2014-2015第一学期数学期末考试试卷(B)卷 8开(陶冶)

合集下载

2014 -2015上期末八数学试卷

2014 -2015上期末八数学试卷

[键入文字]2014- 2015学年上期期末调研考试八年级数学试卷一、选择题(每空3分,共24分)1、下列各式中最简二次根式为( ) A .3 B.2x C. 0.7 D.132、将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )A.B. C. D.3、化简2244xy yx x --+的结果是( )A .2x x + B .2x x - C .2y x + D .2yx -4、把多项式2322321286c ab c b a c b a-+分解因式时,应提取的公因式是题号 一 二 三总 分16171819202122 23得分得 分 评卷人[键入文字]( )A. 2B. abc 2C. c ab 22 D. 222c ab5、已知m 10x =,n 10y =,则2310x y +等于( )A. n 3m 2+B. 22n m + C. mn 6 D. 32n m6、如图,在△ABC 中,AD ⊥BC 于点D ,DB=DC ,若BC=6,AD=5,则图中阴影部分的面积为( )A .30B .15C .7.5D .66题图 7 题图 8题图7、如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A .2αB .90°α21+C .90°α21-D .360°α-8、如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .222()2a b a ab b -=-+ B .222()2a b a ab b +=++ C .22()()a b a b a b -=+- D .2()a ab a a b +=+二、填空题(每题3分,共21分)9、计算:1150381853-+= . 10、 若分式x xx 值为正,则212- . 11、计算 3436155-b a c b a÷的结果是 .得分评卷人[键入文字]12、已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别4cm 2和15cm 2,则正方形③的面积为 .13、如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、 ∠EDC 的外角,则∠1+∠2+∠3= . 14、观察下列各式:2242==,2(2)42-==,2393==,2(3)93-==;按照这样的规律化简式子:2x (0x <)= . 15、如上图,将的各边都延长一倍至、、,连接这些点,得到一个新的三角形,若的面积为3,则的面积是 .三、解答题( 共75分)16、 因式分解 (每小题4分,共8分)(1) x x 93-(2) )1(4)(2+-+-y x y x17、(每小题5分,共10分)(1)计算:()()—得 分 评卷人得 分 评卷人12+12-223)(-ABC ∆A 'B 'C 'A B C '''ABC ∆A B C '''∆32112题图 13题图 15题图[键入文字](2)化简:18、(10分)求值(1)已知a+b=6,ab=5,求32232121ab b a b a ++的值。

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014--2015学年八年级上册期末考试数学试题及答案

2014--2015学年八年级上册期末考试数学试题及答案

期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案

___2014-2015学年八年级上学期期末考试数学试卷及答案1.点P(3,1)所在的象限是第一象限。

2.大于2且小于3的数是2.3.不能由图1滑雪人经过旋转或平移得到的是第四个滑雪人。

4.这组数据中的众数和中位数分别是22个和21个。

5.洗衣机内水量y(升)与从注水开始所经历的时间x (分)之间的函数关系对应的图象大致为选项B。

6.a的值为-2或4.7.结论a。

ab。

b不一定正确。

8.a的值为-1.9.一次函数y=ax+(239/77)的解析式为y=(-9/7)x+(3/7)。

10.线段AC扫过的面积为16.11.关于x的一次函数y=min{2x。

x+1}可以表示为y=2x-2(x≤1)或y=x+1(x>1)。

21.1) 点B1的坐标为 (-1.-2)。

向右平移3个单位,即横坐标加3,向下平移4个单位,即纵坐标减4,得到点B1的坐标。

这次平移的距离为向右平移3个单位,向下平移4个单位。

2) 如图所示,将△ABC绕点O顺时针旋转90°后得到△A2B2C2,其中点O为坐标原点。

根据坐标轴上点的旋转公式,可得点A2的坐标为 (-4.2),点B2的坐标为 (-2.-4),点C2的坐标为 (0.-1)。

22.1) 设男装一天的租金为x元,女装一天的租金为y元,则根据题意可列出如下方程组:5x + 8y = 5106x + 10y = 630解方程组可得,x = 60,y = 45.因此男装一天的租金为60元,女装一天的租金为45元。

