LINDO软件包(学生版) 使用手册
第三章LINGO软件的使用

第三章 LINGO软件使用入门LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件.它为求解最优化问题提供了一个平台,主要用于求解线性规划、非线性规划、整数规划、二次规划、线性及非线性方程组等问题.它是最优化问题的一种建模语言,包含有许多常用的函数供使用者编写程序时调用,并提供了与其他数据文件的接口,易于方便地输入,求解和分析大规模最优化问题,且执行速度快.由于它的功能较强,所以在教学、科研、工业、商业、服务等许多领域得到了广泛的应用.§3.1 LINGO操作界面简介在Windows操作系统下启动LINGO软件,屏幕上首先显示如图1.1所示的窗口.图1.1图1.1中最外层的窗口是LINGO软件的主窗口(LINGO软件的用户界面),所有其他窗口都在这个窗口之内.主窗口有:标题栏、菜单栏、工具栏和状态栏.目前,状态栏最左边显示的是“Ready”,表示准备就绪,右下角显示的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1”(即1行1列).将来用户可以用选项命令(LINGO|Options|Interface菜单命令)决定是否需要显示工具栏和状态栏.LINGO有5个主菜单:●File(文件)●Edit(编辑)●LINGO(LINGO系统)●Windows(窗口)●Help(帮助)这些菜单的用法与Windows下其他应用程序的标准用法类似,下面只对主菜单中LINGO系统的主要命令进行简要介绍.LINGO系统(LINGO)的主菜单●LINGO|Solve(Ctrl-S)LINGO|Solve(Ctrl-S)(求解)命令对当前模型进行编译并求解.如果当前模型输入有错误,编译时将报告错误.求解时会显示一个求解器运行状态窗口.●LINGO|Solution(Ctrl-O)LINGO|Solution(Ctrl-O)(解答)命令显示当前解.●LINGO|Range(Ctrl-R)LINGO|Range(Ctrl-R)(灵敏度分析)命令显示当前解的灵敏度分析结果.(你必须在此之前求解过当前模型)●LINGO|Options(Ctrl-I)LINGO|Options(Ctrl-I)(选项)命令将打开一个含有7个选项卡的对话框窗口,你可以通过它修改LINGO系统的各种控制参数和选项.修改完以后,你如果单击“应用”按钮,则新的设置马上生效;如果单击“OK”按钮,则新的设置马上生效,并且同时关闭该窗口;如果单击“Save”按钮,则将当前设置变为默认设置,下次启动LINGO时这些设置仍然有效;如果单击“Default”按钮,则恢复LINGO系统定义的原始默认设置;如果单击“Cancel”按钮将废弃本次操作,退出对话框;单击“Help”按钮将显示本对话框的帮助信息.●LINGO|Generate和LINGO|PictureLINGO|Generate和LINGO|Picture命令都是在模型窗口下才能使用,他们的功能是按照LINGO模型的完整形式分别以代数表达式形式和矩阵图形形式显示目标函数和约束.●LINGO|Debug(Ctrl+D)LINGO|Debug(Ctrl+D)命令分析线性规划无解或无界的原因,建议如何修改●LINGO|Model Statistics(Ctrl+E)LINGO|Model Statistics(Ctrl+E)命令显示当前模型的统计信息.●LINGO|Look(Ctrl+L)LINGO|Look(Ctrl+L)命令显示当前模型的文本形式,显示时对所有行按顺序编号.图1.2给出了工具栏的简要功能说明.图1.2当前光标所在的窗口(窗口标题栏上标有“LINGO Model-LINGO1”),就是模型窗口(model windows),也就是用于输入LINGO优化模型(即LINGO程序)的窗口.§3.2 LINGO模型的基本特征LINGO模型(程序)从LINGO模型窗口输入,它以语句“MODEL:”开始,以语句“END”结束.它是由一系列语句组成,每个语句都是以分号“;”结束,语句是组成LINGO模型的基本单位.每行可以写多个语句,为了保持模型的可读性,最好一行只写一个语句,并且按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感.以感叹号“!”开始的语句是注释语句(注释语句也需要以分号“;”结束).LINGO模型(程序)一般由5个部分(或称5段)组成:(1)集合段(SETS):这部分要以“SETS:”开始,以“ENDSETS”结束,作用在于定义必要的集合变量(SET)及其元素(member,含义类似于数组的下标)和属性(attribute,含义类似于数组).格式有基本集和派生集两种.基本集:Setname(集合变量名)[/member_list(元素列表)/][:attribute_list(属性列表)];元素列表可以全部一一列出,也可以用格式“/元素1..元素N/”列出,例如SETS:STUDENTS/1,2,3,4,5/:NAME,AGE;ENDSETSSETS:STUDENTS/1..5/:NAME,AGE;ENDSETS派生集:Setname(parent_set_list(源集列表))[/member_list/][:attribute_list];例如SETS:PRODUCT/A B/;MACHINE/M N/;WEEK/1..2/;ALLOWED( PRODUCT,MACHINE,WEEK);ENDSETS列表可以用逗号“,”分开,也可以用空格分开.(2)数据段(DATA):这部分要以“DATA:”开始,以“ENDDATA”结束,作用在于对集合的属性(数组)输入必要的常数数据.格式为:attribute_list(属性列表)=value_list(常数列表);例如SETS:SET1 /A, B, C/: X, Y;ENDSETSDATA:X = 1 2 3;Y = 4 5 6;ENDDATA(3)初始化段(INIT):这部分要以“INIT:”开始,以“ENDINIT”结束,作用在于对集合的属性(数组)给出初值.格式为:attribute_list(属性列表)=value_list(常数列表);与数据段的用法类似.(4)计算段(CALC):这部分要以“CALC:”开始,以“ENDCALC”结束,作用在于对一些原始数据进行计算处理.因为在实际问题中,输入的数据往往是原始数据,不一定能在模型中直接使用,可以在这个段对这些原始数据进行一定的“预处理”,得到模型中真正需要的数据.在计算段中语句是顺序执行的.(5)目标与约束段:这部分没有段的开始和结束标记,作用在于给定目标函数与约束条件.可见除这一段外,其他4个段都有明确的段标记.这一段是模型的主要部分,其他段是为这一段服务的.其他四段可以没有,这一段必须要有.否则不称其为模型.这一段一般要用到LINGO的运算符和各种函数.§3.3 LINGO的运算符和函数LINGO包含有大量的运算符和函数,供程序(建立优化模型)调用,其功能很强.充分利用这些函数,对解决问题将是非常方便的.下面给出部分函数及简要功能介绍,全部函数及详细功能说明可进一步参考LINGO的使用手册.一、运算符及其优先级LINGO的运算符有三类:算数运算符、逻辑运算符和关系运算符.1.算术运算符:LINGO中的算术运算符有以下5种:+(加法),-(减法或负号),*(乘法),/(除法),∧(求幂).算术运算是数与数之间的运算,运算结果仍是数.2.逻辑运算符:LINGO中的逻辑运算符有以下9种,可以分成两类:(1)#AND#(与),#OR#(或),#NOT#(非):这三个运算是逻辑值之间的运算,也就是它们操作的对象本身必须已经是逻辑值或逻辑表达式,计算结果也是逻辑值.(2)#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于):这6个操作实际上是“数与数之间”的比较,也就是它们操作的对象本身必须是两个数,而逻辑表达式计算的结果是逻辑值.3.关系运算符:LINGO中的关系运算符有以下3种:<(即<=,小于等于),=(等于),>(即>=,大于等于)这三个运算符虽然也是“数与数之间”的比较,但在LINGO中只用来表示优化模型的约束条件,所以不是真正意义上的运算.这些运算符的优先级如表3.1所示(同一优先级按左到右的顺序执行;如果有括号“()”,则括号内的表达式优先进行计算)表3.1二、基本的数学函数在LINGO中写程序时可以调用大量的内部函数,这些函数以“@”符号打头(类似调用命令).LINGO中数学函数的用法与其它语言中的数学函数的用法类似,主要有以下函数:@ABS(X):绝对值函数,返回X的绝对值.@COS(X):余弦函数,返回X的余弦值(X的单位是弧度).@EXP(X):指数函数,返回e x的值.@FLOOR(X):取整函数,返回X的整数部分(向最靠近0的方向取整).@LGM(X):返回X的伽马(Gamma)函数的自然对数值.@LOG(X):自然对数函数,返回X的自然对数值.@MOD(X,Y):模函数,返回X对Y取模的结果.@POW(X,Y):指数函数,返回X Y的值.@SIGN(X):符号函数,返回X的符号值(X<0时返回-1,X>=0返回1).@SIN(X):正弦函数,返回X的正弦值.@SMAX(list):最大值函数,返回列表(list)中的最大值.@SMIN(list):最小值函数,返回列表(list)中的最小值.@SQR(X):平方函数,返回X的平方值.@SQRT(X):平方根函数,返回X的正的平方根的值.