第四章 同位素地球化学2(2012)
合集下载
第四章 同位素在海洋地球化学研究中的意义和应用

E
例如:
226 88
Ra 86 Rn 2 He ( ) E
222 4
(镭) (氡) 由上式可见,新核的同位 素原子序数比母核少2, 质量数少4。自然界的重 同位素235U、238U、232Th等 以α 衰变为主。
电子捕获:原子核自发地从核外电子层(K层或L层) 捕获1个电子(e),通常在K层上吸取,与质子结合变 成中子,质子数减少1个(是β -衰变的逆向变化, β+粒 子)。
自然界中不稳定核素不断自发地放射出质点和能量、转变 成稳定的核素,称为核衰变或蜕变。通常我们将衰变前的 核素称为母体,衰变后的核素称为子体。不受任何物理化 学条件的影响。
β-衰变:原子核中一个中子分裂为一个质子和一个电 子(即β-粒子),同时放出中微子 和能量E。
原子量 A A 原子序数 Z X Z 1Y
E
例如:
Rb 38 Sr E 37
87 87
K 20 Ca E 19
40 40
α衰变: 放射性母核放出α粒子(α粒子由两个质子和 4 两个中子组成,α粒子实际上是 )而转变成稳定 He核 2 核。
A A 4 4 原子量 X Z 2Y 2 He( ) Z 原子序数
同位素标准样品:
同位素分析资料要能够进行世界范围内的比较,就必须 建立世界性的标准样品。世界标准样品的条件: ①在世界范围内居于该同位素成分变化的中间位置,可 以做为零点; ②标准样品的同位素成分要均一; ③标准样品要有足够的数量; ④标准样品易于进行化学处理和同位素测定。
元 素 标 准 样 缩 写
第二节 铀系测年法
铀系测年,或铀系不平衡测年法是海洋地球化学 研究中最常用的测年方法,其测年范围可从数十年到 数百万年。 自然界有三个衰变系列:
S同位素地球化学

角砾岩的d34S值稍高,为+3.3‰ ~ +3.6‰;
而月壤的d34S值最高,为+4.4‰ ~ +8.8‰。
对于从玄武岩 → 角砾岩 →月壤34S富集的趋势,目前还无很有
说服力的解释。一种理论认为,在太阳风的影响下,粒子轰
击使32S以H2S形式逸失(Des Marais, 1983)。
三. 各类地球岩石的硫同位素组成
34S值为 34S值为
-1.3‰~-1.6‰, +1.5‰~+1.8‰,
34S值为
–而硫化物(FeS)δ
+2.6‰~+3.0‰。
2. 二 . 地外物质的硫同位素组成 地外物质的硫同位素组成
碳质球粒陨石不同含硫相间存在明显的硫同位素分馏, 硫酸盐δ 元素硫δ
34S值为-1.3‰~-1.6‰, 34S值为+1.5‰~+1.8‰, 34S值为+2.6‰~+3.0‰。
这一反应过程产生的同位素动力 分 馏 K1/K2=1.000~1.025 。 即 d34S 值为 +20‰ 的海水与玄武岩反应 生 成 的 硫 化 物 d34S 值 为 +20‰~5‰(图6.5.1d)。
2. 硫同位素的热力学平衡分馏
• 在热力学平衡状态下,不同价态的硫的同位素分
馏具有如下特征:
第四章、硫同位素地球化学
对于H2S封闭的体系,即
生成的H2S未形成金属硫 化物而离开体系 ,那么 硫化物的d34S值也是由低 变高 。 在还原作用接近 结束时 ,硫化物的值接 近于海水硫酸盐的初始
值。
硫酸盐细菌还原过程产生的同位素分馏大小,与还 原细菌的种类、还原反应速度及体系的开放与封闭 程度等因素有关。
第四讲同位素地球化学 Rb-Sr法

Rb/Sr ratios for various rocks:
Ultrabasic Basaltic Granites Shale Sandstone
0.2 0.06 0.25-1.7 0.46 3
玄武岩与砂岩的Rb/Sr比值相差达50倍!!