2) 原计划租用男装6套,女装17套,租金为6×60 +17×45 = 1020元。

现在租用男装6套,女装14套,歌手服装3套,租金为6×60 + 14×45 + 3×1.2×45 = 1023元。

因此在演出当天租用服装实际需支付租金1023元。

23.1) 由于BE是△ABC的高,所以△ABE与△ACB相似。

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015年人教版八年级数学上册期末试卷及答案解析

2014-2015 年人教版八年级数学上册期末测试题2014-2015 年人教版八年级数学上册期末测试题带详尽解说一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A .B .C. D .2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根D.3 根3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 2+43 2 6 0B .( x+2) =x C.( ab ) =ab D.(﹣ 1) =16.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a)( x+a) 2 2 C.( x﹣ a)( x﹣ a) D .(x+a) a+( x+a) xB . x +a +2ax7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C . 22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+68.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠09.( 3 分)(2012?安徽)化简的结果是( ) A .x+1 B . x ﹣ 1C .﹣ xD . x2 3 5;③2 ﹣2 4 2 2 210.(3 分)( 2011?鸡西)以下各式: ①a =1 ;②a ?a =a =﹣ ;④﹣( 3﹣ 5)+(﹣ 2) ÷8×(﹣ 1)=0 ;⑤x +x =2x , 此中正确的选项是( )A .①②③B .①③⑤C .②③④D .②④⑤11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A .15 分钟,现已知小林家距学校 8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为( )B .C .D .12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DCC .∠ADB= ∠ADCD . ∠B=∠C二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式: x3﹣ 4x 2﹣ 12x= _________ .14.( 4 分)( 2012?攀枝花)若分式方程:有增根,则 k= _________ .15.( 4 分)( 2011?昭通)以下图,已知点 A 、 D 、B 、F 在一条直线上, AC=EF , AD=FB ,要使 △ABC ≌△FDE ,还需增添一个条件,这个条件能够是_________.(只需填一个即可)16.( 4 分)( 2012?白银)如图,在 △ABC 中, AC=BC , △ABC 的外角∠ACE=100 °,则∠A= _________ 度.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共 7 小题,满分64 分)18.( 6 分)先化简,再求值:2 2 2 2, b=﹣.5( 3a b﹣ ab )﹣ 3( ab +5a b),此中 a=19.( 6 分)( 2009?漳州)给出三个多项式:2 2 2﹣ 2x.请选择你最喜爱的两个多项式进行x +2x ﹣1,x +4x+1 , x加法运算,并把结果因式分解.20.( 8 分)( 2012?咸宁)解方程:.21.( 10 分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:_________.l 当作一条直线(图(2)),问题就转变AB 、 AC 边的中点, BC=6 , BC 边上的高为参照答案与试题分析一.选择题(共12 小题,满分 36 分,每题 3 分)1.( 3 分)(2012?宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标记中,是轴对称图形是()A . B .C. D .考点:轴对称图形.剖析:据轴对称图形的观点求解.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不切合题意;B、是轴对称图形,切合题意;D、不是轴对称图形,不切合题意.应选 B.评论:本题主要考察轴对称图形的知识点.确立轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.2.( 3 分)(2011?绵阳)王师傅用4 根木条钉成一个四边形木架,如图.要使这个木架不变形,他起码还要再钉上几根木条?()A.0 根B.1 根C.2 根 D . 3 根考点:三角形的稳固性.专题:存在型.剖析:依据三角形的稳固性进行解答即可.解答:解:加上AC 后,原不稳固的四边形ABCD 中拥有了稳固的△ACD 及△ABC ,故这类做法依据的是三角形的稳固性.应选 B.评论:本题考察的是三角形的稳固性在实质生活中的应用,比较简单.3.( 3 分)以以下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A .A B=ACB .∠BAE= ∠CAD C.B E=DCD . A D=DE考点:全等三角形的性质.剖析:依据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC ,∠BAE= ∠CAD ,BE=DC , AD=AE ,故 A 、B、C 正确;AD 的对应边是AE 而非 DE,因此 D 错误.应选 D.评论:本题主要考察了全等三角形的性质,依据已知的对应角正确确立对应边是解题的重点.4.( 3 分)( 2012?凉山州)如图,一个等边三角形纸片,剪去一个角后获得一个四边形,则图中∠α+∠β的度数是()A .180°B . 220°C.240° D . 300°考点:等边三角形的性质;多边形内角与外角.专题:研究型.剖析:本题可先依据等边三角形顶角的度数求出两底角的度数和,而后在四边形中依据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和 =180°﹣ 60°=120°;∴∠α+∠β=360°﹣ 120°=240°;应选 C.评论:本题综合考察等边三角形的性质及三角形内角和为 180°,四边形的内角和是 360°等知识,难度不大,属于基础题5.( 3 分)(2012?益阳)以下计算正确的选项是()A .2a+3b=5ab2 23 2 6 0B .( x+2) =x +4 C.( ab ) =ab D.(﹣ 1) =1考点:完整平方公式;归并同类项;幂的乘方与积的乘方;零指数幂.剖析: A 、不是同类项,不可以归并;B、按完整平方公式睁开错误,掉了两数积的两倍;C、按积的乘方运算睁开错误;D 、任何不为0 的数的 0 次幂都等于1.解答:解:A、不是同类项,不可以归并.故错误;2 2B 、( x+2) =x +4x+4 .故错误;32 2 6C、( ab ) =a b .故错误;D 、(﹣ 1) =1.故正确.应选 D.评论:本题考察了整式的相关运算公式和性质,属基础题.6.( 3 分)(2012?柳州)如图,给出了正方形ABCD 的面积的四个表达式,此中错误的选项是()A .