@TAN(X):正切函数,返回X的正切值.三、集合循环函数集合循环函数是指对集合上的元素(下标)进行循环操作的函数,主要有@FOR,@MAX,@MIN,@SUM,@PROD五种,其用法如下:@function(setname[(set_index_list)[|conditional_qualifier]]:expression_list);其中:Function是集合函数名;Setname是集合名;set_index_list是集合索引列表(不需要使用索引时可以省略);|conditional_qualifier是用逻辑表达式给出的过滤条件(无条件时可以省略);:expression_list是一个表达式(对@FOR函数,可以是一组表达式).下面简要介绍其作用.@FOR(setname[(set_index_list)[|cond_qualifier]]:exp_list):对集合setname中的每个元素独立地生成由exp_list描述的表达式(通常是优化问题的约束).@MAX(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最大值.@MIN(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最小值.@SUM(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的和.@PROD(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的积.四、集合操作函数集合操作函数是指对集合进行操作的函数,主要有@INDEX,@IN,@WRAP,@SIZE四种,下面简要介绍其作用.@INDEX([set_name,]primitive_set_element):返回元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略集合名set_name,LINGO按程序定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.如果在所有集合中均没有找到该元素,会给出出错信息.@IN(set_name,primitive_index_1[,primitive_index_2 ...]):判断一个集合中是否含有索引值.集合set_name 中包含由索引primitive_index_1[,primitive_index_2...]所表示的对应元素,则返回1(逻辑值“真”),否则返回0(逻辑值“假”).@WRAP(INDEX,LIMIT):返回J=INDEX-K*LIMIT,其中J 位于区间[1,LIMIT],K 为整数.当INDEX 位于区间[1,LIMIT]内时直接返回INDEX .相当于数学上用INDEX 对LIMIT 取模函数的值+1,即@WRAP(INDEX,LIMIT)=@MOD(INDEX,LIMIT)+1.此函数对LIMIT <1无定义.可以想到,此函数的目得之一是防止集合的索引值越界.@SIZE(set_name):返回集合set_name 的模,即元素的个数.五、变量定界函数变量定界函数是对变量的取值范围加以限制的函数.主要有@BIN, @BND, @FREE, @GIN 四种,下面简要介绍其作用.@BIN(variable):限制变量variable 为0或1.@BND(lower_bound, variable, upper_bound):限制lower_bound <=variable <=upper_bound@FREE(variable):取消对变量variable 的符号限制(即可取负数、0或正数). @GIN(variable):限制变量variable 为整数.六、财务会计函数财务会计函数是用于计算净现值的函数.主要有@FPA, @FPL 两种,下面简要介绍其作用. @FPA(I,N):返回若干时段单位等额回收净现值.其中单位时段利率为I,时段N 个,即∑=+=Nn n I N I FPA 1)1(1),(@ @FPL(I,N):返回一个时段单位回收净现值.其中单位时段利率为I,时段N ,即N I N I FPL )1(1),(@+=七、概率中的相关函数概率中的相关函数是涉及到概率论和随机过程中的一些函数.主要有以下函数: @PSN(X):返回标准正态分布的分布函数在X 点的取值.@PSL(X):标准正态的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z 为均值为A的Poisson随机变量.@PPS(A,X):返回均值为A的Poisson分布的分布函数在X点的取值.@PPL(A,X):Poisson分布的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z为标准正态随机变量.@PBN(P,N,X):返回参数为(N,P)的二项分布的分布函数在X点的取值.@PHG(POP,G,N,X):返回总共有POP个球,其中G个是白球,随机地从中取出N个球,白球不超过X的概率.@PFD(N,D,X):返回自由度为N和D的F分布的分布函数在X点的取值.分布的分布函数在X点的取值.@PCX(N,X):返回自由度为N的2@PTD(N,X):返回自由度为N的t分布的分布函数在X点的取值.@PEB(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且允许无穷排队时的Erlang繁忙概率.@PEL(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且不允许排队时的Erlang繁忙概率.@PFS(A,X,C):返回当负荷上限为A,顾客数为C,并行服务器数量为X时,有限源的Poisson服务系统得等待顾客数的期望值.@QRAND(SEED):返回0与1之间的多个拟均匀随机数,其中SEED为种子,默认时取当前计算机时间为种子.该函数只能用在数据段(DATA-ENDDATA).@RAND(SEED):返回0与1之间的一个伪均匀随机数,其中SEED为种子.八、文件输入输出函数文件输入输出函数是指通过文件输入数据和输出结果的函数.主要有以下函数:@FILE('filename'):这个函数提供LINGO与文本文件的接口,用于引用其它ASCII码或文本文件中的数据,其中filename为存放数据的文件名(包括路径,没有指定路径时表示当前目录),该文件中记录之间必须用符号“~”分开.主要用在集合段和数据段,通过文本文件输入数据.@TEXT(['filename']):用于数据段中将解答结果送到文本文件filename中.@ODBC(['data_source'[,'table_name'[,'col_1'[, 'col_2'...]]]]):这个函数提供LINGO与ODBC(open data base connection,开放式数据库连接)的接口,用于集合段和数据段中引用其它数据库数据或将解答结果送到数据库中.其中data_source是数据库名,table_name是数据表名,col_i是数据列名(数据域名).@OLE('spreadsheet_file'[,range_name_list]):这个函数提供LINGO与OLE(object linking and embedding,对象链接与嵌入)的借口,用于集合段、数据段和初始段中输入和输出数据库.其中spreadsheet_file是文件名,range_name_list是文件中包含数据的单元范围.@POINTER(N):在Windows下使用LINGO的动态链接库(dynamic link library ,DLL),直接从共享的内存中传送数据.§3.4 LINGO软件求解案例一、生产管理问题1.问题实例某厂有5种设备A1,A2,…,A5,用来加工7种零部件B1,B2,…,B7,每种设备的数量、每种零部件的单位成本及所需各设备的加工工时(以小时计)见表1表1在其后的半年中,工厂有设备检修计划(停工检修时间一个月)见表2表2工厂在半年中有订单(必须按时交货)见表3表3每种零部件库存最多可到100件,现每种零部件有库存80件,库存费用每件每月为0.5元,,要求到六月底每种零部件有存货50件,每种零部件生产至少50件.工厂每周工作5天,每天2班,每班8小时.试回答如下问题:(1) 工厂如何安排各月份各种零部件的加工数量?(2) 单位成本有10%的变化,对计划有什么影响?(3) 设备各增加1台对计划有什么的影响.2.模型建立设: ij a 为第j 种零部件在第i 种设备上的单位加工工时)7,,2,1,5,,2,1( ==j i ;ik b 为第i 种设备在第k 月的数量)6,,2,1,5,,2,1( ==k i ; kj d 为第k 月第j 种零部件的顶单数量)7,,2,1,6,,2,1( ==j k ; j c 为第j 种零部件的单位收益)7,,2,1( =j ; kj x 为第k 月第j 种零部件的生产数量)7,,2,1,6,,2,1( ==j k ; kj s 为第k 月末第j 种零部件的库存数量)7,,2,1,6,,2,1( ==j k ; 800=j s 为初始库存)7,,2,1( =j假设每月以20天计,有以下模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥≥==≥=≤====-+===≤+-=====∑∑∑∑∑)(7,,2,1,6,,2,1,0,07,,2,1,6,,2,1,50)(7,,2,1,100)(7,,2,1,50)(7,,2,1,6,,2,1,)(6,,2,1,5,,2,13205.0min 6(617161617171非负约束生产要求个月末的库存第种零部件的库存月第第种设备的有效工时月第第费用目标))(,库存约束 j k s x j k x j s j s j k d x s s k i b x a s x c kj kj kj kjjkj kj j k kj ik j kj ij k k j kj j kj j j k i k 3.