数的图象特征,函数的能成立、函数的恒成立问题,属于难题.。

成都七中2018年高中自主招生数学真卷二

成都七中2018年高中自主招生数学真卷二

成都七中2018年高中自主招生数学真卷(二)一、选择题(本大题共10小题,每题5分,共50分)1. 对任意实数x ,多项式1258x xxx 的值为()A. 总大于零B. 总小于零C. 可能等于零D. 以上都不对2. 某珠宝店失窃,甲、乙、丙、丁四人涉嫌被拘审,四人的口供如下:甲:作案的是丙;乙:丁是作案者;丙:如果我作案,那么丁是主犯;丁:作案的不是我. 如果四人口供中只有一个是假的,那么以下判断正确的是()A. 说假话的是甲,作案的是乙B. 说假话的是丁,作案的是丙和丁C. 说假话的是乙,作案的是丙D. 说假话的是乙,作案的是丙3. 已知抛物线222bxxy与x 轴交于B A 、两点,与y 轴交于C 点,其中),(01A ,点D 是抛物线222bxxy 的顶点,点),(0m 是x 轴上的一个动点,当MD MC 的值最小时,m 的值是()A .4025 B.4124 C.4023 D.41254. 设实数0y x 、,且满足52yx,则y xxy x222的最大值是()A.897 B.16195 C.449 D.2255. 如图是二次函数c bxaxy 2图象的一部分,过点),(01x ,3<1x <2,对称轴为直线1x.给出四个结论:①abc >0;②02ba ;③2b >ac 4;④c b 23>0,其中正确的结论有()个. A. 1个B. 2个C. 3个D. 4个6. 如图所示,已知△ABC 面积为1,点F E D 、、分别在AB CA BC 、、上,且DC BD2,FB AFEA CE22,,AD 、BE 、CF 两两相交于R Q P 、、则的△PQR 面积为() A.51B.61C.71 D.1417.有40个学生参加数学奥林四克竞赛,他们必须解决一个代数学问题、一个几何学问题以及一个三角学问题,具体情况如下表所述:问题解决问题的学生人数代数学问题20 几何学问题18 三角学问题18 代数学和几何学问题7 代数学和三角学问题8 几何学和三角学问题9其中有3个学生一个问题都没有解决,则三个问题都解决的学生数是()人.A. 5B. 6C. 7D. 8 8. 如图所示,△ABC 中,∠60BAC °,∠45ABC°,22AB,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E 、F ,连接EF ,则线段EF 长度的最小值为()A .1B .2C .3D .2.9三边均为整数,且最长边为11的三角形共有()个.A. 20B. 26C.30D. 3610. 方程1210272611xxxx 的实数根的个数为()A. 0个B. 1 个C. 2个D. 3个二、填空题(本大题共6小题,每小题5分,共30分)11.设,,且,0-10120122242abbb a a则5223aaa bab________.12. 函数b ax y(其中a ,b 是整数)的图象与三条抛物线54763222x xy x xyxy,,分别有2、1、0个交点,则ba,________ .13. 已知b a ,为正数,恒有02ba 成立,展开即ab ba 2,当且仅当b a时,b a 取得最小值ab 2. 由此得到启发:若c b a ,,为正数且满足5262bcacaba,则c b a23的最小值是________.14. 如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B ’处,又将△CEF 沿EF 折叠,使点C 落在EB ’与AD 的交点C ’处,则BC :AB 的值________ .第(14)题第(16)题15.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数,甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.则甲获胜的概率是________ .16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第 2 012个点的横坐标为________ .三、解答题(本大题共6小题,共70分)17.(本题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元. 问:(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该县A 、B 两类学校共有8所需要改造。