What accounts for huge range in Rb/Sr ratios of rocks?
同位素等时线年龄质量评价
观察等时线质量的直观方法是样品间分布的线性程度,早期采 用的方法是基于多元统计中的最小二乘法线性拟合,根据获得 的相关系数(1),通常认为越接近于1越好;
相关系数易于受个别数据点影响,难以充分反映等时线线性质 量、样品间初始值不均一性和实验误差等的影响,据此 York(1966,1967)提出了用MSWD判别包括等时线年龄和表面年 龄均值等在内的年龄数据质量的指标;
Sr也溶于水和含水相中,但溶解程度弱于元素Rb; Sr属中等程度不相容元素; Sr的离子半径与元素Ca (0.99Å)相似,易于与Ca 在长石
中形成类质同象。Sr-Ca发生类质同象的其它矿物有方解 石、石膏、磷灰石和榍石; Sr趋于在地壳中发生相对于地幔的富集作用,但其富集程 度小于Rb。
玄武岩批次部分熔融过程 中,熔体Rb、Sr含量随 部分熔融程度F值的变化
After Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer.
岩浆过程与 87Sr/86Sr比值
MORB
不同岩浆岩87Sr/86Sr比值
MORB
0.7025
Continents
0.7119
Ocean Islands
>0.704
几种年代学方法介绍——同位素地球化学课件PPT

• 近年来迅速发展起来的多接收器双耦合等离子体质 谱仪(MC-ICP-MS)综合了等离子体的高电离温度和 磁式多接收器质量分析器的优势,使得一些高电离 能元素的高精度同位素分析成为现实。
Lu-Hf同位素测年
测试仪器
• 在Re-Os 年代学研究的早期,二次离子质谱、共 振离子质谱、加速器质谱、电感耦合等离子体质谱 (ICP-MS)都曾用于Re-Os 同位素的测定研究
• 近些年来,随着质谱技术及分析方法的发展,负离 子热表面电离质谱(NTIMS)已逐渐成为Re-Os年 代学研究尤其是Os 同位素比值测定的主要工具
几种年代学方法介绍
Re-Os法,Sm-Nd法, Lu - Hf法
Re-Os法
铼与锇
• Re,分散元素,不形成独立矿物,与Mo地 球化学相似性
• 地幔部分熔融时,中等不相容元素Re趋于进 入岩浆,而相容元素Os则趋于保留在地幔中。 因此,富集不相容元素的流体对地幔岩石的 交代作用通常难以对地幔岩石中Os的同位 素组成造成明显的影响。居于此原因,该体 系已被广泛地用于研究大陆岩石圈地幔的形 成和演化
天然同位素
• Re有两种天然同位素
– 185 -37.398%, – 187 -62.602%
• Os有七种天然同位素
– 184-0.02%, – 186-1.6%, – 187-1.6%, – 188-13.3%, – 189-16.1%, – 190-26.4%, – 192-41%
年龄公式
Re-Os法定年问题讨论
• 有些金属矿床辉钼矿的Re-Os 年龄高于其赋矿围 岩,原因不清;
• 黄铁矿等多数硫化物含Re-Os 量明显偏低,并含 有普通Os ,对样品化学制备过程中低本底的要求 很高,一般实验室难以达到,普通Os 也难以准确 扣除;
Lu-Hf同位素测年
测试仪器
• 在Re-Os 年代学研究的早期,二次离子质谱、共 振离子质谱、加速器质谱、电感耦合等离子体质谱 (ICP-MS)都曾用于Re-Os 同位素的测定研究
• 近些年来,随着质谱技术及分析方法的发展,负离 子热表面电离质谱(NTIMS)已逐渐成为Re-Os年 代学研究尤其是Os 同位素比值测定的主要工具
几种年代学方法介绍
Re-Os法,Sm-Nd法, Lu - Hf法
Re-Os法
铼与锇
• Re,分散元素,不形成独立矿物,与Mo地 球化学相似性