模型求解利用LINGO 软件计算,输入model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata:a=0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05;b=3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1;d=250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100;c=100 60 80 40 110 90 30;enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for(yf(k)|k#gt#1:@for(cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for(cp(j):s(1,j)=80+x(1,j)-d(1,j));@for(cp(j):s(6,j)=50);@for(sl1(k,j):s(k,j)<=100);@for(sl1(k,j):x(k,j)>=50);end(1)计算结果有:目标函数:590580 z(2)目标的灵敏度分析:Objective Coefficient Ranges(目标系数的灵敏度分析)Current Allowable AllowableVariable Coefficient Increase Decrease变量目前系数允许增加范围允许减少范围X( 1, 1) 100.0000 INFINITY0.5000000X( 1, 2) 60.00000 INFINITY 0.5000000X( 1, 3) 80.00000 INFINITY 0.5000000X( 1, 4) 40.00000 INFINITY 1.500000X( 1, 5) 110.0000 INFINITY 0.5000000X( 1, 6) 90.00000 INFINITY 0.5000000X( 1, 7) 30.00000 INFINITY 0.5000000X( 2, 1) 100.0000 0.5000000 0.5000000X( 2, 2) 60.00000 0.5000000 0.5000000X( 2, 3) 80.00000 0.5000000 1.000000X( 2, 4) 40.00000 INFINITY 1.000000X( 2, 5) 110.0000 0.5000000 0.5000000X( 2, 6) 90.00000 0.5000000 0.5000000X( 2, 7) 30.00000 0.5000000 0.5000000X( 3, 1) 100.0000 0.5000000 0.5000000X( 3, 2) 60.00000 0.5000000 0.5000000X( 3, 3) 80.00000 INFINITY 0.5000000X( 3, 4) 40.00000 INFINITY 0.5000000X( 3, 5) 110.0000 0.5000000 0.5000000X( 3, 6) 90.00000 0.5000000 1.000000X( 3, 7) 30.00000 0.5000000 0.5000000X( 4, 1) 100.0000 0.5000000 1.000000X( 4, 2) 60.00000 0.5000000 0.5000000X( 4, 3) 80.00000 0.50000000.5000000X( 4, 4) 40.00000 0.5000000 0.5000000X( 4, 5) 110.0000 0.5000000 0.5000000X( 4, 6) 90.00000 INFINITY 0.5000000X( 4, 7) 30.00000 0.5000000 1.000000X( 5, 1) 100.0000 INFINITY 0.5000000X( 5, 2) 60.00000 0.5000000 0.5000000X( 5, 3) 80.00000 0.5000000 0.5000000X( 5, 4) 40.00000 0.5000000 0.5000000X( 5, 5) 110.0000 0.5000000 0.5000000X( 5, 6) 90.00000 0.5000000 0.5000000X( 5, 7) 30.00000 INFINITY 0.5000000X( 6, 1) 100.0000 0.5000000 INFINITYX( 6, 2) 60.00000 0.5000000 INFINITYX( 6, 3) 80.00000 0.5000000 INFINITYX( 6, 4) 40.00000 0.5000000 INFINITYX( 6, 5) 110.0000 0.5000000 INFINITYX( 6, 6) 90.00000 0.5000000 INFINITYX( 6, 7) 30.00000 0.5000000 INFINITY其中INFINITY是无穷.从以上灵敏度分析可见,提高10%,有超出允许范围的,所以对计划有影响.(3)约束条件的灵敏度分析:Righthand Side Ranges(右边常数项的灵敏度分析) Row Current Allowable AllowableRHS Increase Decrease行目前常数项允许增加范围允许减少范围2 960.0000 INFINITY450.00003 640.0000 INFINITY488.00004 960.0000 INFINITY840.00005 320.0000 INFINITY258.00006 320.0000 INFINITY300.80007 1280.000 INFINITY836.00008 640.0000 INFINITY473.00009 320.0000 INFINITY138.000010 320.0000 INFINITY268.400011 320.0000 INFINITY305.500012 1280.000 INFINITY830.000013 320.0000 INFINITY110.000014 960.0000 INFINITY 830.000015 320.0000 INFINITY 267.000016 320.0000 INFINITY 302.000017 1280.000 INFINITY 1035.00018 320.0000 INFINITY 205.000019 960.0000 INFINITY 760.000020 320.0000 INFINITY 282.000021 320.0000 INFINITY 308.500022 960.0000 INFINITY 670.000023 640.0000 INFINITY 525.000024 960.0000 INFINITY 720.000025 320.0000 INFINITY 253.500026 320.0000 INFINITY 290.000027 1280.000 INFINITY 655.000028 640.0000 INFINITY 270.000029 640.0000 INFINITY 410.000030 320.0000 INFINITY 206.000031 320.0000 INFINITY 283.5000从以上灵敏度分析可见,提高1台,没有超出允许范围的,所以对计划没有影响.也可以将数据与模型分离,先准备数据文件exam01.ldt:!单耗;0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05~!设备数量;3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1~!需求;250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100~!单位成本;100 60 80 40 110 90 30~再写程序如下:model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata :a=@file ('exam01.ldt');b=@file ('exam01.ldt');d=@file ('exam01.ldt');c=@file ('exam01.ldt');enddatamin =@sum (sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for (yf(k):@for (sb(i):@sum (cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for (yf(k)|k#gt#1:@for (cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for (cp(j):s(1,j)=80+x(1,j)-d(1,j));@for (cp(j):s(6,j)=50);@for (sl1(k,j):s(k,j)<=100);@for (sl1(k,j):x(k,j)>=50);end二、下料问题1.