四川省成都七中2018届高三上学期入学考试数学文试题 含答案 精品

四川省成都七中2018届高三上学期入学考试数学文试题 含答案 精品

成都七中2018届高三上学期数学入学考试题(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|32,6,8,10,12,14A x x n B ==+=,则集合AB =()A .{}8,10B .{}8,12C . {}8,14D .{}8,10,142.复数321i i -(i 为虚数单位)的虚部是()A .15iB .15 C . 15i - D .15- 3.如下程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是()A .60?1,x i i >=+B . 60?1,x i i <=+C . 60?1,x i i >=-D .60?1,x i i <=-4.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线2213y x -=的渐近线截得的弦长C 的方程为()A .()2211x y +-= B . (223x y +-=C. 221x y ⎛+-= ⎝⎭D .()2224x y +-= 5.已知直线,m n 和平面,αβ,使m α⊥成立的一个充分条件是()A . ,//m n n α⊥B .//,m n n α⊥ C. ,m n n α⊥⊂ D .//,m ββα⊥6.某几何体的三视图如图所示,该几何体的体积为12π+,则其正视图中x 的值为()A . 5B . 4 C. 3 D .2 7.将函数()()sin 2||2f x x π⎛⎫=+<⎪⎝⎭ϕϕ的图象向左平移3π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最大值为()A .0B .12.1 8.某个家庭有2个孩子,其中有一个孩子为女孩,则另一个孩子也为女孩的概率为() A .13 B .23 C. 14 D .129.在ABC ∆中,5,,BC G O =分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A .锐角三角形B .钝角三角形 C.直角三角形 D .上述三种情况都有可能10.已知点12,F F 为双曲线()222210,0x y a b a b-=>>的左右焦点,P 为右支上一点,记点P到右准线的距离为d ,若12||,||,PF PF d 依次成等差数列,则双曲线离心率的取值范围为()A.(1,2+ B.(C. )2⎡++∞⎣D.+11.对正整数n ,有抛物线()2221y n x =-,过()2,0P n 任作直线l 交抛物线于,n n A B 两点,设数列{}n a 中,14a =-,且1n nn OA OB a n ⋅=-(其中1,n n N >∈),则数列{}n a 的前n 项和n T =()A .4nB .4n - C. ()21n n + D .()21n n -+12.若以曲线()y f x =上任意一点()11,M x y 为切点作切线1l ,曲线上总存在异于M 的点()22,N x y ,以点N 为切点作切线2l ,且12//l l ,则称曲线()y f x =具有“可平行性”,现有下列命题:①函数()22ln y x x =-+的图象具有“可平行性”; ②定义在()(),00,-∞+∞的奇函数()y f x =的图象都具有“可平行性”; ③三次函数()32f x x x ax b =-++具有“可平行性”,且对应的两切点()11,M x y ,()22,N x y 的横坐标满足1223x x +=; ④要使得分段函数()()()110x x m x x f x e x ⎧+<⎪=⎨⎪-<⎩的图象具有“可平行性”,当且仅当1m =. 其中的真命题个数有()A . 1B . 2 C. 3 D .4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0,,a x y >满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a = .14.如图,在正方形ABCD 中,已知2,AB M =为BC 的中点,若N 为正方形内(含边界)任意一点,则AM AN ⋅的取值范围是 .15.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异” .(填有或没有) 附:()()()()()22n ad bc K a b c d a c b d -=++++16.设等差数列{}n a 的前n 项和为n S ,且2n n n c S na a -=+(c 是常数,*n N ∈),26a =,又122n n n a b +-=,数列{}n b 的前n 项和为n T ,若22n T m >-对*n N ∈恒成立,则正整数m 的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .18. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为1502m 时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii nii tty y b tt==--=-∑∑,a y bt =-19. 在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,2,1,AC AD CD DE AB G =====为AD 中点,F 是CE 的中点.(1)证明://BF 平面ACD (2)求点G 到平面BCE 的距离.20. 已知定点()1,0F ,定直线:4l x =,动点P 到点F 的距离与到直线l 的距离之比等于12. (1)求动点P 的轨迹E 的方程;(2)设轨迹E 与x 轴负半轴交于点A ,过点F 作不与x 轴重合的直线交轨迹E 于两点,C B ,直线,AB AC 分别交直线l 于点,N M .试问:在x 轴上是否存在定点Q ,使得0QM QN ⋅=?若存在,求出定点Q 的坐标;若不存在,请说明理由.21. 设函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,θπ∈. (1)求θ的值; (2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()1'2f x +的大小关系(其中()'f x 是()f x 的导函数),请写出详细的推理过程; (3)当0x ≥时,()11x e x kg x --≥+恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t =⎧⎨=⎩αα(t 为参数),l 与C 交于,B A两点,||AB =,求l 的斜率.23.选修4-5:不等式选讲已知不等式2|x 3||x 4|2a -+-<, (Ⅰ)若1a =,求不等式的解集;若已知不等式的解集不是空集,求a 的取值范围.试卷答案一、选择题1-5: CBAAB 6-10: CDABA 11、12:DB二、填空题13.1214. []0,6 15. 有 16. 2 三、解答题17. 解:(1)因为()2sin 8sin2B A C +=,21cos sin ,22B B AC B π-=+=-,所以sin 44cos B B =-,又因为22sin cos 1B B +=,解得15cos 17B =或cos 1B =(舍),故15cos 17B =. (2)15cos 17B =,故8sin 17B =,1sin 2S ac B =,得172ac =,所以()222219a c a c ac +=+-=,由余弦定理:2b ==.18.答案:(1)数据对应的散点图如图所示:(2)5111095i i x x ===∑,()2511570xx i i l x x==-=∑,23.2y =,()()51308xy i ii l x xy y ==--=∑设所求回归直线方程为y bx a =+,则3080.19621570xy xxl b l ==≈,30823.2109 1.81661570a y bx =-=-⨯≈,故所求回归直线方程为0.1962 1.8166y x =+.(3)据(2),当2150x m =时,销售价格的估计值为:0.1962150 1.816631.2466y =⨯+=(万元)19. 解:解法一(空间向量法)以D 点为原点建立如图所示生物空间直角坐标系,使得x 轴和z 轴的正半轴分别经过点A 和点E ,则各点的坐标为()()()()0,0,0,2,0,1,0,0,2,D B E C ,(1)点F 应是线段CE 的中点,下面证明:设F 应是线段CE 的中点,则点F的坐标为12⎛⎫ ⎪ ⎪⎝⎭,∴32BF ⎛⎫=- ⎪ ⎪⎝⎭,又∵()0,0,2DE =为平面ACD 的一个法向量,且0BF DE ⋅=,∴//BF 平面ACD .(2)420. (1)设点(),P x y12=,化简整理,得22143x y +=,即为动点P 的轨迹E 的方程.(2)根据题意可设直线BC 的方程为1x my =+,代入22143x y +=,整理得()2234690my my ++-=,设()()()112201,,1,,,0B my y C my y Q x ++,则122634m y y m +=-+,122934y y m =-+.又易知()2,0A -,所以直线AB 的方程为:()1123y y x my =++,直线AC 的方程为:()2223y y x my =++,从而得1164,3y M my ⎛⎫ ⎪+⎝⎭,2264,3y N my ⎛⎫ ⎪+⎝⎭,所以()()()21201236433y y QM QN x my my ⋅=-+++()()21202121236439y y x m y y m y y =-++++()22022293634496393434m x m m m m m ⎛⎫- ⎪+⎝⎭=-+⎛⎫⎛⎫-+-+ ⎪ ⎪++⎝⎭⎝⎭()2049x =--.所以当()2049x -=,即01x =或07x =时,0QM QN ⋅=,故在x 轴上存在定点()1,0Q 或()7,0,使得0QM QN ⋅=.21. 解:(1)∵()g x 在[)1,+∞单调递增,∴()1'sin 0g x xθ=-≥在[)1,+∞上恒成立,即[)()1sin 1,x x θ≥∈+∞恒成立.∵当1x ≥时,11x≤, ∴sin 1θ≥,又()0,θπ∈,∴0sin 1θ<≤,∴sin 1θ=,∴2πθ=.(2)由(1)可知()ln 1g x x x =--,∴()()221x f x g x x -=+221ln 1x x x x =-+--,∴()23122'1f x x x x =--+,∴()()23312'ln 2f x f x x x x x x-=-++--,令()()23312ln ,2h x x x H x x x x =-=+--,∴()()241326'10,'x x h x H x x x--+=-≥=,∴()h x 在[]1,2上单调递增,∴()()11h x h ≥=,令()2326x x x φ=--+,则()x φ在[]1,2单调递减,∵()()11,210φφ==-,∴()01,2x ∃∈,使得()H x 在()01,x 单调递增,在()0x ,2单调递减,∵()()110,22H H ==-,∴()()122H x H ≥=-,∴()()()()()()min min 1'2f x f x h x H x h x H x -=+≥+=,又两个函数的最小值不同时取得:()()1'2f x f x ->,即:()()1'2f x f x >+.(3)∵()11x e x kg x --≥+恒成立,即:()()ln 1110x e k x k x ++-+-≥恒成立,令()()()ln 111x F x e k x k x =++-+-,则()()'11x kF x e k x =+-++,由(1)得:()()1g x g ≥即()ln 101x x x --≥≥,∴()()1ln 10x x x +≥+≥,即:()()ln 10x x x ≥+≥,∴1x e x ≥+,∴()()()'111kF x x k x ≥++-++,当1k =时,∵0x ≥,∴()()()'111kF xx k x ≥++-++11201x x ≥++-≥+,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当()0,1k ∈时,()()111ky x k x =++-++在[)0,+∞上单调递增,()()()()'111101kF x x k k k x ≥++-+≥+-+=+,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当0k ≤时,()'F x 在[)0,+∞上是增函数,∴()()()'111kF x x k x ≥++-++()()'0110F k k ≥=+-+=,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当1k >时,()()2''1x kF x e x ≥-+,∴()''F x 在[)0,+∞上单调递增,又()''010F k =-<,且()''00,x F →+∞>,∴()''F x 在()0,+∞存在唯一零点0t ,∴()'F x 在()00,t 单调递减,在()0,t +∞单调递增,∴当()00,t x ∈时,()()''00F x F <=,∴()F x 在()00,t 单调递减,∴()()''00F x F <=,不合题意,综上:1k ≤.22. 解:(Ⅰ)由()22625x y ++=得2212110x y x +++=,∵222,cos x y x =+=ρρθ,∴212cos 110++=ρρθ,故C 的极坐标方程为212cos 110++=ρρθ.(Ⅱ)由cos sin x t y t =⎧⎨=⎩αα(t 为参数)得tan y ax =,即tan 0ax y -=,圆心()-6,0C ,半径5r =,圆心C 到直线l的距离2d ===,即=,解得tan =αl的斜率为. 23. 答案:(Ⅰ)2|x 3||x 4|2-+-<,①若4x ≥,则3102,4x x -<<,∴舍去.②若34x <<,则22x -<,∴34x <<.③若3x ≤,则81032,33x x -<∴<≤.综上,不等式的解集为8|43x x ⎧⎫<<⎨⎬⎩⎭. (Ⅱ)设()2|x 3||x 4|f x =-+-,则()()310,42,34,1103,3x x f x x x f x x x -≥⎧⎪=-<<∴≥⎨⎪-≤⎩,121,2a a >>.。

成都七中2018年外地生招生考试数学试题及解析(精)

成都七中2018年外地生招生考试数学试题及解析(精)