• 地幔部分熔融时,中等不相容元素Re趋于进 入岩浆,而相容元素Os则趋于保留在地幔中。 因此,富集不相容元素的流体对地幔岩石的 交代作用通常难以对地幔岩石中Os的同位 素组成造成明显的影响。居于此原因,该体 系已被广泛地用于研究大陆岩石圈地幔的形 成和演化
天然同位素
• Re有两种天然同位素
– 185 -37.398%, – 187 -62.602%
• Os有七种天然同位素
– 184-0.02%, – 186-1.6%, – 187-1.6%, – 188-13.3%, – 189-16.1%, – 190-26.4%, – 192-41%
年龄公式
Re-Os法定年问题讨论
• 有些金属矿床辉钼矿的Re-Os 年龄高于其赋矿围 岩,原因不清;
• 黄铁矿等多数硫化物含Re-Os 量明显偏低,并含 有普通Os ,对样品化学制备过程中低本底的要求 很高,一般实验室难以达到,普通Os 也难以准确 扣除;
地球化学 第四讲 同位素地球化学

② 同位素交换反应:就是在化学反应中反应物和生成物之间由 于物态、相态及化学键性质的变化,使轻重同位素分别富集在不 同分子中而发生分异,称同位素交换反应。(轻同位素易断裂) 例如:大气圈与水圈之间发生氧同位素交换反应
2H 2 18O16O2 2H 2 16O18O2
(0℃:α=1.074, :α=1.006)
Geochemistry
College of geological science & engineering, Shandong university of science & technology
问题:如何用δ求解αA-B=RA/RB αA-B=RA/RB=(δA+1)/(δB+1) 4、同位素富集系数:
③ 生物化学反应:动植物及微生物在生存过程中经常与介质交换 物质、并通过生物化学过程引起同位素分馏。 例如:植物通过光合作用,使12C更多地富集在有机体中,因此 生物成因地质体如煤、油、气等具有高的12C。生物成因的34S低。 (前生物时代碳质成因?)
Geochemistry
College of geological science & engineering, Shandong university of science & technology
Creativity
Geochemistry
College of geological science & engineering, Shandong university of science & technology
元素:具有相同质子数的核素称为元素。
同位素:具有相同质子数,不同中子数的一组核
Geochemistry
同位素地球化学

Radioactive and rediogenic elements
二、衰变定律
1902年Rutherford通过实验发现放射性同位素 衰变反应不同一般的化学反应,具有如下性质:
(1)衰变作用是发生在原子核内部的反应,反应结果 由一种核素变成另一种核素;
(2)衰变自发地不断地进行,并有恒定的衰变比例;
变质砾岩中花岗岩质砾石中的锆石年龄,其地 质含义是花岗岩的形成年龄,应该早于砾岩的地 层年龄。
谐和线年龄,上交点年龄为 2573±52Ma。 表面加权年龄,2580Ma。 谐和线年龄和表面加权年龄结果很相近,结果 是可信的。 综合来说:花岗岩的形成时代为2573±52Ma是 可信的。砾岩的地层年龄应晚于2573Ma。根据目 前的年龄结果,不支持砾岩比郭家窑组老的认识。
同位素地球化学
Model 2 Solution ( on 30 points
0.5
Upper intercept: 2573±52Ma
MSWD = 9.8
2200
0.4
data-point error ellipses are 68.3% conf.