问题实例有某种材料一根长19米.现需用其切割4米长毛坯50根、5米长毛坯10根、6米长毛坯20根、8米长毛坯15根.如何切割使其用料最省?要求切割模式不能超过3种.2.模型建立设:4,3,2,1=i 分别表示4米长,5米长,6米长,8米长的毛坯;i a 为第i 种毛坯的长度)4,3,2,1(=i ;i b 为第i 种毛坯的需要量)4,3,2,1(=i ;j x 为第j 种切割模式所用的材料数量)3,2,1(=j ;ij r 为第j 种切割模式切割第i 种毛坯的数量)3,2,1,4,3,2,1(==j i .一种合理的切割模式应满足:其余料长度不应该大于或等于需要切割毛坯的最小长度.于是有模型如下⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≥=≥=≤=≥=∑∑∑∑====3,2,1,4,3,2,1,0,0(3,2,1,16(3,2,1,19(4,3,2,1,(min 41413131j i r x j r a j r a i b x r x z ij ji ij i i ij i i j j ij j j 且整数合理的下料模式所下毛坯的总长所下毛坯的需要量用料目标))))3.模型求解为了便于运算,我们先来缩小可行域.由于3种切割模式的排列顺序是无关紧要的,所以不妨增加以下约束:321x x x ≥≥又注意到用料的总量有明显的上界和下界.首先,无论如何,用料总量不可能少于2619158206105504=⎥⎥⎤⎢⎢⎡⨯+⨯+⨯+⨯ 其次,考虑一种特殊的下料计划:模式1:切割成4根4米钢管,需13根;模式2:切割成1根5米和2根6米钢管,需10根;模式3:切割成2根8米钢管,需8根.这样需要13+10+8=31于是可得到解的一个上界.所以又可增加约束:3126321≤++≤x x x利用LINGO 软件计算,输入model:sets:needs/1..4/:a,b;cuts/1..3/:x;patterns(needs,cuts):r;endsetsdata:a=4 5 6 8;b=50 10 20 15;enddatamin=@sum(cuts(j):x(j));!用料目标;@for(needs(i):@sum(cuts(j):x(j)*r(i,j))>b(i));!需要量要求;@for(cuts(j):@sum(needs(i):a(i)*r(i,j))<19);!材料总长;@for(cuts(j):@sum(needs(i):a(i)*r(i,j))>16);!合理模式;@sum(cuts(j):x(j))>26;!用料下限;@sum(cuts(j):x(j))<31;!用料上限;@for(cuts(j)|j#lt#@size(cuts):x(j)>x(j+1));!人为约束;@for(cuts(j):@gin(x(j)));!整数约束;@for(patterns(i,j):@gin(r(i,j)));!整数约束;end经过LINGO求解,得到输出如下:Objective value: 28.00000Variable Value Reduced CostX( 1 ) 10.00000 0.000000X( 2 ) 10.00000 2.000000X( 3 ) 8.000000 1.000000R( 1, 1) 3.000000 0.000000R( 1, 2) 2.000000 0.000000R( 1, 3) 0.000000 0.000000R( 2, 1) 0.000000 0.000000R( 2, 2) 1.000000 0.000000R( 2, 3) 0.000000 0.000000R( 3, 1) 1.000000 0.000000R( 3, 2) 1.000000 0.000000R( 3, 3) 0.000000 0.000000R( 4, 1) 0.000000 0.000000R( 4, 2) 0.000000 0.000000R( 4, 3) 2.000000 0.000000即按照模式1、2、3分别切割10、10、8根材料,使用材料总根数为28根.第一种切割模式下1根材料切割3根4米的和1根6米的;第二种切割模式下1根材料切割2根4米的、1根5米的和1根6米的;第三种切割模式下1根材料切割2根8米的.三、投资组合问题1.问题实例有三种股票A,B,C,其前12年的价值每年的增长情况如表所示表中还给出了相应年份的500种股票的价格指数的增长情况.假设目前你有一笔资金准备投资这三种股票,并期望年收益率达到15%,那么你应如何投资? 2.模型建立设:3,2,1=i 分别表示表示A,B,C 三种股票;i R 为第i 种股票的价值)3,2,1(=i ;ij R 为第i 种股票第j 年的价值)12,,2,1,3,2,1( ==j i ;M 为指数;j M 为第j 年的指数)12,,2,1( =j ;i x 为投资第i 种股票比例)3,2,1(=i .股票指数反映的是股票市场的大势信息,对每只股票的涨跌是有影响的.假设每只股票的收益与股票指数成线性关系.即i i i i e M b a R ++=或12,,2,1,3,2,1, ==++=j i e M b a R ij j ij ij ij其中ij ij b a ,是待定系数,ij e 是一个随机误差,其均值为0)(=ij e E ,方差为)(2ij ij e D s =,此外假设随机误差ij e 与其他股票和股票指数都是独立的,所以0)()(==j ij kj ij M e E e e E .先根据所给数据回归计算ij ij b a ,,即使误差的平方和最小:3,2,1,||min12121212=-+=∑∑==i R M b a ej ij j ij ij j ij可用Matlab 软件做该回归计算,也可用LINGO 软件分别来做每只股票的回归计算,输入 model: sets:year/1..12/:M,R,a,b,e; endsets data:R=1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035 1.176;M=1.258997 1.197526 1.364361 0.919287 1.057080 1.055012 1.187925 1.317130 1.240164 1.183675 0.990108 1.526236; enddata calc:mean0=@sum(year(j):M(j))/@size(year);s20=@sum(year(j):@sqr(M(j)-mean0))/(@size(year)-1); s0=@sqrt(s20); endcalc min=s2;s2=@sum(year(j):@sqr(e(j)))/(@size(year)-2); s=@sqrt(s2);@for(year(j):e(j)=R(j)-a-b*M(j)); @for(year(j):@free(e(j))); @free(a);@free(b);End对上面的程序,注意以下几点: (1)只给了一种股票的价值R ;(2)在CALC 段直接计算了M 的均值mean0和方差s20以及标准差s0(为了使这个估计是无偏估计,分母是11而不是12);(3)程序中用到平方函数@sqr 和平方根函数@sqrt ;(4)除了计算回归系数外,同时估计了回归误差s2和标准差s ,为了使这个估计是无偏估计,分母是10而不是11和12,这是因为此时已经假设保持误差的均值为0,所以自由度又少了一个;(5)@free(a),@free(b),@free(e)三个语句不能少,因为它们不一定是非负的; 运行这个LINGO 模型,结果为:Objective value: 0.5748320E-02Variable Value Reduced CostMEAN0 1.191458 0.000000 S20 0.2873661E-01 0.000000 S0 0.1695188 0.000000 S2 0.5748320E-02 0.000000 S 0.7581767E-01 0.000000 A 0.5639761 0.000000 B 0.4407264 0.000000也就是说:M 的均值191458.10=m ,方差02873661.020=s ,标准差1695188.00=s ,对股票A ,回归系数5639761.01=a ,4407264.01=b ,误差的方差005748320.021=s ,误差的标准差07581767.01=s .同理,可以得到:对股票B ,回归系数239802.1,2635059.022=-=b a ,误差的方差01564263.022=s ,误差的标准差1250705.02=s .对股票C ,回归系数523798.1,5809590.033=-=b a ,误差的方差03025165.023=s ,误差的标准差1739300.03=s .