成都七中2018年外地生招生考试数学(考试时间:120 分钟 总分:150 分)一、选择题(每小题只有一个正确答案,每小题 5 分,共 5 分) 1.满足|a -b |=|a |+|b |成立的条件是( C )A .ab >0B .ab <0C .ab ≤0D .ab ≤1分析:根据条件分析a 与b 的关系,进而求出正确答案. 解:当a ,b 异号或其中的一个为0时,|a -b |=|a |+|b |成立, 即当ab ≤0时,|a -b |=|a |+|b |成立.2.已知a ,b ,c 为正数,若关于x 的一元二次方程ax 2+bx +c =0有两个实数根,则关于x 的方程a 2x 2+b 2x +c 2=0解的情况为( C ) A .有两个不相等的正根 B .有一个正根,一个负根 C .有两个不相等的负根D .不一定有实数根分析:由方程ax 2+bx +c =0有两个实数根可得出b 2-4ac ≥0,结合a ,b ,c 为正数可得出△=b 4-4a 2c 2>0,进而可得出关于x 的方程a 2x 2+b 2x +c 2=0有两个不相等的实数根,由根与系数的关系可得出该方程的两根之和为负、两根之积为正,进而可得出关于x 的方程a 2x 2+b 2x +c 2=0有两个不相等的负根. 解:∵关于x 的一元二次方程ax 2+bx +c =0有两个实数根, ∴△=b 2-4ac ≥0. 又∵a ,b ,c 为正数,∴b 2-4ac +2ac =b 2-2ac >0,b 2+2ac >0.∵方程a 2x 2+b 2x +c 2=0的根的判别式△=b 4-4a 2c 2=(b 2+2ac )(b 2-2ac )>0, ∴该方程有两个不相等的实数根.设关于x 的方程a 2x 2+b 2x +c 2=0的两个实数根为x 1,x 2, 则x 1+x 2=-b 2a 2<0,x 1x 2=c 2a2>0,∴关于x 的方程a 2x 2+b 2x +c 2=0有两个不相等的负根.3.已知数据x 1,x 2,x 3的平均数为a ,y 1,y 2,y 3的平均数为b ,则数据2x 1+3y 1,2x 2+3y 2,2x 3+3y 3的平均数为( A ) A .2a +3bB .23a +bC .4a +9bD .2a +b分析:把2x 1+3y 1、2x 2+3y 2、2x 3+3y 3的平均数的式子用a 和b 表示出来即可. 解:∵x 1,x 2,x 3的平均数为a ,y 1,y 2,y 3的平均数为b∴(2x 1+3y 1+2x 2+3y 2+2x 3+3y 3)÷3=[2(x 1+x 2+x 3)+3(y 1+y 2+y 3)]÷3=[2×3a +3×3b ])÷3=2a +3b . 4.若函数y =12(x 2-100x +196+|x 2-100x +196|),则当自变量x 取1,2,3,…,100这100个自然数时,函数值的和是( B ) A .540B .390C .194D .97分析:将x 2-100x +196分解为(x -2)(x -98),然后可得当2≤x ≤98时函数值为0,再分别求出x =1,99,100时的函数值即可.解:∵x 2-100x +196=(x -2)(x -98),∴当2≤x ≤98时,|x 2-100x +196|=-(x 2-100x +196),∴当自变量x 取2到98时,y =12[x 2-100x +196-(x 2-100x +196)]=0,即函数值为0,而当x 取1,99,100时,|x 2-100x +196|=x 2-100x +196,此时y =12[x 2-100x +196+(x 2-100x +196)]=x 2-100x +196=(x -2)(x -98),所以,所求和为(1-2)(1-98)+(99-2)(99-98)+(100-2)(100-98)=97+97+196=390. 5.已知(m 2+1)(n 2+1)=3(2mn -1),则n (1m-m )的值为( D )A .0B .1C .-2D .-1分析:通过配方求出m ,n 的值或求出m ,n 之间的关系即可! 解:由(m 2+1)(n 2+1)=3(2mn -1),整理,得 m 2n 2+m 2+n 2+1-6mn +3=0, m 2n 2-4mn +4+m 2-2mn +n 2=0, (mn -2)2+(m -n )2=0, mn -2=0,且m -n =0, ∴mn =2,m =n ,∴原式=nm-mn =1-2=-1.6.如果存在三个实数 m ,p ,q ,满足 m +p +q =18,且1m +p +1p +q +1m +q =79,则m p +q +p m +q +qm +p的值是( D ) A .8B .9C .10D .11分析:注意到所求代数式的三个分式的分子与分母的和恰好都是m +p +q ,故可利用推导合比性质类似的方法,每个分式加上1,再提出m +p +q ,这样就把两个已知条件完美的利用起来了!明确了这一点,直接将两个已知条件相乘即可达到这一目的. 解:∵m +p +q =18,且1m +p +1p +q +1m +q =79, ∴(m +p +q )(1m +p +1p +q +1m +q )=79×18,即m +p +q m +p +m +p +q p +q +m +p +qm +q=14, ∴1+q m +p +1+p m +q +1+m p +q =14,∴m p +q +p m +q +q m +p=11. 7.如图,△ABC 中,AB =m ,AC =n ,以BC 为边向外作正方形BCDE ,连结EA ,则EA 的最大值为( A )BA.2m+n B.m+2n C.3m+n D.m+3n分析:在正方形中求线段的最值问题,通常都是将要求(或已知)的线段所在的三角形进行旋转,把要求和的线段和已知的线段转化到同一个三角形中,利用三角形三边之间关系求解.解:将△ABE绕点B顺时针旋转90°,得△A′BC,连接A′A,则△A′BA是等腰直角三角形,AA′=2AB=2 m,在△A′AC中,A′C≤A′A+AC=2m+n,即EA=A′C的最小值2m+n.8.设A,B,C,D为平面上任意四点,如果其中任意三点不在同一直线上,则△ABC,△ABD,△ACD,△BCD 中至少存在一个三角形的某个内角满足(C)A.不超过15°B.不超过30°C.不超过45°D.以上都不对分析:关于解(或证明)“至少”,“不大于”,“不可能”等相关问题,一般都采用反证法来完成!根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于45°,从假设出发推出矛盾:四边形内角和大于360°矛盾;三角形内角和大于180°.从而得以证明结论.解:△ABC,△ABD,△ACD,△BCD中至少存在一个三角形的某个内角满足不超过45°,证明:假设A,B,C,D四点,任选三点构成的三角形的三个内角都大于45°,当ABCD构成凸四边形时,可得各角和大于360°,与四边形内角和等于360°矛盾;当ABCD构成凹四边形时,可得三角形内角和大于180°,与三角形内角和等于180°矛盾.故在△ABC,△ABD,△ACD,△BDC中至少有一个三角形的内角不超过45°.9.将抛物线T:y=x2-2x+4绕坐标原点O顺时针旋转30°得到抛物线T′,过点A(33,-3),B(3,33)的直线l与抛物线T′相交于点P,Q,则△OPQ的面积为(B)A.8 B.9 C.10 D.11yxT′T y = x2 2∙x + 4HPQABO分析:由题意A(33,-3),B(3,33)可知OA⊥OB,建立如图新的坐标系(OB为y′轴,OA为x′轴),利用方程组求出P,Q的坐标,根据S△OPQ=S△OBP+S△OBQ计算即可.解∵点A(33,-3),B(3,33),∴OA⊥OB,建立如图新的坐标系,OB为y′轴,OA为x′轴.在新的坐标系中,A(6,0),B(0,6),∴直线AB解析式为y′=-x′+6,由⎩⎨⎧y′=-x′+6,y′=x′2-2x′+4,解得⎩⎨⎧x′=2,y′=4;或⎩⎨⎧x′=-1,y′=7.∴在新的坐标系中,P(-1,7),Q(2,4),∴S△OPQ=S△OBP+S△OBQ=12×6×1+12×6×2=9.10.如图,锐角△ABC的三条高线AD,BE,CF相交于点H,连结DE,EF,DF,则图中的三角形个数有(C)A.40 B.45 C.47 D.63分析:数三角形的个数时,要想做到不重不漏,就必须要按一定的顺序,按一定规律去数!解:图中的三角形共有47个.二、填空题11.将一个各面都涂油漆的正方形切割成125个同样大小的小正方体,那么仅有2面涂油漆的小正方体共有36个.分析:由于125=5×5×5,由题意可得,大正方体每条棱2面涂油漆的小正方体有5-2=3个,再乘以12即可求解.解:125=5×5×5,则大正方体每条棱2面涂油漆的小正方体有5-2=3个,3×12=36(个).答:仅有2面涂油漆的小正方体共有36个.12.已知x ≠y ,且x 2=2y +5,y 2=2x +5,则x 3-2x 2y 2+y 3= .分析:把两个已知等式分别相加和相减,得到x +y =-2,xy =-1,再由将立方和公式和完全平方公式,将x 3-2x 2y 2+y 3变形为关于x +y 和xy 的代数式即可求解.解:∵⎩⎨⎧x 2=2y +5,①y 2=2x +5,②①-②,得 x 2-y 2=2(y -x ), 即(x -y )(x +y )=2(y -x ) ∵x ≠y , ∴x +y =-2.①+②,得 x 2+y 2=2(y +x )+10=-4+10=6, ∴(x +y )2-2xy =6,即(-2)2-2xy =6, ∴xy =-1,∴x 3-2x 2y 2+y 3=(x +y )[(x +y )2-3xy ]-2(xy )2=-16, 故答案为:-16.13.如图,多边形ABDEC 是由边长为m 的等边△ABC 和正方形BDEC 组成,⊙O 过A ,D ,E 三点,则∠ACO = .分析:先求出∠ACE 的度数,再证△ACO ≌△ECO ,即可求出∠ACO =12∠ACE =75°.解:∵多边形ABDEC 是由边长为m 的等边△ABC 和正方形BDEC 组成, ∴AC =EC ,∠ACE =∠ACB +∠ECB =60°+90°=150°, ∵⊙O 过A ,D ,E 三点, ∴AO =EO , 又OC =OC ,∴△ACO ≌ECO (SSS ),∴∠ACO =∠ECO =12∠ACE =12×150°=75°.变式练习:(1)如图,多边形ABDEC 是由边长为m 的等边△ABC 和正方形BDEC 组成,⊙O 过点A ,D ,E 三点,则⊙O 的半径等于 .(2)若多边形ABDEC 是由一个等腰△ABC 和一个矩形BDEC 组成,AB =AC =BD =m ,⊙O 过A ,D ,E 三点,则⊙O 的半径是否改变?解:(1)如图,过A 作BC 的垂线交DE 于F 点,由于△ABC 为等边三角形,则AF 平分BC , ∵四边形BDEC 为正方形, ∴AF 也垂直平分DE ,∴过点A ,D ,E 三点的圆的圆心O 在AF 上, 连接AD ,OD ,则OA =OD , ∴∠1=∠2, 又∵BC =BD =BA , ∴∠3=∠4, 而AF ∥BD , ∴∠1=∠4, ∴∠2=∠3, ∴AB ∥OD ,∴四边形ABDO 为菱形,∴AO =AB =2,即⊙O 的半径为2. (2)⊙O 的半径不改变.因为AB =AC =BD =2,此题的求法和(1)一样,⊙O 的半径为2. 故答案为2,不改变.14.已知实数a ,b ,c 满足a ≠b ,且2(a -b )+2(b -c )+(c -a )=0,则(c -b )(c -a )(a -b )2= 2+2 .方法一:(主元法--将2看成未知数)令2=x ,则原等式就可变为关于x 的一元二次方程,利用根与系数的关系求出代数式的值.