( x+a )( x+a ) 2 2C .( x ﹣ a )( x ﹣ a )D . (x+a ) a+( x+a ) xB . x +a +2ax考点 : 整式的混淆运算.剖析: 依据正方形的面积公式,以及切割法,可求正方形的面积,从而可清除错误的表达式.解答: 解:依据图可知,222S 正方形 =( x+a ) =x +2ax+a ,应选 C .评论: 本题考察了整式的混淆运算、正方形面积,解题的重点是注意完整平方公式的掌握.7.( 3 分)(2012?济宁)以下式子变形是因式分解的是( )A . 2 ( x ﹣ 5)+6B . 2C .22( x+2)( x+3)x ﹣ 5x+6=x x ﹣ 5x+6=( x ﹣ 2)( x ﹣ 3) ( x ﹣ 2)(x ﹣ 3) =x ﹣ D . x ﹣5x+6=5x+6考点 : 因式分解的意义.剖析: 依据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答: 解: A 、 x 2﹣ 5x+6=x ( x ﹣5) +6 右侧不是整式积的形式,故不是分解因式,故本选项错误; B 、 x 2﹣5x+6= ( x ﹣ 2)( x ﹣3)是整式积的形式,故是分解因式,故本选项正确;C 、( x ﹣ 2)( x ﹣ 3) =x 2﹣ 5x+6 是整式的乘法,故不是分解因式,故本选项错误; D 、 x 2﹣ 5x+6= ( x ﹣ 2)( x ﹣ 3),故本选项错误.应选 B .评论: 本题考察的是因式分解的意义,把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫做分解因式.8.( 3 分)(2012?宜昌)若分式存心义,则 a 的取值范围是()A .a=0B . a=1C .a ≠﹣ 1D . a ≠0考点 : 分式存心义的条件. 专题 : 计算题.剖析: 依据分式存心义的条件进行解答. 解答: 解:∵分式存心义,∴a+1≠0, ∴a ≠﹣ 1. 应选 C .评论: 本题考察了分式存心义的条件,要从以下两个方面透辟理解分式的观点: ( 1)分式无心义 ? 分母为零;( 2)分式存心义 ? 分母不为零;9.( 3 分)(2012?安徽)化简的结果是( )A .x+1B . x ﹣ 1C .﹣ xD . x考点:分式的加减法.剖析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x ,应选 D.评论:本题考察了分式的加减运算.分式的加减运算中,假如是同分母分式,那么分母不变,把分子直接相加减即可;假如是异分母分式,则一定先通分,把异分母分式化为同分母分式,而后再相加减.0 2 3 5 ﹣2 4 2 2 2 10.(3 分)( 2011?鸡西)以下各式:①a =1;②a ?a =a ;③2 =﹣;④﹣( 3﹣ 5)+(﹣ 2)÷8×(﹣ 1)=0 ;⑤x +x =2x ,此中正确的选项是()A .①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混淆运算;归并同类项;同底数幂的乘法;零指数幂.专题:计算题.剖析:分别依据0 指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例对各小题进行逐个计算即可.解答:解:①当 a=0 时不建立,故本小题错误;②切合同底数幂的乘法法例,故本小题正确;﹣2= ,依据负整数指数幂的定义﹣p( a≠0, p 为正整数),故本小题错误;③2 a =④﹣( 3﹣ 5)+(﹣ 2)4÷8×(﹣ 1) =0 切合有理数混淆运算的法例,故本小题正确;2 2 2,切合归并同类项的法例,本小题正确.⑤x +x =2x应选 D.评论:本题考察的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混淆运算的法例及归并同类项的法例,熟知以上知识是解答本题的重点.11.( 3 分)(2012?本溪)跟着生活水平的提升,小林家购买了私人车,这样他乘坐私人车上学比乘坐公交车上学所需的时间少用了交车均匀每小时走A.15 分钟,现已知小林家距学校8 千米,乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,若设乘公x 千米,依据题意可列方程为()B.C.D.考点:由实质问题抽象出分式方程.剖析:依据乘私人车均匀速度是乘公交车均匀速度的 2.5 倍,乘坐私人车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车均匀每小时走x 千米,依据题意可列方程为:=+ ,应选: D.评论:本题主要考察了由实质问题抽象出分式方程,解题重点是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转变为列代数式的问题.12.( 3 分)( 2011?西藏)如图,已知∠ 1=∠2,要获得 △ABD ≌△ACD ,还需从以下条件中补选一个,则错误的选法是( )A .A B=ACB . DB=DC C .∠ADB= ∠ADCD . ∠B=∠C考点 : 全等三角形的判断.剖析: 先要确立现有已知在图形上的地点,联合全等三角形的判断方法对选项逐个考证,清除错误的选项.本题中 C 、AB=AC 与∠1=∠2、 AD=AD 构成了 SSA 是不可以由此判断三角形全等的.解答: 解: A 、∵AB=AC ,∴,∴△ABD ≌△ACD ( SAS );故此选项正确;B 、当 DB=DC 时, AD=AD ,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误; C 、∵∠ADB= ∠ADC , ∴,∴△ABD ≌△ACD ( ASA );故此选项正确;D 、∵∠B=∠C ,∴,∴△ABD ≌△ACD ( AAS );故此选项正确. 应选: B .评论: 本题考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS 、 ASA 、 SAS 、 SSS ,但 SSA没法证明三角形全等.二.填空题(共 5 小题,满分 20 分,每题 4 分)13.( 4 分)( 2012?潍坊)分解因式:x 3﹣ 4x 2﹣ 12x=x ( x+2)( x ﹣ 6) .考点 : 因式分解 -十字相乘法等;因式分解-提公因式法.剖析: 第一提取公因式 x ,而后利用十字相乘法求解即可求得答案,注意分解要完全.解答: 解: x 3﹣ 4x 2﹣ 12x2=x ( x ﹣ 4x ﹣ 12)故答案为: x ( x+2 )( x ﹣ 6).评论: 本题考察了提公因式法、十字相乘法分解因式的知识.本题比较简单,注意因式分解的步骤:先提公因式,再利用其余方法分解,注意分解要完全.14.( 4 分)( 2012?攀枝花)若分式方程: 有增根,则 k= 1 或 2 .考点:分式方程的增根.专题:计算题.剖析:把 k 看作已知数求出x=,依据分式方程有增根得出x﹣ 2=0 ,2﹣ x=0 ,求出 x=2,得出方程=2,求出 k 的值即可.解答:解:∵,去分母得: 2( x﹣ 2) +1 ﹣ kx=﹣ 1,整理得:( 2﹣ k) x=2,当 2﹣ k=0 时,此方程无解,∵分式方程有增根,∴x﹣ 2=0 , 2﹣ x=0 ,解得: x=2,把 x=2 代入( 2﹣ k)x=2 得: k=1.故答案为: 1 或 2.评论:本题考察了对分式方程的增根的理解和运用,把分式方程变为整式方程后,求出整式方程的解,若代入分式方程的分母恰巧等于 0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.( 4 分)( 2011?昭通)以下图,已知点A、 D、B 、F 在一条直线上,AC=EF , AD=FB ,要使△ABC ≌△FDE ,还需增添一个条件,这个条件能够是∠A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).