206Pb/238U
0.3
1400
0.2
0.1
2
5
同位素定年原理
自然条件下,同位素放射性衰变过程是 不可逆的,且其衰变速率及放射性子体 的性质不受外界的影响。母-子体同位素 确定的对应关系和恒定的衰变速率构成 了同位素定年的理论基础。
四、同位素定年的基本要求
1)应有适当的半衰期,这样才能积累起显著数量的子核, 同时母核也未衰变完。如果半衰期太长,就是经过漫 长的地质历史也积累不起显著数量的子核;如果半衰 期太短,没有多久母核几乎衰变完了。
同位素地球化学

δ值
研究分析表稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比 值的千分偏差。其公式为□δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。样品 的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。所以必须采用同一标准;或 者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。比较普遍的国际公认标准 为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮 狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准; ③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准。稳定同位素实验研究 表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103ln□值与T 2成反比,T 为绝对温度。
模型③利用放射性同位素的衰变定律建立一套有效的同位素计时方法,测定不同天体事件的年龄,并作出合 理的解释,为地球和太阳系的演化确定时间坐标。
根据同位素的性质,同位素地球化学研究领域主要分稳定同位素地球化学和同位素年代学两个方面。稳定同 位素地球化学主要研究自然界中稳定同位素的丰度及其变化。
分馏系数
稳定同位素地球化学
稳定同位素地球化学:
同位素地球化学的一个研究领域。主要研究自然界中稳定同位素的丰度及其变化规律,并用来解决地质问题。 稳定同位素包括放射衰变成因的和非放射成因的,如206Pb、207Pb、208Pb、87Sr和143Nd就是分别由238U、 235U、232Th、87Rb和147Sm放射衰变而形成的稳定同位素;而H、C、O、S的同位素如1H、2H、12C、13C、16O、 17O、18O、32S、33S、34S、36S则是天然稳定同位素。由于H、C、O、S的原子序数小于20,所以其同位素又可 称为轻稳定同位素。稳定同位素丰度发生变化的主要原因是同位素的分馏作用。
研究分析表稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比 值的千分偏差。其公式为□δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。样品 的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。所以必须采用同一标准;或 者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。比较普遍的国际公认标准 为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮 狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准; ③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准。稳定同位素实验研究 表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103ln□值与T 2成反比,T 为绝对温度。
模型③利用放射性同位素的衰变定律建立一套有效的同位素计时方法,测定不同天体事件的年龄,并作出合 理的解释,为地球和太阳系的演化确定时间坐标。
根据同位素的性质,同位素地球化学研究领域主要分稳定同位素地球化学和同位素年代学两个方面。稳定同 位素地球化学主要研究自然界中稳定同位素的丰度及其变化。