解:令2=x ,则2=x 2,原等式就可变形为关于x 的一元二次方程(a -b )x 2+(b -c )x +(c -a )=0. ∵(a -b )+(b -c )+(c -a )=0 ∴方程必有一个根是1, ∴方程的两个根分别是1和2, 根据根与系数关系有: 1+2=-b -c a -b ,1•2=c -aa -b∴(c -b )(c -a )(a -b )2=-b -c a -b ·c -aa -b=(1+2)·1•2=2+2.方法二:(整体思想)等式整理后,不能求出a ,b ,c 的值,所以可尝试进行等式变形.注意到a -b ,b -c ,c -a 这三个代数式之间的特殊关系(任意两个相加可得第三个),这样即可将已知条件看成关于其中两个代数式的等式,结合所求代数式进行变形,求出c -a a -b (或c -b a -b )的值,再把要求的分式变形,使变形后的分式只含有c -a a -b (或c -ba -b ),再整体代入.解:2(a -b )+2(b -c )+(c -a )=0可变形为2(a -b )+2(b -c )-[(a -b )+(b -c )]=0, 即 (a -b )+(2-1)(b -c )=0, ∴c -b a -b =12-1=2+1, ∴c -a a -b =(c -b )+(b -a )a -b =c -b a -b -1=2+1-1=2, ∴(c -b )(c -a )(a -b )2=c -b a -b ·c -aa -b=(1+2)•2=2+2.15.将小王与小孙现在的年龄按从左至右的顺序排列得到一个四位数,这个数为完全平方数,再过31年,将他们的年龄按同样方式排列,又得到一个四位数,这个数仍然为完全平方数,则小王现在的年龄是 12 岁. 分析:设小王年龄为x 岁,小孙年龄为y 岁,可得100x +y =m 2,100(x +31)+y +31=n 2,两式相减因式分解后得到 31×101=(n -m )(n +m ),得到方程组后解答即可. 解:设小王年龄为x 岁,小孙年龄为y 岁,可得,⎩⎨⎧100x +y =m 2,100(x +31)+y +31=n 2,两式相减得100×31+31=n 2-m 2, 31×101=(n -m )(n +m ),∴⎩⎨⎧n +m =101,n -m =31, 解得,⎩⎨⎧m =35,n =66,∴100x +y =352=1225, ∴x =12,y =25,即:小王现在的年龄是12岁.16.设合数k 满足,1<k <100,若k 的数字和为质数,就称合数k 为“山寨质数”,则这种“山寨质数”的个数是 23 个.分析:分别从质数的定义分析进而分别得出和为质数的山寨质数. 解:用S (K )表示k 的数字和;而M (p )表示为山寨质数p 的合数的集合.当k ≤99时,S (k )≤18,不大于18的质数共有7个,它们是:2,3,5,7,11,13,17, 山寨为2的合数有M (2)={20},而M (3)={12,21,30}, M (5)={14,32,50},M (7)={16,25,34,52,70};M (11)={38,56,65,74,92},M (13)={49,58,76,85,94},M (17)={98}, 共得23个山寨质数.17.如图,在平面直角坐标系中,☉M 经过坐标原点,且与x 轴、y 轴分别相交于点A (-8,0),B (0,-6)两点.若抛物线对称轴过点M ,顶点C 在圆上,开口向下,交x 轴于点D ,E 两点,P 在抛物线上,若S △PDE =15S △ABC ,则满足条件的P 点有 3 个.分析:求出AB 的解析式y =−34x -6,根据条件求出C 点坐标,设抛物线解析式y =a (x +4)2+2,将点B 代入解析式,求出a 值,确定抛物线解析式;可求出抛物线与x 轴交点间距离DE =4,点P 到x 轴的距离是2,P 点的纵坐标是2或-2,分别求出P 点对应的横坐标即可确定P . 解:∵抛物线对称轴过点M ,∴AM =BM =CM ,AN =ON , ∵A (-8,0),∴N (-4,0),∴M 点的横坐标是-4, 直线AB 的解析式为y =−34x -6,∴M (-4,-3),∴AM =5,∴CM =5,∴C (-4,2), ∴S △ABC =12×5×8=20,∵S △PDE =15S △ABC ,∴S △PDE =4,设抛物线解析式y =a (x +4)2+2,∵经过点B (0,-6),∴a =-12,∴y =-12x 2-4x -6,∴D (-6,0),E (-2,0),∴DE =4,∴点P 到x 轴的距离是2,∴P 点的纵坐标是2或-2,当P 点纵坐标是2时,-12x 2-4x -6=2,解得x =-4,∴P (-4,2);当P 点纵坐标是-2时,-12x 2-4x -6=-2,∴x =-4+22或x =-4-22,∴P (-4+22,-2)或P (-4-22,-2), ∴符合条件的P 点有3个.18.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,D 为AB 中点,BE =3,AC =4,☉B 经过点E ,P 为☉B 上一动点,则4PC +3PD 的最小值为 .DE CBAP分析:由含30°角直角三角形的性质得出AB =2AC =8,由勾股定理得出BC =AB 2-AC 2=43,由D 为AB 中点,得出BD =AD =12AB =4,由圆半径得出BP =BE =3,在线段BE 上取点Q ,使BQ =94,连接PQ ,过点C 作CH ⊥AB 于H ,求出BQ PB =BP BD ,∠PBD =∠QBP ,则△PBQ ∽△DBP ,得出PQ PD =BQ BP =34,推出4PQ=3PD ,PQ =34PD ,即PC +34PD =PC +PQ ,连接CQ ,交⊙B 于点P ′,此时P ′C +P ′Q =CQ 最小,即P ′C+34P ′D 最小,则P ′为4PC +3PD 的最小值时的动点P 的位置,易求AH =12AC =2,CH =AC 2-AH 2=23,HQ =AB -BQ -AH =154,由勾股定理得出CQ =CH 2+HQ 2=4174,由4CQ =4(PC +34PD )=4PC +3PD ,即可得出结果.解;∵Rt △ABC 中∠ACB =90°,∠A =60°, ∴AB =2AC =8,BC =AB 2-AC 2=43, ∵D 为AB 中点,∴BD =AD =12AB =4,∵⊙B 经过点E ,P 为⊙B 上一动点, ∴BP =BE =3,在线段BE 上取点Q ,使BQ =94,连接PQ ,过点C 作CH ⊥AB 于H ,如图所示:∴BQ PB =94 3 =34,∵BP BD =34,∴BQ PB =BP BD , ∵∠PBD =∠QBP , ∴△PBQ ∽△DBP , ∴PQ PD =BQ BP =34,, ∴4PQ =3PD ,PQ =34PD ,∴PC +34PD =PC +PQ ,连接CQ ,交⊙B 于点P ′,此时P ′C +P ′Q =CQ 最小,即P ′C +34P ′D 最小,∴P ′为4PC +3PD 的最小值时的动点P 的位置, ∵∠A =60°,∠CHA =90°,∴AH =12AC =2,∴CH =AC 2-AH 2=42-22=23, ∴HQ =AB -BQ -AH =8-94-2=154,∴CQ =CH 2+HQ 2=(23)2+(154)2=4174,∴4CQ =4(PC +34PD )=4PC +3PD ,∴4PC +3PD =4×4174=417. 三、解答题19.是否存在这样的整系数二次三项式:f (x )=ax 2+bx +c ,其中a 不是2018的倍数,而且f (1),f (2),…,f (2018)被2018除的余数各不相同?请做出判断并说明理由. 分析:根据因式分解得相关知识可以解答此题. 解:存在,取 a =1009,令f (x )=1009x 2+2010x 由于对任何正整数,乘积都是偶数. 由此 1009 是 2018 的倍数.∴令 被 2018 除的余数与 被 2018 除的余数相同 即,除的余数各不相同.20.若m ,n ,p 为三个整数,且m +n +p =21,n m =pn,求:(1)当m 取最小值时,np 的值; (2)当m 取最大值时,np 的值.=pn =x ,则n =mx ,p =nx =mx ·x =mx 2,由m +n +p =21,得mx 2+mx +m =21,显然该方程有有理根,据此可解决本题!=pn =x ,则n =mx ,p =nx =mx ·x =mx 2,由m +n +p =21,得mx 2+mx +m =21, 即方程x 2+x +1-21m =0有有理根,∴Δ=1-4×1×(10,∴0<m ≤28,(1)当m 取最小值1时,x 2+x -20=0,解得x =4或x =-5. ①当m =1,x =4时,n =4,p =16,∴np =64; ②当m =1,x =-5时,n =-5,p =25,∴np =-125.21.平面直角坐标系内,A 坐标为(0,3),B 为x 轴负半轴上一动点,C 为B 关于A 的对称点,D 为B 关于y 轴的对称点,作△BCD 的外接圆,交y 轴负半轴于E 点,连结BE ,CE ,BI 平分∠CBD 交CE 于点I . (1)如图 1,若AI ⊥CE ,设Q 为☉A 上在第二象限内一点,连接DQ 交y 轴于T 点,连结BQ 并延长交y 轴正半轴于G 点,求AT ·AG 的值;(2)如图2,若A (0,3),B ,D 关于y 轴对称,当tan ∠ABO =34时,线段AB 上一动点P (不与A ,B 重合),连结PD 交y 轴于M 点,△PMB 外接圆☉O 1交y 轴另一点为N ,若☉O 1半径为R ,求MN R的值.分析:(1)由垂径定理和外角性质可证BE =IE =IC ,通过证明△BEO ∽△CBE ,可得OE OB =BE CE,可得OB =2OE ,设⊙A 的半径为R ,由勾股定理可求R =5,通过证明△ABG ∽△ATB ,可得AB AG =AT AB,即可求解; (2)作O 1K ⊥MN 于K ,连接O 1N ,PN ,BM ,由三角函数可求OB =OD =4,通过解直角三角形可求MN R的值.解:(1)连结 QC ,TB ,则∠QCB +∠CBQ =90°,又∠QDB +∠DTO =90°,而∠QCB =∠QDB ,∴∠CBQ =∠DTO =∠BTO ,且∠BAG =∠BAT∴△ABG ∽△ATB ,∴AB AG =AT AB,∴AB 2=AG •AT . ∵AI ⊥CE ,∴I 为CE 的中点,∴AE =AC ,IE =IC .∴∠ACE =∠AEC ,且∠ACE +∠CBE =90°,∠AEC +∠BEO =90°,∴∠BEO =∠CBE ,且∠BEC =∠BOD =90°,∴△BEO ∽△CBE ,∴OE OB =BE CE, ∵AE ⊥BD ,∴BE ︵=DE ︵,∴∠DBE =∠BCE .又∵∠CBI =∠DBI ,∠BIE =∠∠BCE +∠CBE ,∠IBE =∠DBI +∠DBE ,∴∠BIE =∠IBE ,∴BE =IE =IC ,∴OE :OB =BE :CE =1︰2,∴OB =2OE .设⊙A 的半径为R ,由AB 2-OA 2=BO 2,OE =R -3,得R 2-32=4(R -3)2,解得R =5,或R =3(不合题意,舍去).∴AT •AG =AB 2=25.(注:可连结 AD ,CD 证△BAG ∽△TAD ,△TAD ≌△TAB ,本质类似.)(2)作O 1K ⊥MN 于K ,连接O 1N ,PN ,BM ,则MN =2NK ,且∠N O 1K =∠1,∴MNR =2NKO 1K =2sin ∠NO 1K =2sin ∠1.∵tan ∠ABO =34=OAOB ,∴OB =OD =4,且OM ⊥BD ,∴∠2=∠3.又∠2=∠4+∠5,∠3=∠1+∠6,∵∠5=∠6,∴∠1=∠4=∠NO 1K ,∴MNR =2sin ∠4=2×BO AB =85.。