(只需填一个即可)考点:全等三角形的判断.专题:开放型.剖析:要判断△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故增添∠A=∠F,利用SAS可证全等.(也可增添其余条件).解答:解:增添一个条件:∠ A=∠F,明显能看出,在△ABC和△FDE中,利用SAS 可证三角形全等(答案不独一).故答案为:∠ A= ∠F 或 AC ∥EF 或 BC=DE (答案不独一).评论:本题考察了全等三角形的判断;判断方法有ASA 、 AAS 、SAS、 SSS 等,在选择时要联合其余已知在图形上的地点进行选用.16.( 4 分)( 2012?白银)如图,在△ABC 中, AC=BC ,△ABC 的外角∠ACE=100 °,则∠A= 50 度.考点:三角形的外角性质;等腰三角形的性质.剖析:依据等角平等边的性质可得∠ A= ∠B,再依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答: 解:∵AC=BC ,∴∠A= ∠B , ∵∠A+ ∠B=∠ACE ,∴∠A= ∠ACE=×100°=50°.故答案为: 50.评论: 本题主要考察了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边平等角的性质,是基础题,熟记性质并正确识图是解题的重点.17.( 4 分)( 2012?佛山)如图,边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形以后,节余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .考点 : 平方差公式的几何背景.剖析: 依据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答: 解:设拼成的矩形的另一边长为 x ,则 4x= ( m+4)2﹣ m 2=( m+4+m )( m+4﹣m ),解得 x=2m+4 . 故答案为: 2m+4 .评论: 本题考察了平方差公式的几何背景,依据拼接前后的图形的面积相等列式是解题的重点.三.解答题(共 7 小题,满分 64 分)18.( 6 分)先化简,再求值: 2222, b=﹣ .5( 3a b ﹣ ab )﹣ 3( ab +5a b ),此中 a= 考点 : 整式的加减 —化简求值.剖析: 第一依据整式的加减运算法例将原式化简,而后把给定的值代入求值.注意去括号时,假如括号前是负号,那么括号中的每一项都要变号;归并同类项时,只把系数相加减,字母与字母的指数不变.解答: 解:原式 =15a 22222b ﹣ 5ab ﹣3ab ﹣ 15a b=﹣ 8ab ,当 a= , b=﹣ 时,原式 =﹣8× × =﹣ .评论: 娴熟地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.( 6 分)( 2009?漳州)给出三个多项式:2﹣1, 2, 2﹣ 2x .请选择你最喜爱的两个多项式进行 x +2xx +4x+1 x加法运算,并把结果因式分解.考点 : 提公因式法与公式法的综合运用;整式的加减.专题 : 开放型.剖析: 本题考察整式的加法运算,找出同类项,而后只需归并同类项就能够了.解答: 解:状况一: 2 ﹣ 1+ 2 2( x+6 ).x +2x x +4x+1=x +6x=x状况二:x 2+2x ﹣ 1+ x 2﹣ 2x=x 2﹣ 1=( x+1)( x ﹣ 1).状况三:2 2 2 2x +4x+1+ x ﹣ 2x=x +2x+1= ( x+1) .评论: 本题考察了提公因式法,公式法分解因式,整式的加减运算实质上就是去括号、归并同类项,这是各地中考的常考点.熟记公式构造是分解因式的重点.平方差公式:2 22 2a ﹣ b=( a+b )(a ﹣ b );完整平方公式: a ±2ab+b =( a ±b )2 .20.( 8 分)( 2012?咸宁)解方程:.考点 : 解分式方程.剖析: 察看可得最简公分母是( x+2)( x ﹣ 2),方程两边乘最简公分母,能够把分式方程转变为整式方程求解.解答:解:原方程即:.(1 分)方程两边同时乘以( x+2 )( x ﹣ 2), 得 x ( x+2)﹣( x+2 )( x ﹣ 2)=8.( 4 分) 化简,得2x+4=8 .解得: x=2.( 7 分)查验: x=2 时,( x+2 )( x ﹣ 2)=0,即 x=2 不是原分式方程的解,则原分式方程无解. ( 8 分)评论: 本题考察了分式方程的求解方法.本题比较简单,注意转变思想的应用,注意解分式方程必定要验根.21.( 10 分)已知:如图, △ABC 和 △DBE 均为等腰直角三角形.( 1)求证: AD=CE ; ( 2)求证: AD 和 CE 垂直.考点 : 等腰直角三角形;全等三角形的性质;全等三角形的判断.剖析: ( 1)要证 AD=CE ,只需证明 △ABD ≌△CBE ,因为 △ABC 和 △DBE 均为等腰直角三角形,因此易证得结论.( 2)延伸 AD ,依据( 1)的结论,易证∠ AFC= ∠ABC=90 °,因此 AD⊥CE .解答: 解:( 1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC , BD=BE ,∠ABC= ∠DBE=90 °, ∴∠ABC ﹣∠DBC= ∠DBE ﹣∠DBC , 即∠ABD= ∠CBE , ∴△ABD ≌△CBE ,∴AD=CE .(2)垂直.延伸 AD 分别交 BC 和 CE 于 G 和 F,∵△ABD ≌△CBE,∴∠BAD= ∠BCE,∵∠BAD+ ∠ABC+ ∠BGA= ∠BCE+ ∠AFC+ ∠CGF=180 °,又∵∠BGA= ∠CGF ,∴∠AFC= ∠ABC=90 °,∴AD ⊥CE.评论:利用等腰三角形的性质,能够证得线段和角相等,为证明全等和相像确立基础,从而进前进一步的证明.22.( 10 分)( 2012?武汉)如图,CE=CB , CD=CA ,∠DCA= ∠ECB ,求证: DE=AB .考点:全等三角形的判断与性质.专题:证明题.剖析:求出∠DCE=∠ACB,依据SAS证△DCE≌△ACB,依据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+ ∠ACE= ∠BCE+ ∠ACE ,∴∠DCE= ∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB ,∴DE=AB .评论:本题考察了全等三角形的性质和判断的应用,主要考察学生可否运用全等三角形的性质和判断进行推理,题目比较典型,难度适中.23.( 12 分)( 2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队独自施工恰幸亏规准时间内达成;若乙队独自施工,则达成工程所需天数是规定天数的 1.5 倍.假如由甲、乙队先合做15 天,那么余下的工程由甲队独自达成还需 5 天.( 1)这项工程的规准时间是多少天?( 2)已知甲队每日的施工花费为6500 元,乙队每日的施工花费为3500 元.为了缩散工期以减少对居民用水的影响,工程指挥部最后决定该工程由甲、乙队合做来达成.则该工程施工花费是多少?考点:分式方程的应用.专题:应用题.剖析:(1)设这项工程的规准时间是x 天,依据甲、乙队先合做15 天,余下的工程由甲队独自需要 5 天达成,可得出方程,解出即可.( 2)先计算甲、乙合作需要的时间,而后计算花费即可.解答:解:(1)设这项工程的规准时间是x 天,依据题意得:(+)×15+=1 .解得: x=30.经查验 x=30 是方程的解.答:这项工程的规准时间是30 天.