分馏系数
稳定同位素地球化学
稳定同位素地球化学:
同位素地球化学的一个研究领域。主要研究自然界中稳定同位素的丰度及其变化规律,并用来解决地质问题。 稳定同位素包括放射衰变成因的和非放射成因的,如206Pb、207Pb、208Pb、87Sr和143Nd就是分别由238U、 235U、232Th、87Rb和147Sm放射衰变而形成的稳定同位素;而H、C、O、S的同位素如1H、2H、12C、13C、16O、 17O、18O、32S、33S、34S、36S则是天然稳定同位素。由于H、C、O、S的原子序数小于20,所以其同位素又可 称为轻稳定同位素。稳定同位素丰度发生变化的主要原因是同位素的分馏作用。
第五章稳定同位素地球化学(2012)

• δX-A=δX-B+δB-A+δX-B·δB-A×10-3
四、同位素分馏值(富集系数)
定义:在同位素平衡的前提下,两种不同化合 物的同类同位素组成δ值的差,称为同位素分 馏值△,也被成为富集系数。
△A-B=δA-δB
对于同一元素的一系列化合物而言,其富集系数 有简单的相加关系,即
△A-C=△A-B+△B-C
δD = -94‰, δ18O = -13‰
水蒸气凝聚
水蒸气冷凝成雨滴过程中,液相和气相之间 往往达到了同位素平衡,因为相对湿度基本在 100%。凝聚的雨滴比水蒸气富集δD和δ18O。
假定在25℃下凝聚,由平衡同位素分馏系数 计算在同位素组成为δD = -94‰和δ18O = 13‰的水蒸气冷凝生成的雨滴的同位素组成大致 为 δD = -25‰, δ18O = -4‰
大气降水来源于海洋表面的蒸发。
大气降水的氢、氧同位素组成变化较大: δD: +50‰ ~ -500‰, δ18O: +10‰ ~ -55 ‰。
影响大气降水同位素组成的因素
实质是 蒸发和凝聚 过程的同位 素分馏。各 地的差别反 映了地理因 素的控制。
1)纬度效应
纬度增加大气降水的δD和δ18O值都减少。
海水的蒸发和在空中的凝聚过程的同位 素分馏主要控制大气降水的氢、氧同位素组 成。
一般来讲,海水蒸发过程为动力同位素 分馏过程,造成水蒸气相对于海水严重地亏 损重同位素。
在空中水蒸气凝聚成雨滴过程是平衡同 位素分馏过程,因为水蒸气是在饱和(相对 湿度100%)的状态下凝聚为水。生成的雨水 相对水蒸气富集重同位素。
R=34S/32S=1/22.22
如:18O/16O,D/H, 13C/12C
四、同位素分馏值(富集系数)
定义:在同位素平衡的前提下,两种不同化合 物的同类同位素组成δ值的差,称为同位素分 馏值△,也被成为富集系数。
△A-B=δA-δB
对于同一元素的一系列化合物而言,其富集系数 有简单的相加关系,即
△A-C=△A-B+△B-C
δD = -94‰, δ18O = -13‰
水蒸气凝聚
水蒸气冷凝成雨滴过程中,液相和气相之间 往往达到了同位素平衡,因为相对湿度基本在 100%。凝聚的雨滴比水蒸气富集δD和δ18O。
假定在25℃下凝聚,由平衡同位素分馏系数 计算在同位素组成为δD = -94‰和δ18O = 13‰的水蒸气冷凝生成的雨滴的同位素组成大致 为 δD = -25‰, δ18O = -4‰
大气降水来源于海洋表面的蒸发。
大气降水的氢、氧同位素组成变化较大: δD: +50‰ ~ -500‰, δ18O: +10‰ ~ -55 ‰。
影响大气降水同位素组成的因素
实质是 蒸发和凝聚 过程的同位 素分馏。各 地的差别反 映了地理因 素的控制。
1)纬度效应
纬度增加大气降水的δD和δ18O值都减少。
海水的蒸发和在空中的凝聚过程的同位 素分馏主要控制大气降水的氢、氧同位素组 成。
一般来讲,海水蒸发过程为动力同位素 分馏过程,造成水蒸气相对于海水严重地亏 损重同位素。
在空中水蒸气凝聚成雨滴过程是平衡同 位素分馏过程,因为水蒸气是在饱和(相对 湿度100%)的状态下凝聚为水。生成的雨水 相对水蒸气富集重同位素。
R=34S/32S=1/22.22
如:18O/16O,D/H, 13C/12C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
87
Sr 86 Sr
87 Sr 86 Sr m
t
87 Sr 86 Sr i
Present
ti