四川省成都七中2018-2019学年高一上学期入学数学试卷-含详细解析

四川省成都七中2018-2019学年高一上学期入学数学试卷-含详细解析

四川省成都七中2018-2019学年高一上学期入学数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下面几组对象可以构成集合的是()A.视力较差的同学B.2013年的中国富豪C.充分接近2的实数的全体D.大于﹣2小于2的所有非负奇数2.一元二次方程2x2﹣6x﹣3=0的两根为x1,x2,则(1+x1)(1+x2)的值为()A.3B.6C.﹣3 D.3.在“等边三角形”、平行四边形、圆、正五角星、抛物线“这五个图形中,是中心对称图形但不是轴对称图形的个数是()A.0B.1C.2D.34.分式方程+1=的解是()A.2B.1C.﹣1 D.﹣25.下面四个几何体中,左视图是四边形的几何体共有()个.A.0B.1C.2D.36.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为()A.0B.C.D.7.不透明的盒子里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,一位学生随机摸出两个球,两个球的数字之和是偶数的概率是()A.B.C.D.8.若a≠0,b≠,则代数式++的取值共有()A.2个B.3个C.4个D.5个9.如图,点E在正方形ABCD边CD上,四边形DEFG也是正方形,已知AB=a,DE=b (a,b为常数,且a>b>0),则△ACF的面积()A.只与a的大小有关B.只与b的大小有关C.只与CE的大小有关D.无法确定10.若关于x的方程x2﹣2mx+m+6=0的两实根为x1,x2,y=(x1﹣1)2+(x2﹣1)2的取值范围是()A.y≥B.y≥8 C.y≥18 D.y>﹣二、填空题(共10小题,每小题4分,满分40分)11.已知函数y=,自变量x的取值范围是.12.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是.13.已知a为实数,则代数式的最小值为.14.函数y=x4+2x2﹣1,﹣1≤x≤1的最小值为.15.如图,点P(m,1)是双曲线y=上一点,PT⊥x轴于点T,吧△PTO沿直线OP翻折得到△PT1O,则T1的坐标为.16.满足不等式x(x2+1)>(x+1)(x2﹣x+1)的x的取值范围是.17.已知==,则的值为.18.已知++|x﹣y+2010|+z2+4z+4=0,则x+y+z=.19.对于正数x,规定,例如f(3)=,f()=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f+f+f=.20.已知关于x的方程x3﹣ax2﹣2ax+a2﹣1=0有且只有一个实根,则实数a的取值范围是.三、解答题(共2小题,满分20分)21.(1)先化简,再求值:已知x=+1,求(﹣)+的值;(2)解不等式≥1.22.在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第一周价格),并且每周价格上涨,如图所示,从第6周开始到第11轴保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售.(1)求销售价y(元/件)与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.(1≤x≤16,且x为整数),试问该服装第几周出售时每件销售利润最大?最大利润为多少?四川省成都七中2014-2015学年高一上学期入学数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下面几组对象可以构成集合的是()A.视力较差的同学B.2013年的中国富豪C.充分接近2的实数的全体D.大于﹣2小于2的所有非负奇数考点:集合的含义.专题:规律型;集合.分析:根据集合元素所具有的性质逐项判断即可.解答:解:集合的元素具有“确定性”、“互异性”、“无序性”,选项A、B、C均不满足“确定性”,故排除A、B、C,故选D.点评:本题考查集合的定义、集合元素的性质,属基础题,理解相关概念是解决问题的关键.2.一元二次方程2x2﹣6x﹣3=0的两根为x1,x2,则(1+x1)(1+x2)的值为()A.3B.6C.﹣3 D.考点:根与系数的关系.专题:函数的性质及应用.分析:根据一元二次方程的根与系数的关系x1+x2=3,x1•x2=,然后将其代入所求的代数式(1+x1)(1+x2)求值即可.解答:解:∵方程2x2﹣6x﹣3=0的两根为x1,x2,∴x1+x2=3,x1•x2=,∴(1+x1)(1+x2)=x1•x2+x1+x2+1=+3+1=,故选:D点评:本题考查了一元二次方程的根与系数的关系.解题时,务必弄清楚根与系数的关系x1+x2=﹣,x1•x2=中的a、b、c所表示的意义.3.在“等边三角形”、平行四边形、圆、正五角星、抛物线“这五个图形中,是中心对称图形但不是轴对称图形的个数是()A.0B.1C.2D.3考点:图形的对称性.专题:常规题型;立体几何.分析:依次判断五个图形是轴对称还是中心对称即可.解答:解:“等边三角形”是轴对称图形,平行四边形是中心对称图形但也可能是轴对称图形,圆是轴对称图形也是中心对称图形,正五角星轴对称图形,抛物线轴对称图形,故选A.点评:本题考查了图形的对称性,轴对称是关于线对称,中心对称是关于点对称,属于基础题.4.分式方程+1=的解是()A.2B.1C.﹣1 D.﹣2考点:函数的值.专题:函数的性质及应用.分析:由已知得==﹣1,由此能求出分式方程+1=的解.解答:解:∵+1=,∴==﹣1,∴x=2﹣x,解得x=1.故选:B.点评:本题考查分式方程的解法,解题时要认真审题,注意分式方程性质的合理运用.5.下面四个几何体中,左视图是四边形的几何体共有()个.A.0B.1C.2D.3考点:简单空间图形的三视图.专题:计算题;空间位置关系与距离.分析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.解答:解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选C.点评:本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为()A.0B.C.D.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用勾股定理求得AD的值,再利用直角三角形中的边角关系求得tanA的值,可得BC的值,再利用直角三角形中的边角关系求得sinB的值.解答:解:在Rt△ABC中,∵∠ACB=90°,CD⊥AB于D,AC=10,CD=6,∴AD==8∴tanA===.再根据tanA===,∴BC=,∴sinB===,故选:D.点评:本题主要考查直角三角形中的边角关系,勾股定理,属于基础题.7.不透明的盒子里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其他完全相同,一位学生随机摸出两个球,两个球的数字之和是偶数的概率是()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:列举出所有情况,看两球上的数字之和是偶数的情况占总情况的多少即可,解答:解:一位学生随机摸出两个球,所有情况为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,两个球的数字之和是偶数的有(1,3,),(1,5),(2,4),(3,5)共4种,故两个球上的数字之和是偶数的概率是=,故选:B点评:本题主要考查了古典概型的概率问题,关键是不重不漏列举出所有的基本事件,属于基础题.8.若a≠0,b≠,则代数式++的取值共有()A.2个B.3个C.4个D.5个考点:进行简单的演绎推理.专题:函数的性质及应用.分析:记m=++.分类讨论:当a>0,b>0时,当a<0,b<0时,当a>0,b<0时,或当a<0,b>0时.即可得出.解答:解:记m=++.当a>0,b>0时,m==3;当a<0,b<0时,m=﹣1;当a>0,b<0时,或当a<0,b>0时,m=1﹣1+1=﹣1.综上可得:代数式++的取值共有2个.故选:A.点评:本题考查了分类讨论的思想方法求代数式的值,属于基础题.9.如图,点E在正方形ABCD边CD上,四边形DEFG也是正方形,已知AB=a,DE=b (a,b为常数,且a>b>0),则△ACF的面积()A.只与a的大小有关B.只与b的大小有关C.只与CE的大小有关D.无法确定考点:三角形的面积公式.专题:立体几何.分析:如图所示,利用S△ACF=S△ACD+S梯形ADGF﹣S△AFG即可得出.解答:解:如图所示,S△ACF=S△ACD+S梯形ADGF﹣S△AFG=+﹣=.因此△ACF的面积只与a有关系.故选:A.点评:本题考查了三角形与梯形、正方形的面积计算公式,属于基础题.10.若关于x的方程x2﹣2mx+m+6=0的两实根为x1,x2,y=(x1﹣1)2+(x2﹣1)2的取值范围是()A.y≥B.y≥8 C.y≥18 D.y>﹣考点:根与系数的关系.专题:函数的性质及应用.分析:由方程x2﹣2mx+m+6=0的两实根为x1,x2,可得:△≥0,即m≤﹣2,或m≥3,且x1+x2=2m,x1•x2=m+6,进而可将y=(x1﹣1)2+(x2﹣1)2化为:y=4m2﹣6m﹣10(m≤﹣2,或m≥3)的形式,结合二次函数的图象和性质可得答案.