( 2)该工程由甲、乙队合做达成,所需时间为:1÷(+)=18(天),则该工程施工花费是:18×(6500+3500 ) =180000(元).答:该工程的花费为180000 元.评论:本题考察了分式方程的应用,解答此类工程问题,常常设工作量为“单位1”,注意认真审题,运用方程思想解答.24.( 12 分)( 2012?凉山州)在学习轴对称的时候,老师让同学们思虑课本中的研究题.如图( 1),要在燃气管道 l 上修筑一个泵站,分别向 A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你能够在l 上找几个点试一试,能发现什么规律?聪慧的小华经过独立思虑,很快得出认识决这个问题的正确方法.他把管道l 当作一条直线(图(2)),问题就转变为,要在直线l 上找一点P,使 AP 与 BP 的和最小.他的做法是这样的:①作点 B 对于直线 l 的对称点B′.②连结 AB ′交直线 l 于点 P,则点 P 为所求.请你参照小华的做法解决以下问题.如图在△ABC 中,点 D 、E 分别是 AB 、 AC 边的中点, BC=6 , BC 边上的高为4,请你在BC 边上确立一点P,使△PDE 得周长最小.( 1)在图中作出点P(保存作图印迹,不写作法).( 2)请直接写出△PDE周长的最小值:8.考点:轴对称 -最短路线问题.剖析:(1)依据供给资料DE 不变,只需求出DP+PE 的最小值即可,作 D 点对于 BC 的对称点 D ′,连结 D′E,与 BC 交于点 P, P 点即为所求;( 2)利用中位线性质以及勾股定理得出D′E 的值,即可得出答案.解答:解:(1)作D点对于BC的对称点D′,连结D′E,与BC交于点P,P点即为所求;(2)∵点 D、 E 分别是 AB 、 AC 边的中点,∴DE 为△ABC 中位线,∵BC=6 , BC 边上的高为 4,∴DE=3 , DD ′=4,∴D′E===5,∴△PDE 周长的最小值为:DE+D ′E=3+5=8 ,故答案为: 8.评论:本题主要考察了利用轴对称求最短路径以及三角形中位线的知识,依据已知得出要求△PDE周长的最小值,求出 DP+PE 的最小值即但是解题重点.2013 八年级上学期期末数学试卷及答案二一、选择题(每题 3 分,共 24 分)1.的值等于()A .4B.-4C.±4 D .±22. 以下四个点中,在正比率函数的图象上的点是()A.( 2, 5)B.(5,2)C.(2,-5)D.(5,― 2)3. 估量的值是()A.在 5与6之间B.在 6与7之间 C .在 7与8之间 D .在 8与 9之间4. 以下算式中错误的选项是()A.B.C.D.5.以下说法中正确的选项是()A.带根号的数是无理数B.无理数不可以在数轴上表示出来C.无理数是无穷小数D.无穷小数是无理数6. 如图,一根垂直于地面的旗杆在离地面5m处扯破折断,旗杆顶部落在离旗杆底部12m处,旗杆折断以前的高度是()A . 5m B.12m C.13m D.18m7.已知一个两位数,十位上的数字x 比个位上的数字y 大 1,若颠倒个位与十位数字的地点,获得新数比原数小9,求这个两位数列出的方程组正确的选项是()座位号(考号末两位)A.B.C.D.8.点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A. y1>y2B.y2>y1C.y1=y2D.不可以确立二、填空题(每题 3 分,共 24 分)9. 计算:.10. 若点 A 在第二象限,且 A 点到 x 轴的距离为 3,到 y 轴的距离为4,则点 A 的坐标为.11. 写出一个解是的二元一次方程组.12. 矩形两条对角线的夹角是60°,若矩形较短的边长为 4cm,则对角线长.13. 一个正多边形的每一个外角都是36°,则这个多边形的边数是.14. 等腰梯形 ABCD中, AD= 2,BC=4,高 DF=2,则腰 CD长是.15. 已知函数的图象不经过第三象限则0,0.16. 如图,已知 A 地在 B 地正南方 3 千米处,甲、乙两人同时分别从 A、 B 两地向正北方向匀速直行,他们与 A 地的距离 S(千米)与所行时间t (小时)之间的函数关系图象如右图所示的AC和 BD给出,当他们行走 3 小时后,他们之间的距离为千米.三、解答题(每题 5 分,共 15 分)17. (1)计算(2)化简( 3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为 1 个单位长度的方格纸中,有一个△ ABC和点O,△ABC的各极点和O点均与小正方形的极点重合. (1)在方格纸中,将△ ABC向下平移 5 个单位长度得△ A1B1C1,请画出△ A1B1C1.(2)在方格纸中,将△ ABC绕点 O顺时针旋转 180°获得△ A2B2C2,请画出△ A2B2C2.19. 某校教师为了对学生零花费的使用进行教育指导,对全班50 名学生每人一周内的零花费数额进行了检查统计,并绘制了下表零花费数额 / 元 5 10 15 20学生人数10 15 20 5(1 )求出这 50 名学生每人一周内的零花费数额的均匀数、众数和中位数(2 )你以为( 1)中的哪个数据代表这50 名学生每人一周零花费数额的一般水平较为适合?简要说明原因.五、解答题( 20 题 6 分,21 题 7 分,共 13 分)20. 已知点 A( 2,2), B(- 4, 2), C(- 2,- 1), D(4,- 1). 在以下图的平面直角坐标系中描出点A、B、C、 D,而后挨次连结 A、B、C、 D 获得四边形ABCD,试判断四边形ABCD的形状,并说明原因.21. 阅读以下资料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点 B 逆时针旋转必定角度后,获得正方形GBEF,边 AD与 EF订交于点 H.请你判断四边形ABEH是不是“筝形”,说明你的原因.六、(每题10 分,共 20 分)22 .以下图,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直均分线交AD于 E,交 BC于 F. (1)试判断四边形AFCE是如何的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价钱规定以下表购票人数1—50 人51—100 人100 人以上每人门票价12 元10 元8 元某校八年( 1)( 2)两班共 102 人去旅行该景点,此中(1)班不足50 人,( 2)班多于 50 人,假如两班都以班为单位分别购票,则一共付款1118 元(1)两班各有多少名学生?(2)假如你是学校负责人,你将如何购票?你的购票方法可节俭多少钱?七、( 12 分)24.我国是世界上严重缺水的国家之一,为了加强居民的节水意识,某自来水企业对居民用水采纳以户为单位分段计费方法收费;即每个月用水 10 吨之内(包含 10 吨)的用户,每吨水收费 a 元,每个月用水超出 10 吨的部分,按每吨 b 元( b>a)收费,设一户居民月用水x (吨),应收水费y(元), y 与 x 之间的函数关系以下图.(1)分段写出 y 与 x 的函数关系式 .(2)某户居民上月用水 8 吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水 4 吨,两家一共交水费46 元,求他们上月分别用水多少吨?八年级数学参照答案四、 18 略(1)3 分(2)3 分19( 1)均匀数是 12 元( 2 分)众数是 15 元( 1 分)中位数是12.5 元( 1 分)( 2)用众数代表这50 名学生一周零花费数额的一般水平较为适合,因为15 元出现次数最多,因此能代表一周零花费的一般水平(2 分)五、 20 画出图形( 3 分)说明是平行四边形( 3 分) 21 能够判断 ABEH是筝形,证△ HAB≌△ HEB(7 分)六、 22( 1)菱形( 5 分)( 2)周长是25cm(5 分)23( 1)设一班学生x 名,二班学生y 名依据题意(5 分)。