tm
87
Sr 86 Sr
87 Sr 86 Sr m 87 Sr 86 Sr i
•矿物等时线指示变质作用年龄,截距代表了变质 均一化时的87Sr/86Sr比值;全岩等时线代表了岩浆 结晶年龄及初始比值。这种情况发生在低绿片岩相 变质作用阶段。
曾用3种不同方法测定87Rb半衰期,得到30多个 值,不同结果间偏差约±6%,年龄误差5%~ 6%。
国际地科联地质年代学委员会(1976)推荐采用 87Rb的 T =4.88×1010a,λ=1.42×l0-11a-1。 1/2 这个值一直延用至今。在此之前,国内外曾经 用过λ=1.39×10-11a-1或λ=1.47×10-11a-1等值。
D D N t D D D e 1 s s s 0
上节课主要内容:
**同位素体系的封闭性
放射性同位素丢失
D D0 N (e 1)
t
子体同位素丢失
母体和子体同位素增加
Thomson等(1905)首次发现Rb具有天然放射性,
若岩石化学成分发生了变化,Rb,Sr发生了带入
和带出,则不能用Rb-Sr法定年(全岩开放系统);
总之: 变质作用会使Sr同位素重新均一化
小范围的均一化:全岩等时线为代表岩石形成 年龄,矿物等时线为变质年龄。 大范围的均一化:均代表变质年龄。
测年小结
1.Rb-Sr等时线法主要适用于测定基性、中性和中酸性岩浆岩 的形成年龄。 2.变质作用过程中,若矿物Rb-Sr同位素体系开放,但全岩的 同位素封闭,则全岩等时线年龄给出原岩的年龄,而矿物等 时线年龄给出了最后一次变质事件的年龄。 3.变质作用过程中,若全岩Rb-Sr同位素系统被改造,等时线 年龄往往不能提供变质岩原岩形成年龄的信息,只代表变质 事件的年龄或无意义的年龄信息。 4.Rb-Sr等时线法很少用于沉积岩年龄测定,如采用该方法, 必须对矿物进行详细的研究,且对制样的要求也非常严格。
2、地幔-地壳的Sr同位素组成和演化
地球锶同位素演化(Krauskopf,1995) A代表假定的在地球形成初期陨石均一储库0.699的87Sr/86Sr比值,AD表示变为地球 的地幔均一储库中该比值的变化.如果Rb/Sr比值为0.7015的一批地壳物质在约 2.9×109年时从地幔分离,BC表示其Sr同位素比值的增加-假定没有其中任何元素加 入或分出.BE表示相应的地壳物质源于Sr亏损的地幔部分同位素比值的变化.
1937年,Hemmendinger等确认Rb的天然放射性来 自同位素87Rb的β-衰变。
1946-1948年,Ahrens系统研究利用87Rb的衰变测定 地质年龄。 1959年前后,提出Rb-Sr等时线。
主要内容:
1. Rb,Sr地球化学性质
2. Rb-Sr同位素测年原理 3. Rb-Sr同位素示踪原理
四、Rb-Sr同位素的示踪 Rb is more incompatible than Sr During partial melting of mantle and form magma intruding in to crust, Rb-Sr will be fractionated. Rb are easier to go into melt relative Sr, therefore, mantle will be depleted in Rb, while the crust will be enriched in Rb.
-decay
38 37
87
# prot ons
Sr
87
Rb
n eo l uc
8 8
49 50 # neutrons
s
第四章 放射性同位素地球化学
# prot ons
8 86
#
7
n
-decay
92 91 90
234 238
U
Th
23 23
# n
23 8
144 145 146 # neutrons
例如:斜长石(Plagioclase),磷灰石(apatite),碳酸钙(calcium carbonate), 文石(aragonite)
Sr2+可以替代K+ ,但伴随着Al3+替代Si4+ ; 菱锶矿 Strontianite (SrCO3),天青石 celestite (SrSO4) ⑶自然界,锶有四个同位素(84,86,87,88),丰度 (0.56%,9.87%,7.04%,82.53%)
图5-4 Rb-Sr等时线图