解答:解:∵方程x2﹣2mx+m+6=0的两实根为x1,x2,∴△=4m2﹣4(m+6)≥0,即m≤﹣2,或m≥3,且x1+x2=2m,x1•x2=m+6,则y=(x1﹣1)2+(x2﹣1)2=(x1+x2)2﹣2x1•x2﹣2(x1+x2)+2=4m2﹣2(m+6)﹣4m+2=4m2﹣6m﹣10,故当m=3时,y取最小值8,无最大值,即y=(x1﹣1)2+(x2﹣1)2的取值范围是y≥8,故选:B点评:本题考查的知识点是一元二次方程根与系数的关系,二次函数的图象和性质,难度中档.二、填空题(共10小题,每小题4分,满分40分)11.已知函数y=,自变量x的取值范围是{x|x≥1且x≠2}.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可得到结论.解答:解:要使函数f(x)有意义,则,解得x≥1且x≠2,故答案为:{x|x≥1且x≠2}点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.12.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是0.考点:进行简单的演绎推理.专题:函数的性质及应用.分析:由于关于x的方程|5x﹣4|+a=0无解,可得a>0.方程|4x﹣3|+b=0变为|4x﹣3|=﹣b,根据|4x﹣3|+b=0有两个解,可得﹣b>0.方程|3x﹣2|+c=0变为|3x﹣2|=﹣c,由于只有一个解,可得﹣c=0.解答:解:由于关于x的方程|5x﹣4|+a=0无解,则a>0.方程|4x﹣3|+b=0变为|4x﹣3|=﹣b,∵|4x﹣3|+b=0有两个解,∴﹣b>0,解得b<0.方程|3x﹣2|+c=0变为|3x﹣2|=﹣c,由于只有一个解,∴﹣c=0,解得c=0.∴|a﹣c|+|c﹣b|﹣|a﹣b|=a﹣b﹣(a﹣b)=0.故答案为:0.点评:本题考查了绝对值的意义、方程的解,考查了推理能力,属于基础题.13.已知a为实数,则代数式的最小值为3.考点:二次函数的性质.专题:函数的性质及应用.分析:对27﹣12a+2a2配方即可得到的最小值.解答:解:=;∴的最小值为3.故答案为:3.点评:考查配方求代数式最值的方法.14.函数y=x4+2x2﹣1,﹣1≤x≤1的最小值为﹣1.考点:二次函数的性质.专题:计算题;函数的性质及应用.分析:利用配方法求函数的最小值.解答:解:y=x4+2x2﹣1=(x2+1)2﹣2,∵﹣1≤x≤1,∴1≤x2+1≤2,∴﹣1≤(x2+1)2﹣2≤2,则函数y=x4+2x2﹣1,﹣1≤x≤1的最小值为﹣1.故答案为:﹣1.点评:本题考查了函数的最值的求法,属于基础题.15.如图,点P(m,1)是双曲线y=上一点,PT⊥x轴于点T,吧△PTO沿直线OP翻折得到△PT1O,则T1的坐标为()..考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据翻折变换的性质得出△T′OT是等边三角形,进而利用锐角三角形函数关系求出即可.解答:解:连接TT′,过点T′作T′C⊥OT于点C,∵点P(m,1)是双曲线y=上一点,∴m=,则OT=,PT=1,故tan∠POT==,则∠POT=30°,∵把△PTO沿直线OP翻折得到△PT′O,∴∠T′OP=30°,OT=OT′,∴△T′OT是等边三角形,∴OC=CT=,T′C=OT′sin60°=,故T′的坐标为:().故答案为:().点评:此题主要考查了翻折变换的性质以及锐角三角函数关系等知识,得出△T′OT是等边三角形是解题关键.16.满足不等式x(x2+1)>(x+1)(x2﹣x+1)的x的取值范围是{x|x>1}.考点:其他不等式的解法.专题:不等式的解法及应用.分析:由多项式的乘法和立方和公式化简已知不等式,易得解集.解答:解:原不等式可化为x(x2+1)﹣(x+1)(x2﹣x+1)>0,展开可得x3+x﹣(x3+1)>0,即x﹣1>0,解得x>1故答案为:{x|x>1}点评:本题考查不等式的解法,利用公式化简是解决问题的关键,属基础题.17.已知==,则的值为﹣.考点:函数的值.专题:函数的性质及应用.分析:设===k,则x=2k,y=3k,z=4k,由此能求出的值.解答:解:设===k,则x=2k,y=3k,z=4k,∴==﹣.故答案为:﹣.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.18.已知++|x﹣y+2010|+z2+4z+4=0,则x+y+z=2014.考点:进行简单的演绎推理.专题:计算题;推理和证明.分析:由++|x﹣y+2010|+z2+4z+4=0可得x﹣3=0,3﹣x=0,|x﹣y+2010|=0,z2+4z+4=0,从而解出x+y+z.解答:解:∵++|x﹣y+2010|+z2+4z+4=0,∴x﹣3=0,3﹣x=0,|x﹣y+2010|=0,z2+4z+4=0;解得,x=3,y=2013,z=﹣2;则x+y+z=2014.故答案为:2014.点评:本题考查了简单的演绎推理,属于基础题.19.对于正数x,规定,例如f(3)=,f()=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f+f+f=2013.5.考点:函数的值.专题:函数的性质及应用.分析:由已知得f(x)+f()=1,由此能求出函数的值.解答:解:∵,∴f(x)+f()===1,∴f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f+f+f =2013×1+f(1)=2013+=2013.5.故答案为:2013.5.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.20.已知关于x的方程x3﹣ax2﹣2ax+a2﹣1=0有且只有一个实根,则实数a的取值范围是a <.考点:根的存在性及根的个数判断.专题:计算题.分析:先把方程变形为关于a的一元二次方程的一般形式:a2﹣(x2+2x)a+x3﹣1=0,然后利用求根公式解得a=x﹣1或a=x2+x+1;于是有x=a+1或x2+x+1﹣a=0,再利用原方程只有一个实数根,确定方程x2+x+1﹣a=0没有实数根或方程x2+x+1﹣a=0,有重根a+1,最后解a的不等式得到a的取值范围.解答:解:把方程变形为关于a的一元二次方程的一般形式:a2﹣(x2+2x)a+x3﹣1=0,则△=(x2+2x)2﹣4(x3﹣1)=(x2+2)2,∴a=,即a=x﹣1或a=x2+x+1.所以有:x=a+1或x2+x+1﹣a=0.∵关于x3﹣ax2﹣2ax+a2﹣1=0只有一个实数根,∴情形1,方程x2+x+1﹣a=0没有实数根,即△<0,得a<;情形2,方程x2+x+1﹣a=0,有重根a+1,此时有a+1=﹣,a=﹣,方程为x2+x+=0无解,不合题意,舍去,所以a的取值范围是a<.故答案为:a<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了转化的思想方法在解方程中的应用.三、解答题(共2小题,满分20分)21.(1)先化简,再求值:已知x=+1,求(﹣)+的值;(2)解不等式≥1.考点:其他不等式的解法.专题:不等式的解法及应用.分析:(1)由分式的运算法则化简可得原式=,把x=+1代入计算即可;(2)移项通分原不等式可化为≥0,即x﹣1>0,易得答案.解答:解:(1)化简可得(﹣)+=﹣+=+=﹣===,∵x=+1,∴原式==;(2)不等式≥1可化为﹣1≥0,即≥0,即≥0,∴x﹣1>0,解得x>1,∴不等式的解集为:{x|x>1}点评:本题考查分式不等式的解集,涉及分式的化简运算,属基础题.22.在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第一周价格),并且每周价格上涨,如图所示,从第6周开始到第11轴保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售.(1)求销售价y(元/件)与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.(1≤x≤16,且x为整数),试问该服装第几周出售时每件销售利润最大?最大利润为多少?考点:函数最值的应用.专题:应用题.分析:(1)根据函数图象求出函数解析式即可;(2)由于y与x之间的函数关系式为分段函数,则w与x之间的函数关系式亦为分段函数,分情况解答.解答:解:(1)依题意得,可建立的函数关系式为:∴y=;即y=;(2)设利润为W,则W=售价﹣进价故W=,化简得W=,①当W=x2+14时,∵当x≥0,函数W随着x增大而增大,∵1≤x<6∴当x=5时,W有最大值,最大值=17.125②当W=x2﹣2x+26时,∵W=(x﹣8)2+18,当x≥8时,函数W随x增大而增大,∴在x=11时,函数有最大值为19;③当W=x2﹣4x+48时,∵W=,∵12≤x≤16,当x≤16时,函数W随x增大而减小,∴在x=12时,函数有最大值为18综上所述,当x=11时,函数有最大值为19.点评:本题考查的是二次函数的运用,由于计算量大,考生在做这些题的时候要耐心细心.难度中上.此题是分段函数,题目所涉及的内容在求解过程中,要注意分段函数问题先分段解决,最后再整理、归纳得出最终结论,另外还要考虑结果是否满足各段的要求,这是解此类综合应用题目的特点.。