于是,年投资收益为∑∑==++==3131)(i i i i i i i i e M b a x R x R收益的期望为∑∑==+=++=31031)()(i i i i i i i i i m b a x e M b a E x ER收益的方差为∑∑==+=++=3122202312])[()(i i i i i i i i i i s x s b x e M b a D x DR进一步,令∑=ii b x y ,则模型应该为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+==+=∑∑∑∑====015.1)(1 ..)(min 31031313122202ii i i i i ii ii i i i x m b a x x b x y t s s x s y z 3.模型求解利用LINGO 软件计算,输入 model: sets:stocks/1..3/:u,b,s2,x; endsets data:mean0=1.191458; s20=0.02873661;s2=0.005748320,0.01564263,0.03025165; u=0.5639761,-0.2635059,-0.5809590; b=0.4407264,1.239802,1.523798; enddatamin=s20*@sqr(y)+@sum(stocks(i):s2(i)*@sqr(x(i))); @sum(stocks(i):b(i)*x(i))=y; @sum(stocks(i):x(i))=1;@sum(stocks(i):(u(i)+b(i)*mean0)*x(i))>1.15; end运算这个LINGO 模型,输出结果如下Objective value: 0.2465621E-01 Y 0.8453449 0.000000 X( 1) 0.5266052 0.000000 X( 2) 0.3806461 0.000000 X( 3) 0.9274874E-01 0.000000根据运算结果可知:A 大约占初始时刻总资产的53%,B 占38%,C 占9%.四、最小费用最大流问题1.问题实例需要将某地s 的天然气通过管道输送到另一地t ,中间有4个中转站4321,,,v v v v .由于输气管道的长短粗细不一或地质等原因,使得每条管道上的运输量及费用不同.下图给出了这两地与中转站的连接以及管道的容量、费用:图中括号里第一个数字是管道容量,第二个数字是管道单位运费.考虑s 地到t 地如何输送天然气,使得费用最小流量最大. 2.模型建立设:V 为网络顶点集,A 为网络的弧集;ij f 为弧),(j i 上的流量; ij b 为弧),(j i 上的单位运费; ij c 为弧),(j i 上的容量;)(f v 为发点处的净流量.根据最大流的定义,我们有模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧≠=-==-∑∑∑∈∈∈∈∈Aj i c f t s i ti f v s i f v f f t s f v t s f bij ij A i j V j ji A j i V j ij Aj i ijij),(,0, 0 )( ),(..)(max ..min),(),(),( 3.模型求解先考虑最大流模型,LINGO 软件输入如下 model: sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;endsetsdata:c=8 7 5 9 9 2 5 6 10;enddatamax=flow;@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 14.00000Variable Value Reduced Cost FLOW 14.00000 0.000000F( S, 1) 7.000000 0.000000F( S, 2) 7.000000 0.000000 F( 1, 2) 2.000000 0.000000 F( 1, 3) 5.000000 0.000000 F( 2, 4) 9.000000 -1.000000 F( 3, 2) 0.000000 0.000000 F( 3, T) 5.000000 -1.000000 F( 4, 3) 0.000000 1.000000 F( 4, T) 9.000000 0.000000 其次考虑最小费用最大流模型,LINGO软件输入如下model:sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f;endsetsdata:b=2 8 5 2 3 1 6 4 7;c=8 7 5 9 9 2 5 6 10;flow=14;enddatamin=@sum(arcs(i,j):b(i,j)*f(i,j));@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 205.0000Variable Value Reduced CostF( S, 1) 8.000000 -1.000000F( S, 2) 6.000000 0.000000F( 1, 2) 1.000000 0.000000F( 1, 3) 7.000000 0.000000F( 2, 4) 9.000000 0.000000F( 3, 2) 2.000000 -3.000000F( 3, T) 5.000000 -8.000000F( 4, 3) 0.000000 11.00000F( 4, T) 9.000000 0.000000附录 LINGO出错信息在LINGO程序求解时,系统首先会对程序进行编译.系统在编译或执行其他命令时,会因程序中的错误或运行错误,弹出一个出错报告窗口,显示其错误代码,并简要指出错误的原因.这些错误报告信息能够提示用户发现程序中的错误,以便能尽快修改.下面我们给出出错信息的一个简要说明,仅供参考.LINGO错误编号及原因对照表习题1.用LINGO 软件求解线性规划问题并作灵敏度分析(1) ⎪⎩⎪⎨⎧≥≤++≤++-++-=0,,9010412203..1355max 321221321321x x x x x x x x x t s x x x (2) ⎪⎩⎪⎨⎧≥≤≤+--≤+---+-=0,,,1035.0125.009825.0..65.02075.0max 3213432143214321x x x x x x x x x x x x t s x x x x z 2.用LINGO 软件求解0-1规划问题⎪⎪⎩⎪⎪⎨⎧=≥+-+≥+++-≥+++-+++=10,,,11424204..4352min 43214321432143214321或x x x x x x x x x x x x x x x x t s x x x x 3.用LINGO 软件求解整数规划问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≤≤=+=-+=-+=-++++++=且整数0,,,,,,20,45,40,3025352515..2.02.02.05.54.51.50.5min 3214321432134323212113214321y y y x x x x x x x x y x y y x y y x y x t s y y y x x x x4.用LINGO 软件求解非线性规划问题 ⎪⎪⎩⎪⎪⎨⎧=≤≤--=+-+=++-+-+-+-+-=5,4,3,2,1,55222223..)()()()()1(min 4232332215544433322211i x x x x x x x t s x x x x x x x x x z i5.用LINGO 软件求解⎪⎩⎪⎨⎧-∈≤+++≤-≤+≤-+=}1,1{,,,2311..21max 432143214321T T x x x x x x x x x x x x t s z Qx x x c 其中T )2,4,8,6(-=c ,Q 是三对角线矩阵,主对角线上元素全为-1,两条次对角线上元素全为2.。
LINDO软件的使用

4,BEST IP:表示在最优的整数解目标函数值. 5,IP Bound:表示该整数规划目标值的下界或上界. 6,Branches:表示分支数. 7 , 目 前 IP 尚 无 相 应 完 善 的 敏 感 性 分 析 理 论 , 因 此 REDUCED COST 和DUAL PRICES的结果在整数规划中的意 义不大. max x1+x2 s.t. 14x1+9x2<51 -6x1+3x2<1 end gin 2
运筹学》 《运筹学》
LINDO软件的使用 软件的使用
Slide 9
C0
CO
运筹学》 《运筹学》
LINDO软件的使用 软件的使用
Slide 10
三,运行状态窗口 : (window/status window) 当前状态:已经达到最 优 解 ( optimal), 可 行 的 解 (feasible), 不 可 行 的 解 (infeasible), 无 界 解 (unbounded). 迭代次数:2次 多余或错误的约束条件 :0 当前的目标值:145 最好的整数解 整数规划的界 分枝数 求解所用的时间 刷新本界面的时间间隔 :1S
运筹学》 《运筹学》
LINDO软件的使用 软件的使用
Slide 8
例2:MIN 5 A0 +6 A1 +2 A2 +4 B0 +3 B1 +7 B2 +2 C0 : +9 C1 +8 C2 SUBJECT TO 2) A0 +A1 +A2<=8 3) B0 +B1 +B2<=9 4) C0 +C1 +C2<=6 5) A0 +B0 +CO =6 6) A1 +B1 +C1 =5 7) A2 +B2 +C2 =9 END 问题: 问题:第5)行的表达式中CO 与C0弄混了.