2014-2015年八年级上学期数学期末试题及答案

2014-2015年八年级上学期数学期末试题及答案

1.下面有4个汽车标志图案,其中不是轴对称图形的是A B C D2.要使分式15-x 有意义,则x 的取值范围是 A 、x ≠1B 、x >1C 、x <1D 、x ≠1- 3.下列运算正确的是A 、2+=a a aB 、632÷=a a aC 、222()+=+a b a bD 、6223)(b a ab = 4.将多项式x 3-xy 2分解因式,结果正确的是A 、•x (x 2-y 2)B 、2)(y x x -C 、x (x +y )2D 、x (x +y )(y x -)5.已知6=m x ,3=n x ,则n m x -2的值为A 、9B 、43C 、12D 、346.下列运算中正确的是A 、236x x x =B 、1-=++-y x yxC 、ba ba ba b ab a -+=-++22222 D 、yxy x =++117.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x 8.若16)3(22+-+x m x 是完全平方式,则m 的值等于A 、1或5B 、5C 、7D 、7或1- 9.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于A 、75°B 、60°C 、45°D 、30°10.如图,OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,垂足分别为A ,B 。

下列结论中不一定成立的是 A 、P A =PBB 、PO 平分∠AOBC 、OA =OBD 、AB 垂直平分OP11.已知∠AOB =45°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 A 、2222)(b ab a b a ++=+B 、2222)(b ab a b a +-=-C 、))((22b a b a b a -+=-D 、222))(2(b ab a b a b a -+=-+Ⅱ(主观卷)96分二、填空题(每小题3分,共18分) 13.计算:21a a-=_________。

2014-2015学年度第一学期八年级期末数学试题

2014-2015学年度第一学期八年级期末数学试题总分:120分 时间:120分钟 姓名:_________一、选择题:(本题共10小题,每小题2分,共20分。

) 1、下列各式中计算正确的是( )A 、9)9(2-=-B 、525±=C 、1)1(33-=-D 、2)2(2-=-2、根据下列表述,能确定位置的是( )A 、某电影院2排B 、大桥南路C 、北偏东30°D 、东经118°,北纬40° 3、一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B . 1781C .1519 或1681D .15194、 下列四点中,在函数y=3x+2的图象上的点是( )A 、(-1,1)B 、(-1,-1)C 、(2,0)D 、(0,-1.5)5、把△ABC 各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是( )6一次函数b kx y +=的图象如右图所示,则k 、b 的值为( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b7、若532+y xb a 与x y b a 2425-是同类项,则( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩ C .02x y =⎧⎨=⎩ D .31x y =⎧⎨=⎩8、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A B C D 9、10名初中毕业生的中考体育考试成绩如下: 26 29 26 25 26 26 27 28 29 30 ,这些成绩的中位数是( )A 、25B 、26C 、26.5D 、30 10.直线 经过一、三、四象限,则直线 的图象只能是图中的( )DCB二、填空题(每小题3分,共15分)11、已知一次函数y=kx+b 的图象经过点(2, 10),且与正比例函数y= 12 x 的图象相交于点(4,a),则a=_____k=_____b=_____.12、汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是 ; 13、⎩⎨⎧==1,2y x 是方程2x -ay=5的一个解,则a = ;14、已知直角三角形两边的长分别为3cm,4cm, 则以第三边为边长的正方形的面积为 . 15、一次函数y=2x=b 的图象与两坐标轴所围成的三角形的面积为8 ,则 b=________ . 三、解答题:16、(6分)计算:2163)1526(-⨯-17、(7分)解方程组:257320x y x y -=⎧⎨-=⎩18. (9分)作出函数y=4/3x-4 的图象,并回答下面的问题: (1)求它的图象与x 轴、y 轴所围成图形的面积; (2)求原点到此图象的距离.19、(10分)随着国家“亿万青少年学生阳光体育运动”活动的启动,某区各所中小学也开创了体育运动的一个新局面。