【数学】四川省成都市第七中学2018届高三上学期半期考试数学(文)试题含解析

【数学】四川省成都市第七中学2018届高三上学期半期考试数学(文)试题含解析

成都七中 2017—2018 学年度上期高 2018 届半期考试数学试卷(文科)考试时间:120 分钟满分:150 分第 I 卷(选择题,共 60 分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. 或 D.【答案】D【解析】即则故答案选2. 若直线与直线平行,则()A. B. 2 C. D. 0【答案】A【解析】由题意可得两直线的斜率分别为:由于两直线平行,故解得验证可得当时,直线的方程均可以化为:,直线重合,故可得故答案选3. 设为等差数列,公差,为其前项和. 若,则()A. 18B. 20C. 22D. 24【答案】B【解析】试题分析:由等差数列的前10项的和等于前11项的和可知,第11项的值为0,然后根据等差数列的通项公式,利用首项和公差d表示出第11项,让其等于0列出关于首项的方程,求出方程的解即可得到首项的值.解:由s10=s11,得到a1+a2+…+a10=a1+a2+…+a10+a11即a11=0,所以a1-2(11-1)=0,解得a1=20.故选B考点:等差数列的性质点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道基础题4. 如图,设两点在河的两岸,一测量者在的同侧河岸选定一点,测出的距离为 50米,,,则两点的距离为()A. 米B. 50米C. 25米D. 米【答案】A【解析】在△ABC中,∵∠ACB=45°,∠CAB=105°∴∠B=30°由正弦定理可得:,故答案为:A.5. 若等比数列的前5项的乘积为1,,则数列的公比为()A. B. 2 C. D.【答案】B【解析】等比数列的前5项的乘积为1,联立以上两式得到:,,将两式作比得到故答案选B。