LINDO软件的使用

§2.1.1 LINDO软件的安装 LINDO软件的安装
本教材使用软件是 LINDO 6.1 for Windows试用版 试用版
安装过程中,用户只需要按照程序给出的提示, 安装过程中,用户只需要按照程序给出的提示, 一步一步走下去,直到安装成功为止。 一步一步走下去,直到安装成功为止。 第一次运行刚安装的LINDO软件时,系统会弹出一 软件时, 第一次运行刚安装的 软件时 个对话框,要求你输入密码( )。如果你 个对话框,要求你输入密码(Password)。如果你 )。 买的是正版软件,请在密码框中输入LINDO公司给 买的是正版软件,请在密码框中输入 公司给 你提供的密码,然后按“ 按钮即可。否则, 你提供的密码,然后按“OK” 按钮即可。否则,你 只能使用演示版(即试用版 按下“ 即试用版), 只能使用演示版 即试用版 ,按下“Demo Version(演示版 按钮即可。 演示版)” 演示版 按钮即可。
优化问题三要素:决策变量;目标函数;约束条件 优化问题三要素:决策变量;目标函数;
min s .t .
决策变量
f ( x) hi ( x ) = 0 , i = 1,..., m g j ( x ) ≤ 0 , j = 1,..., l x∈ D ⊆ ℜ
n
目标函数 约 束 条 件
• 可行解(满足约束)与可行域(可行解的集合) 可行解(满足约束)与可行域(可行解的集合) • 最优解(取到最小/大值的可行解) 最优解(取到最小/大值的可行解)
MATLAB优化工具箱能求解的优化模型 MATLAB优化工具箱能求解的优化模型
优化工具箱3.0 优化工具箱 (MATLAB 7.0 R14) 连续优化 无约束优化 非线性 极小 fminunc 非光滑(不可 非光滑 不可 微)优化 优化 fminsearch 全局 优化 离散优化 约束优化 线性规划 linprog 二次规划 quadprog 纯0-1规划 bintprog 规划 一般IP(暂缺 暂缺) 一般 暂缺
LINGO软件的基本使用方法

2.在LINGO中使用集合
集合的基本用法和LINGO模型的基本要素
例四需理属2个求解性. S季必L〔AI度 须ANILtG的 按tCrO帆 时iOb建公u船 满t模e司需 足〕语需求.的每言要量概个最决分念季重定别.度要下是正的四4常0是个条的理季,生6解0度产条集的能,7合帆5力条〔船是,S2生e54t条0产〕条,量及这帆.其些下 船,每条船的生产费用为400美元.如果加班生产,每条船 的生产费用为450美元.每个季度末,每条船的库存费用为 20美元.假定生产提前期为0,初始库存为10条船.如何安 排生产可使总费用最小?
暂缺
非线性规划 fmincon fminimax fgoalattain fseminf
约束线性 最小二乘
lsqnonneg lsqlin
上下界约束 fminbnd fmincon lsqnonlin lsqcurvefit
LINDO 公司软件产品简要介绍
美国芝加哥<Chicago>大学的Linus Schrage教授于1980 年前后开发, 后来成立 LINDO系统公司〔LINDO Systems Inc.〕, ://
当前约束不满足的总量
目前为止的 迭代次数
• 运行状态窗口
使用的特殊求解程序 : B-and-B <分枝定界算法> Global <全局最优求解程序> Multistart<用多个初始点求解的程
序>
目前为止找到的可行 解的最佳目标函数值
扩展 的求 解器 <求 解程 序> 状态 框
有效步数
目标函数值的界
约束条件主要有两个: 1〕能力限制: R(IP )4,I0 1 ,2 ,3 ,4 2〕产品数量的平衡方程:
LINDO软件使用简介

0.2x+0.7y+0.4z<1
End
Int x
Int y Int z
运算结果如下
OBJECTIVE FUNCTION VALUE
1) 7.000000 VALUE REDUCED COST
VARIABLE
X
Y Z
1.000000
1.000000 0.000000
-4.000000
-3.000000 -2.000000 DUAL PRICES
入 模 型
max 2x+3y
st
4x+3y<10
3x+5y<12 end
2. 存储模型
ห้องสมุดไป่ตู้
用SAVE命令将问题模型以LINDO格式存入文件(自己 输入文件名),如将上述输入模型存在sf1中。 3.模型求解 选择菜单“SOLVE”,并回答提示“DO RANGE
(SENSITIVITY)ANSLYSIS(灵敏性分析)”,yes或NO
COEF
X Y 2.000000 3.000000
INCREASE
2.000000 0.333333
DECREASE
0.200000 1.500000
RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE
RHS
2 3 10.000000 12.000000
前者只将变量vname标识为0/1型,后者将前n个变量标识 为0/1型。 还可用命令GIN将变量仅限为整数型
例如,求解整数规划
max s.t.
w 4x 3y 2z 2.5 x 3.1z 5 0.2 x 0.7 y 0.4 z 1 x, y 0, 且为0或1
Lingo软件使用教程

为了定义一个原始集,必须详细声明: ·集的名字 ·可选,集的成员 ·可选,集成员的属性 定义一个原始集,用下面的语法: setname[/member_list/][:attribute_list]; 注意:用―[]‖表示该部分内容可选。下同,不再赘述。 2.1.3 派生集 为了定义一个派生集,必须详细声明: ·集的名字 ·父集的名字 ·可选,集成员 ·可选,集成员的属性 可用下面的语法定义一个派生集: setname(parent_set_list)[/member_list/][:attribute_list]; setname 是集的名字。parent_set_list 是已定义的集的列表,多个时必须用逗号隔开。如果没 有指定成员列表,那么 LINGO 会自动创建父集成员的所有组合作为派生集的成员。派生集 的父集既可以是原始集,也可以是其它的派生集。 例 sets: product/A B/; machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets LINGO 生成了三个父集的所有组合共八组作为 allowed 集的成员。列表如下: 编号 成员 1 (A,M,1) 2 (A,M,2) 3 (A,N,1) 4 (A,N,2) 5 (B,M,1) 6 (B,M,2) 7 (B,N,1) 8 (B,N,2)
数值列(value_list)包含要分配给对象列中的对象的值,用逗号或空格隔开。注意属性 值的个数必须等于集成员的个数。看下面的例子。 例
sets: set1/A,B,C/: X,Y; endsets data: X=1,2,3; Y=4,5,6;
enddata 在集 set1 中定义了两个属性 X 和 Y。X 的三个值是 1、2 和 3,Y 的三个值是 4、5 和 6。也 可采用如下例子中的复合数据声明(data statement)实现同样的功能。 例 sets:
Lingo软件的使用
第十八章LINGO软件的使用18.1 LINGO入门18.1.1 LINGO软件的安装过程点击LINGO9.0 for Windows安装文件,出现点击“Next”按钮,出现此时需要接受安装协议。
系统安装时默认的目录是C:\LINGO9。
安装完成前,会出现下图所示的对话框:这个对话框询问你希望采用的默认的建模(即编程)语言,系统推荐的是采用LINGO语法,也就是选项“LINGO(recommended)”;你也可以选择“LINDO”将LINDO语法作为默认的设置。
当然,安装后你也可以通过“LINGO|Options|File Format命令来修改默认的建模(即编程)语言。
在上图中按下“OK”按钮,系统就会完成LINGO的安装过程。
18.1.2 LINGO基础知识LINGO有两种命令格式:一种是常用的Windows模式,通过下拉式菜单命令驱动LINGO 运行,界面是图形式的,使用起来也比较方便;另一种是命令行(Command-Line)模式,仅在命令窗口(Command Window)下操作,通过输入行命令驱动LINGO运行。