(完整word版)2014-2015学年八年级上册期末考试数学试题及答案【新课标人教版】,推荐文档

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

2014-2015第一学期期末八年级数学

2014—2015学年度第一学期期末学业水平检测八 年 级 数 学(检测时间:120 分钟;满分:120分)请将1—8各小题所选答案的标号填写在第8小题后面的表格中. 1.下列说法正确的是( ).A .带根号的数都是无理数;B .绝对值最小的实数是0;C .数轴上的每一个点都表示一个有理数;D .两个无理数的和还是无理数. 2.下面四组数值中,是二元一次方程2x +y =10解的是( ).① ② ③ ④ A .①② B .①③ C .②③ D .②④3.某校为了丰富校园文化,举行书法比赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的( ).A .中位数 B.平均数 C.众数 D.方差4.若a ,b 异号,则点P (a ,b )关于x 轴的对称点在( ).A .第二象限B .第四象限C .第一象限或第三象限D .第二象限或第四象限 5.某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产了17吨,其中水稻超产15%,小麦超产10%.该专业户去年实际生产水稻和小麦各多少吨?设该专业户去年实际生产水稻x 吨,小麦y 吨,根据题意列方程组得( ).A .B .①如果∠1和∠2是对顶角,那么∠1=∠2;市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线⎩⎨⎧=-=62y x ⎩⎨⎧==43y x ⎩⎨⎧==34y x ⎩⎨⎧-==26y x ⎩⎨⎧=+=+17%10%1515y x y x ()()⎩⎨⎧=+++=+17%101%15115y x y x ⎪⎧=+17y x ⎪⎧=+17y x8.已知正比例函数y =kx (k ≠0)的函数值随x 值的增大而增大,则一次函数y =-2kx +k 在平面直角坐标系内的图象大致是( ).二、填空题:(本题满分24分,共有8道小题,每小题3分)请将 9—16各小题的答案填写在第16小题后面的表格内. 9.估算: (结果精确到1). 10.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成不完整的统计图(如图).其中捐100元的人数占全班总人数的25%,则本次捐款的众数是 元.11.如图,等腰三角形ABC 的面积是 . 12.如图,已知∠B =40°,∠C =59°,∠DEC =47°,则∠F 的度数是 °.13.计算: =_______.A C DC 6(第10题)(第11题)AB CDF E32715.16124-+÷⎪⎪⎭⎫ ⎝⎛-(第12题)≈4814.已知直线y =2x 与y =-x +b 的交点坐标为(a ,4),则关于x ,y 的方程组 的解是 .三.解答题(本题满分72分,共有8道小题) 17.(本小题满分10分,共有2道小题,每小题5分) 20x y x y b -=⎧⎨+-=⎩第16题18.(本小题满分6分)如图,在正方形ABCD 中,边长AB =4.(1)在图中建立直角坐标系,使x 轴与BC 平行,且点C 的坐标为(2,1);如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高CE =DB =3 m ,CD =1 m ,求滑道AC 的长. 解: 密 封 线22.(本小题满分10分)小颖和小亮两位同学在八年级某次考试8门科的成绩(假设成绩均为整数,且个位数字为0)如图所示.利用图中提供的信息,解答下列问题:文学语品 史理物 理小颖 文学语品 史理物理小亮 市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线10:10:10:10:5:8:8:8的比例计算各人的成绩,那么谁的成绩高(计算结果精确到0.1)? (3)根据图、表信息,请你对小颖和小亮各提一条不超过30字的学习建议. 解:(2)B 追赶.图中的l 1,l 2分别表示A ,B 两船相对于海岸的距离y (n mile )与追赶时间x (min )之间的关系.(1)求l 1,l 2对应的两个一次函数表达式;(2)求快艇B 出发多长时间后,追上可疑船只A ?(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义各是什么?解:(1)2(第23题)(2)(3)24.(本小题满分12分)数学问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足什么条件时,这两条直线互相垂直?探究问题:我们采取一般问题特殊化的策略来进行探究.探究一:如图①,在同一直角坐标系内直线y =x 与y =-x 有怎样的位置关系? 解:如图①,设点A (t ,t )(t >0)在直线y =x 上,则点B (-t ,t )一定在直线 y =-x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .则OC =AC =t ,OD =BD =t ∴∠AOC =∠BOD =45° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =x 与y =-x 互相垂直.探究二:如图②,在同一直角坐标系内直线y =2x 与y = 有怎样的位置关系?解:如图②,设点A (t ,2t )(t>0)在直线y =2x 上,则点B (-2t ,t )一定在直线 y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .∵OC =t ,AC=2t ,OD =2t ,BD =t ∴OC=BD ,AC=OD①21-21-又∵∠ACO =∠ODB =90°∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =2x 与y = x 互相垂直.探究三:如图③,在同一直角坐标系内直线y =3x 与y = x 有怎样的位置关系?(仿照上述方法解答,写出探究过程) 解决问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足 条件时,这两条直线互相垂直.拓广应用:(1)在同一直角坐标系内已知直线 y =0.1x ,请写出一条直线的函数表达式, 使它与直线y =0.1x 互相垂直(只写出结果, 不需要证明).(2)在同一直角坐标系内直线y = x -与y = x -7是否互相垂直?若垂直,请直接写出垂足的坐标;若不垂直,请说明理由. 解:探究三:解决问题:拓广应用:(1) (2)密 封 线21-1-3223-。