图5-5 取自加拿大Sudbury的一套花斑岩 过渡岩和苏长岩的全岩等时线 等时线的斜率表示了1740±19Ma的年龄
矿物等时线
地质体同位素组成较均一、全岩Rb/Sr质 量比值差异小,难以形成等时线,此时 采用 “全岩-矿物等时线”
代表岩石中矿物结晶年龄,比全岩年龄 低。
3、变质岩的Rb-Sr定年
不同矿物的封闭温度也有所不同。
Rb-Sr封闭温度是指Rb和Sr完全活动到完全不活动的瞬 间过渡时的温度;
体系 矿物 封闭温度/℃
Rb-Sr
Rb-Sr
正长石
黑云母
314
300±50
Rb-Sr
Rb-Sr Rb-Sr Rb-Sr
白云母
全岩 角闪石 石榴石
500,600-650
650,680-750 550 650
异程度的增大而逐渐增大
二、 Rb-Sr同位素测年原理
Rb 有2个同位素:
85 37
Rb
87 37
Rb
72.17% Sr 有4个同位素:
88 38
27.83%
Sr
84 38
Sr
86 38
Sr
87 38
Sr
82.53%
0.56%
9.87%
7.04%
87 37
Rb Sr Q
87 38
23 7 6 5 4
n eo l uc
s
23
§3.铷-锶(Rb-Sr)测年及同位素地球化学
上节课主要内容:
D D0 N (e 1)
该方程是同位素定年 基本原理的表达式
t
上节课主要内容:
由于质谱分析只能测定同一元素的同位素比值,不能直接测
定单个同位素的原子数,因此在同位素年代学方法中,必须选
三、Rb-Sr等时线定年
※Rb-Sr等时线满足的条件: 1)一套岩石系列的不同岩石,由于岩浆结晶分异作用造
成不同岩石的Rb/Sr比值有差异;
2)结晶分异作用经历的时间较短(与岩石的年龄相比可 忽略),各岩石形成Rb-Sr封闭体系的时间大致相同。 3)由于同源岩石具有相同的87Sr/86Sr初始同位素比值; 4)自结晶以来,每个样品都符合定年的基本条件—呈封 闭体系。
取子体元素的其它同位素作参照,来进行同位素比值的测定。 记参照的同位素为Ds,并使等式两边同除以DS,则:
D D 1 Ds Ds 0 1 t ln N Ds
在Rb-Sr测年过程中,采用85Rb/87Rb=2.59265, Rb相对原子质 量为85.46776。
2、Sr地球化学性质
⑴碱土金属(Alkaline earths metal),大离子亲石元素; ⑵Sr2+的离子半径(1.13Å);
Ca+的离子半径((0.99Å),在含Ca的矿物中, Sr2+能替代Ca+;
(3)自然界铷有2种同位素: 85Rb(稳定),同位素丰度72.1654%, 87Rb(放射),同位素丰度27.8346%
85Rb/87Rb = 2.59265 。 Shields(1963) 测定 20 ~ 2600Ma 的不同地质
产状中的硅酸盐矿物的该比值无变化,证实自然界中所有 的Rb都具有相同的同位素组成,而与含Rb矿物的产状、地 球化学历史无关。
D D0 N (e 1)
N t D D e 1 Ds Ds 0 Ds
t
87
Sr=87Sr0 +87 Rb(eλt -1)
87 Sr 87 Sr 87 Rb t 86 = 86 + 86 (e 1) Sr Sr 0 Sr
来自同一个岩体的不同岩石标本,分出同一种矿物, 例如黑云母,这些矿物中的Rb/Sr不同,分别测Rb、Sr 含量及Sr同位素组成,可构成等时线图。 从一块岩石标本中选出不同的含铷矿物,如云母、长 石等,分析不同矿物中的Rb、Sr含量及Sr同位素组成 ,可构成等时线图。(因为不同矿物包括全岩常常有较大的
87 Sr 87 Sr 87 Rb t 86 = 86 + 86 (e 1) Sr Sr 0 Sr
1、岩浆岩Rb-Sr等时线定年
基本假设: 岩浆的整个冷却过程中Sr同位素是均一的,即从岩 浆中形成的所有矿物或岩石具有相同的锶同位素初
变质作用对Rb-Sr同位素体系的影响有两种:
①矿物开放系统
②全岩开放系统
矿 物 开 放 系 统
矿物的Rb-Sr系统发生变化,而全岩的Rb-Sr系 统保持封闭。例如:由Rb衰变产生的87Sr在富Rb 矿物中占据不稳定晶格。受到变质作用,87Sr趋 向于迁出晶格,从云母、钾长石这类富铷矿物中 释放的Sr将趋于被最近的能容纳Sr矿物(如斜长石、 磷灰石)吸收。然而全岩的Rb-Sr系统不发生变化。 在这种情况下,全岩等时线年龄和矿物等时线 年龄的意义是不同的。