由于其使用字符方式输入,初学者往往不太容易掌握。
在这里,我们主要介绍在菜单驱动模式下LINGO的使用方法。
LINGO 9.0软件比以前的版本有了很大的改进,功能大大增强,性能更加稳定,计算的结果更加可靠。
LINGO软件不仅可用于求解非线性规划问题,还可以用以求解非线性整数规划问题;LINGO包含了内置的建模语言,模型中所需的数据可以以一定格式保存在独立的文件中;LINGO允许以简练、直观的方式描述较大规模的优化问题。
注:LIGDO公司目前已将LINDO软件从其产品中删除了。
事实上,LINDO软件的所有功能(包括LINDO语法格式)都在LINGO中得到了支持。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
LINDO、LINGO软件的使用方法
例1的数 学模型
max Z 32 x1 30 x2 3x1 4 x2 36 5 x1 4 x2 40 9 x1 8 x2 76 x1 , x2 0
LINDO/LINGOl软件简介
第1节 第2节 LINDO LINGO
第1节 LINDO软件
一、LINDO软件的使用格式 二、LINDO输出结果分析
一、LINDO软件的使用格式
LINDO软件是一种专门用于求解线性 规划问题的软件包,由于LINDO执行速度很 快且输入方便,易于求解和分析规划问题, 因此在科研和工业界得到广泛应用。
影子价格: 资源每增加1个单位时,目标函数Z增加的值 (1) 设备A每增加1台时,利润增加1.166667元
(2) 设备B每增加1台时,利润不增加
(3) 设备C每增加1台时,利润增加3.166667元
第4部分数据的分析
Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Coefficient Increase Decrease 32.00000 1.750000 9.500000 30.00000 12.66667 1.555556
2 最优值为:282.667 即 Z max 282 3 最优解为: x1=1.3333 即 x 1 1 1 3 x2=8
第3部分的数据分析(1)
在最优解的情况 下资源是否有剩 余(或超量)
Row Slack or Surplus Dual Price 2) 0.000000 在最优解下,设 3) 1.333333 备A、C无剩余 4) 0.000000
LINDO软件基本使用方法
优化建模 优 化 建 模
新余学院
建模组
上一页
下一页
Xinyu University MCM
优化建模 优 化 建 模
2.4 查错功能
2019/4/5
新余学院
建模组
上一页
下一页
Xinyu University MCM
优化建模 优 化 建 模
2.5 FREE、SUB、SLB的使用举例 求解如下线性规划问题: 非负限制
2019/4/5
新余学院
建模组
上一页
下一页
Xinyu University MCM
优化建模 优 化 建 模
Sub y 20 Slb z 30是否可取消? y 的上界(20)在最优解 中没达到;z的下界(30) 也没达到.
Free x 是否可取消?
2019/4/5
新余学院
建模组
上一页
下一页
Xinyu University MCM
新余学院 建模组
上一页 下一页
Xinyu University MCM
9. 变量不能出现在一个约束条件的右端 10. 表达式中不接受括号“( )”和逗号“,”等任何符号, 例: 400(X1+X2)需写为400X1+400X2 11. 表达式应化简,如2X1+3X2- 4X1应写成 -2X1+3X2 12. 缺省假定所有变量非负;可在模型的“END”语句后用 “FREE name”将变量name的非负假定取消 13. 可在 “END”后用“SUB” 或“SLB” 设定变量上下界 例如: “sub x1 10”的作用等价于“x1<=10” 但用“SUB”和“SLB”表示的上下界约束不计入模型的 约束,也不能给出其松紧判断和敏感性分析。 14. “END”后对0-1变量说明:INT n 或 INT name 15. “END”后对整数变量说明:GIN n 或 GIN name ※ 行号、“TITLE”语句和注释语句,是LINDO中惟一可以使用 汉字字符的地方.
LINDO软件包(学生版) 使用手册
LINDO软件包(学生版) 使用手册目录第一节简介与安装第二节用LINDO求解线性规划(LP) 问题第三节用LINDO求解整数规划(IP) 和二次规划(QP) 问题第四节GINO简介第五节LINGO简介1997年8月第一节简介与安装1·1简介本文主要面向大中专学生, 研究生, 及掌握一定的高等代数知识的读者,介绍LINDO软件包(学生版)的基本使用方法。
该软件包(学生版)主要功能在于帮助使用者较快地输入一个优化问题的式子, 求解并分析该优化问题, 然后可做些较小的改动, 并重复上述的过程.该软件包(学生版)在微机上DOS环境下运行。
其使用界面不是图形式的,而是字符式的;不是菜单式的, 而是面向具体的命令(Command). 它有许多的命令, 每一个命令都可随时执行, 由系统检查该命令是否在上下文中起作用. 它采用一种对用户友好的交互使用方式, 包括了所有的使用过程指导. 基于使用的具体情况, 它会向使用者询问下一步将做什么, 或等待使用者输入下一个命令.LINDO软件包(学生版)包括LINDO,GINO,LINGO和LINGO NL(LINGO2)等优化软件的学生版以及相应的例子文件。
由于LINDO程序执行速度很快,易于方便地输入、求解和分析优化问题,LINDO在教学、科研和工业界得到广泛应用。
这里用LINDO软件包作为LINDO,GINO,LINGO和LINGO NL等的统称,包含五种组件,下面分别介绍如下:(1)LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包, 可以用来求解线性规划(LP----Linear Programming), 整数规划(IP----Integer Programming) 和二次规划(QP----Quadratic Programming) 问题. LINDO易于规划问题的输入、求解和分析,程序执行速度很快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINDO软件包(学生版) 使用手册目录第一节简介与安装第二节用LINDO求解线性规划(LP) 问题第三节用LINDO求解整数规划(IP) 和二次规划(QP) 问题第一节简介与安装1·1简介本文主要面向大中专学生, 研究生, 及掌握一定的高等代数知识的读者,介绍LINDO软件包(学生版)的基本使用方法。
该软件包(学生版)主要功能在于帮助使用者较快地输入一个优化问题的式子, 求解并分析该优化问题, 然后可做些较小的改动, 并重复上述的过程.该软件包(学生版)在微机上DOS环境下运行。
其使用界面不是图形式的,而是字符式的;不是菜单式的, 而是面向具体的命令(Command). 它有许多的命令, 每一个命令都可随时执行, 由系统检查该命令是否在上下文中起作用. 它采用一种对用户友好的交互使用方式, 包括了所有的使用过程指导. 基于使用的具体情况, 它会向使用者询问下一步将做什么, 或等待使用者输入下一个命令.LINDO软件包(学生版)包括LINDO,GINO,LINGO和LINGO NL(LINGO2)等优化软件的学生版以及相应的例子文件。
由于LINDO程序执行速度很快,易于方便地输入、求解和分析优化问题,LINDO在教学、科研和工业界得到广泛应用。
这里用LINDO软件包作为LINDO,GINO,LINGO和LINGO NL等的统称,包含五种组件,下面分别介绍如下:(1)LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包, 可以用来求解线性规划(LP----Linear Programming), 整数规划(IP----Integer Programming) 和二次规划(QP----Quadratic Programming) 问题. LINDO易于规划问题的输入、求解和分析,程序执行速度很快。