6. 设,则()A. B. C. D.【答案】A【解析】已知底数和真数在1的两侧,,底数小于1,次数大于0,故,底数大于1,次数大于0,故>1.故可以得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中 2018 年外地生招生考试数学
(考试时间:120 分钟 总分:150 分)
一、选择题(每小题只有一个正确答案,每小题 5 分,共 5 分) 1、满足|a-b|=|a|+|b| 成立的条件是()
A 、ab>0
B 、ab<0
C 、ab≤0
D 、ab≤1
2、已知 a 、b 、c 为正数,若关于 x 的一元二次方程ax 2+bx+c=0有 两个实数根,则关于 x 的方程
a 2x 2+
b 2x+
c 2=0解的情况为()
A 、有两个不相等的正根
B 、有一个正根,一个负根
C 、有两个不相等的负根
D 、不一定有实数根 3、已知数据 的平均数为 a , 的平均数为 b ,则数据 的平均数为()
A 、2a+3b
B 、
3
2
a+b C 、4a+9b D 、2a+b 4、若函数y=2
1
(x 2-100x+196+|x 2-100x+196|) ,则当自变量 x 取 1、2、3……100 这 100 个自然数时,函
数值的和是( )
A 、540
B 、390
C 、194
D 、97 5、已知(m 2+1)(n 2+1)=3(2mn-1) ,则n(
m
1
-m)的值为( ) A 、0 B 、1 C 、-2 D 、-1 6、如果存在三个实数 m 、p 、q ,满足 m+p+q=18,且
p +m 1+q p 1++q +m 1=97
,则q p +m +q m +p +p
m +q 的值是( )
A 、8
B 、9
C 、10
D 、11
7、已知如图,△ABC 中,AB=m ,AC=n ,以 BC 为边向外作正方形 BCDE ,连结 EA ,则 EA 的最大
值为( )
A 、2m+n
B 、m+2n
C 、3m+n
D 、m+3n
8、设 A 、B 、C 、D 为平面上任意四点,如果其中任意三点不在同一直线上,则△ABC 、△ABD 、△ACD 、
△BCD 中至
少存在一个三角形的某个内角满足( )
A 、不超过 15°
B 、不超过 30°
C 、不超过 45°
D 、以上都不对
9、将抛物线T:Y=X2-2X+4绕坐标原点 O 顺时针旋转 30°得到抛物线T’,过点A (33,-3)、B(3,33)
的直线l 与抛物线T’相交于点 P 、Q 。

则△OPQ 的面积为( ) A 、8 B 、9 C 、10 D 、11
10、如图,锐角△ABC 的三条高线 AD 、BE 、CF 相交于点 H ,连结 DE 、EF 、DF 则图中的三角形个
数有( )
A 、40
B 、45
C 、47
D 、63 二、填空题
11、将一个各面都涂油漆的正方形切割成 125 个同样大小的小正方体,那么仅有 2 面涂油漆的小正方体
共有 个。

12、已知x≠y ,且x 2=2y+5,y 2=2x+5 ,则x 3-2x 2y 2+y 3= 。

13、如图,多边形 ABDEC 是由边长为 m 的等边△ABC 和正方形 BDEC 组成,☉O 过 A 、D 、E 三
点,则∠ACO= 。

14、已知实数 a 、b 、c 满足a≠b ,且2(a-b)+2(b-c)+(c+a)=0,则)
)(()
)(b -c b a b a a c ---(= 。

15、将小王与小孙现在的年龄按从左至右的顺序排列得到一个四位数,这个数为完全平方数,再过 31 年,
将他们的年龄按同样方式排列,又得到一个四位数,这个数仍然为完全平方数,则小王现在的年龄是 岁。

16、设合数 k 满足,1<k<100,若 k 的数字和为质数,就称合数 k 为“山寨质数”,则这种“山寨质数”
的个数是 个。

17、如图,在平面直角坐标系中,☉M 经过坐标原点,且与 x 轴、y 轴分别相交于点 A(-8,0),B(0,-6)两
点。

若抛物线对称轴过点 M ,顶点 C 在圆上,开口向下,交 x 轴于点 D 、E 两点,P 在抛物线上,
若S △PDE =51
S △ABC ,则满足条件的 P 点有 个。

18、如图,Rt △ABC 中∠ACB=90°,∠A=60°.D 为 AB 中点,BE=3,AC=4,☉B 经过点 E ,P 为☉B 上
一动点,则 4PC+3PD 的最小值为 。

三、解答题
19 、 是 否 存 在 这 样 的 整 系 数 二 次 三 项 式 : f (x )=ax 2
+bx+c ,其中 a 不 是 2018 的 倍
数 , 而 且f (1),f (2),......f (2018)被 2018 除的余数各不相同?请做出判断并说明理由。

20、若 m 、n 、p 为三个整数,且 m+n+p=21,
m n =n
p
,求: (1)当 m 取最小值时,np 的值; (2)当 m 取最大值时,np 的值。

21、平面直角坐标系内,A 坐标为(0,3),B 为 x 轴负半轴上一动点,C 为 B 关于 A 的对称点,D
为 B 关于 y 轴的对称点,作△BCD 的外接圆,交 y 轴负半轴于 E 点,连结 BE 、CE 、BI 平分∠CBD 交 CE 于点 I 。

(1)如图 1,若 AI ⊥CE ,设 Q 为☉A 上在第二象限内一点,连接 DQ 交 y 轴于 T 点,连结 BQ 并延长交 y 轴正半轴于 G 点,求AT·AG 的值;
(2)如图 2,若 A(0,3),B 、D 关于 y 轴对称,当tan ∠ABO=
4
3
时,线段 AB 上一动点 P (不与 A 、B 重合),连结 PD 交 y 轴于 M 点,△PMB 外接圆☉O 1 交 y 轴另一点为 N ,若☉O 1半径为 R ,求
R
MN
的值
图1 图2
成都七中2018 年外地生招生考试数学参考答案
一、选择题(每小题只有一个正确答案,每小题 5 分,共50 分)
1.C
2.C
3.A
4.B
5.D
6.D
7.A
8.C
9.B 10.C
二、填空题(11-14 题,每题7 分,15-18 题,每题8 分,共60 分)
11、36
12、-16
13、75°
15、12
16、23
17、
3
19、解:存在……………………………….2 分
取a=1009,令f(x)=1009x2+2010x
则有……………………………….3 分
由于对任何正整数,乘积都是偶数.
由此1009 是2018 的倍数.
∴令被2018 除的余数与被2018 除的余数相同
即,除的余数各不相同. ………………………………..5 分
20、(1)当m 取最小值1 时,x=4 或x=-5
①x=4,则m=1,n=4,p=16,∴np=64
②x=-5,则m=1,n=-5,p=25,∴np=-125
综上所述,m 取最小值 1 时,np 值为64 或-125……………………………………4 分(2
21、(1)解:连结BE、QC、TB,
则∠QCB+∠CBQ=90°,
又∠QDB+∠DTO=90°,而∠QCB=∠QDB,
∴∠CBQ=∠DTO=∠BTO
∴△ABG∽△ATB. ∴ . …………………………5 分
∵∠BFE=∠BCE+∠FBC ∠FBE=∠DBE+∠FBD ∠BEC=∠DBE,∠FBC=∠FBD ∴∠BFE=∠FBE ∴BE=EF
∵AF 为中位线,(或由垂经定理)
∴EF=CF
∵AF⊥CE,∴F 为CE 的中点
∴AE=AC,FE=FC.∴△BEO∽△CBE. ∴OE:OB=BE:CE=1:2.
设☉A 的半径为R,由,OE=R-3,
得解得R=5,或R=3(不合题意,舍去).
∴ .………………………………………………5 分
(方法二提示:可连结AD、CD 证△BAG∽△TAD,注:△TAD
≌△TAB,本质类似)(2)。

相关文档
最新文档