LINDO学生版最多可求解多达200个变量和100个约束的规划问题。
(2)GINO可用于求解非线性规划(NLP----Nonlinear Linear Programming) 问题,求解线性和非线性方程组和不等式组,以及代数方程求根。
GINO中包含了有关财务、概率等方面的函数和三角函数,以及各种一般的数学函数,可供使用者建立问题模型时调用。
GINO 学生版最多可求解多达50个变量和30个约束的问题。
(3)LINGO 可用于求解线性规划和整数规划问题。
(4)LINGO NL(LINGO2)可用于求解线性、非线性和整数规划问题。
与LINDO和GINO不同的是,LINGO和LINGO NL(LINGO2)包含了内置的建模语言,允许以简练、直观的方式描述所需求解的问题,模型中所需的数据可以以一定格式保存在列表(List)和表格(Table)中,也可以保存在独立的文件中。
LINGO和LINGO NL(LINGO2)学生版最多可求解多达200个变量和100个约束的问题。
(5)例子文件:在软件包中还含有例子文件,其中有些例子文件与各软件在一起,但大多数例子文件一般安装在例子目录。
例子目录下的例子文件是以LUTOS 1-2-3的WK1格式存储的(也可用MS-OFFICE工具的EXCEL软件读写)。
1·2安装过程:LINDO软件包(学生版)在微机上DOS环境下通过安装后运行。
安装盘为一片三英寸软盘,安装盘上有安装程序(install.exe) 和简要介绍文本(read.me),还带有多个压缩文件和一个解压缩程序 (lha.exe).安装时,将安装盘直接插入软驱,然后运行该软盘上的安装程序,即在该软驱的提示符(如A:> 或B:>)下键入“install”。
按“回车”(ENTER键)后,只需遵照屏幕上的提示即可完成整个安装过程:(1)用户首先必须选择所需安装的内容:用户可以任意选择所需安装的内容(从1·1节所介绍的五种组件中任意选取)。
如果想安装五种组件中的某个组件,就在它前面键入“Y”;否则键入“N”,然后“回车”。
如此反复,完成后屏幕将提示您确认您的选择。
(2)用户必须选择所需安装到的目的地(一般是硬盘上的某个目录)。
屏幕将提示缺省的目录,您可以任意修改,如此反复,完成后屏幕将提示您确认您的选择。
(3)确认您的选择之后,安装程序就会自动完成全部后续安装过程。
安装过程结束后,您就可以进入安装好的目录,运行相应的优化软件了。
第二节用LINDO求解线性规划(LP)问题2.1初试LINDOLINDO 的求解机制:LINDO 的求解过程采用单纯形法,一般是首先寻求一个可行解, 在有可行解情况下再寻求最优解. 用LINDO 求解一个LP问题会得到如下的几种结果: 不可行(No feasible solution) 或可行(Feasible)可行时又可分为: 有最优解(Optimal Solution)和解无界(Unbounded Solution)两种情况. 由于在实际问题中, 不太可能出现最大利润无上限的情形, 所以使用者应检查是否少了一个约束或有其它印刷错误.在LINDO子目录下执行LINDO.EXE文件即可进入LINDO工作环境,其屏幕显示如下:LINDO/PC 5.02 (4 MAR 92)STUDENT VERSION. FOR EDUCATIONAL USE ONLY.SINGLE USER LICENSE FOR EDUCATIONAL USE ONLYDISTRIBUTED WITH TEXTBOOKS BY WADSWORTH PUBLISHING:“:”为LINDO 提示符,在其之后, 使用者即可用具体的命令来输入并求解优化问题。
让我们来解如下LP 问题:Maxz x y s t x y x y x y =++≤+≤≥2343103512..,由于LINDO 中已假设所有的变量都是非负的, 所以非负约束可不必再输入到计算机中;LINDO 也不区分变量中的大小写字符(实际上任何小写字符将被转换为大写字符);约束条件中的“<=” 及“>=”可用“<” 及“>”代替。
上面问题用键盘输入如下:: MAX 2x + 3Y? ST? 4X + 3Y < 10? 3x + 5Y < 12? END:LINDO 中一般称上面这种问题实例(INSTANCE )为模型(MODEL )。
以后涉及该模型时,目标函数为第一行,两个约束条件分别为第二、三行。
直接键入运行(GO )命令就可得到解答, 屏幕显示如下::GOLP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION VALUE1) 7.4545450VARIABLE VALUE REDUCED COSTX 1.272727 .000000Y 1.636364 .000000ROW SLACK OR SURPLUS DUAL PRICES2) .000000 .0909093) .000000 .545455NO. ITERATIONS= 2DO RANGE(SENSITIVITY) ANALYSIS?? N:计算结果表明:“LP OPTIMUM FOUND AT STEP2”表示单纯形法在两次迭代(旋转)后得到最优解。
“OBJECTIVE FUNCTION VALUE 1) 7.4545450 ”表示最优目标值为7.4545450. “VALUE ”给出最优解中各变量(VARIABLE )的值: X =1.272727, Y =1.636364.“REDUCED COST ” 给出最优单纯形表中第0行中变量的系数 ( max 型问题). 其中基变量的reduced cost 值应为0,对于非基变量, 相应的 reduced cost 值表示当该非基变量增加一个单位时目标函数减少的量。
本例中此值均为0。
“SLACK OR SURPLUS ” 给出松驰变量的值: 第2、3行松驰变量均为0, 说明对于最优解来讲,两个约束(第2、3行)均取等号。
“DUAL PRICES ” 给出对偶价格的值: 第2、3行对偶价格分别为 .090909,.545455。
“NO. ITERATIONS= 2” 表示用单纯形法进行了两次迭代(旋转)。
一个问题解答之后, LINDO 会询问是否需要做灵敏性分析(DO RANGE (SENSITIVITY) ANALYSIS? ) 如果你不需要,你应回答“N ”(NO ),回到提示符“:”之下.如果想重新看到刚才的模型,可键入 LOOK 命令, LINDO 会询问具体的行号. 典型的应答可以是 3, 或1-2, 或ALL, 而结果, 相应地会显示出第 3行, 第1-2 行, 或所有问题行.: LOOKROW:33) 3 X + 5 Y <= 12:或: LOOK allMAX 2x + 3YSUBJECT TO2) 4 X + 3 Y <= 103) 3 X + 5 Y <= 12END:如果想修改问题,可键入 ALTER 命令, LINDO 会询问行号, 变量名, 及新的系数. 例如:如果要将上面问题中约束条件4310x y +≤改为6310x y +≤,再全部看一下,并求解新问题,那么键入ALTER 命令后相应的应答为 2,X,和6, 以下是演示过程::ALTERROW:2VAR:XNEW COEFFICIENT:6:LOOK ALLMAX 2 X + 3 YSUBJECT TO2) 6 X + 3 Y <= 103) 3 X + 5 Y <= 12END:goLP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION VALUE1) 7.3333330VARIABLE VALUE REDUCED COSTX .666667 .000000Y 2.000000 .000000ROW SLACK OR SURPLUS DUAL PRICES2) .000000 .0476193) .000000 .571429NO. ITERATIONS= 0DO RANGE(SENSITIVITY) ANALYSIS?? N: QUIT最后键入退出(QUIT)命令, 即可退出LINDO工作环境。
注:输入、查看和修改一个LP模型更方便的方法是采用全屏幕编辑器。
在“:”提示符下键入编辑(EDIT)命令可以进入全屏幕编辑器,可以和其他文本编辑器一样方便使用。
2·2 求解LP问题的一般步骤及例子步骤:1)首先是输入一个LP问题。