完整word版,2014-2015第一学期八年级数学试题及答案

2014——2015学年度第一学期期末质量检测八年级数学试题时间:120分钟; 满分:120分.一、选择题(每小题3分,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.化简分式112-+aa 的结果是( ). A .1-a a B .11-a C .11+a D .1+a2.下列四副图案中,不是轴对称图形的是( ).3.如图,□ABCD 中,ο108=∠C ,BE 平分ABC ∠,则ABE ∠等于( ). A .18° B .36° C .72° D .108°4.如图所示,已知ABE ∆≌ACD ∆,21∠=∠,C B ∠=∠,下列不正确的等式是( ).A .AC AB = B .CAD BAE ∠=∠C .DC BE =D .DE AD =等级A .B .C .D .5.如果0622=---x x x ,则x 等于( ).A . ±2B . -2C . 2D . 36.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( ). A .96,94.5 B .96,95 C .95,94.5 D .95,95 7.下列命题中,是假命题的是( ).A .同角的余角相等B .一个三角形中至少有两个锐角C .如果a >b ,a >c ,那么c b =D .全等三角形对应角的平分线相等 8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级 参加人数 中位数 方差 平均数 甲 55 149 191 135 乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字达150个以上为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小. 上述结论中正确的是( ).A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3) 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ). A .当BC AB =时,它是菱形 B .当BD AC ⊥时,它是菱形 C .当ο90=∠ABC 时,它是矩形 D . 当BD AC =时,它是正方形10.如图,在△中,,,BC BD AC AB ==若ο40=∠A ,则BDC ∠的度数是( ). A .ο80B .ο70C .ο60D .ο50第9题图D CBA11.如图,ABC ∆中,E D ,分别是AC BC ,的中点,BF 平分ABC ∠,交DE 于点F ,若6=BC ,则DF 的长是( ).A .2B .3C .25D .412.国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ).. A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、黄花种植面积一定相等 二、填空题(每小题3分,共24分. 只要求填写最后结果.) 13.若n m 43=,则m :=n .14.命题“相等的角是对顶角”的条件是 ,结论是 ; 它的逆命题是 .15.若一组数据2,4,5,1,a 的平均数为a ,则=a ;这组数据的方差=2S .16.如图所示,根据四边形的不稳定性制作的边长均为cm 15 的可活动菱形衣架,若墙上钉子间的距离cm BC AB 15==, 则=∠1_______. 17.已知分式方程441+=+-x mx x 有增根,则_______.黄 蓝 紫 橙 红 绿 AG EDH CB第12题图18.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 .19.小明家去年的旅游、教育、饮食支出分别出3600元、1200元、7200元,今年这三项支出依次比去年增长10%、20%、30%,则小明家今年的总支出比去年增长的百分数是_________.20.如图,矩形ABCD 的面积为5,它的两条对角线交于 点O 1,以AB 、A O 1为两邻边作平行四边形AB C 1 O 1, 平行四边形ABC 1O 1的对角线交于点O 2,同样以 AB 、AO 2为两邻边作平行四边形ABC 2O 2,……, 依次类推,则平行四边形ABC n O n 的面积为 .三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.) 21.计算与化简:(每小题5分,共10分) (1)ab b a b a a -+--443;(2) 先化简,再求值:422232-÷⎪⎭⎫ ⎝⎛--+x x x x x x ,其中6=x .22.(本题6分)如图,画出ABC ∆关于y 轴对称的111C B A ∆, 并写出111C B A ∆的各顶点1A 、1B 和1C 的坐标.23.(本题8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据. 已知:如图,DF BE ABC ADC ,,∠=∠分别 平分,,ADC ABC ∠∠且21∠=∠.求证:C A ∠=∠.证明:∵DF BE ,分别平分ADC ABC ∠∠,( 已知 ), ∴ADC ABC ∠=∠∠=∠213,211( ),∵ADC ABC ∠=∠( 已知 ). ∴ADC ABC ∠=∠2121( ), ∴31∠=∠( ),又因为∵21∠=∠( ), ∴32∠=∠( ).∴AB ∥CD ( ),∴οο180,180=∠+∠=∠+∠ABC C ADC A ( ). ∴C A ∠=∠( ).24.(本题6分)如图,已知在ABC ∆中,D 是BC 的中点,AB DE ⊥于点E ,AC DF ⊥ 于点F ,且CF BE =.求证:AD 平分BAC ∠.25.(本题7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?y (人数)403010205026.(本题7分)如图,在□ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:(1)ABE ∆≌FCE ∆;(2)21=∆∆的周长的周长AFD ABE .27.(本题7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元? (2)超市销售这种干果共盈利多少元?28.(本题9分)以四边形ABCD 的边DA CD BC AB ,,,为斜边分别向外侧作等腰直角三角形,直角顶点分别为H G F E ,,,,顺次连结这四个点,得四边形EFGH .如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形.(1)如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,若ο40=∠ADC , ①试求HAE ∠的度数; ②求证:HG HE =;③请判定四边形EFGH 是什么四边形?并说明理由.A BCDHEFG(图2)E BFGD HAC(图3)(图1)A BCDH EFG八年级数学试题参考答案一、选择题(每小题3分,共36分.)1. B2.A3.B4.D5.C6.A7.C8.B9.D 10.B 11.B 12. C. 二、填空题(每小题3分,共24分.) 13.34; 14.两个角相等,这两个角是对顶角,对顶角相等; 15.3,2; 16.120o ;17.;18. 答案不唯一:平行四边形或矩形或菱形; 19.23%; 20.n25. 三、解答题(本大题共7小题,共60分.) 21.(1)ba b a 44-+;…………5分(2)解:原式3(2)(2)(2)(2)(2)(2)(2)(2)2x x x x x x x x x x x ⎡⎤-++-=-⨯⎢⎥+-+-⎣⎦2(4)(2)(2)(2)(2)2x x x x x x x-+-=⨯+-4x =- (3)分当x=6时,原式=6-4=2.…………5分22.如图…………3分;()2,31A ,()3,41-B ,()1,11-C .…………6分23.(每空1分)证明:∵DF BE ,分别平分ADC ABC ∠∠,(已知), ∴ADC ABC ∠=∠∠=∠213,211( 角平分线定义),∵ADC ABC ∠=∠( 已知).∴ADC ABC ∠=∠2121(等式性质), ∴31∠=∠(等量代换),又因为∵21∠=∠(已知),∴32∠=∠(等量代换). ∴AB ∥CD (内错角相等,两直线平行),∴οο180,180=∠+∠=∠+∠ABC C ADC A (两直线平行,同旁内角互补).A∴C A ∠=∠( 等角的补角相等). 24.证明:∵BE=CF ,BD=CD …………2分 ∴Rt △BDE ≌Rt △CDF ,∴DE=DF ,…………4分 又DE ⊥AB 于E ,DF ⊥AC ∴AD 平分∠BAC …………6分25.解:(1)150;…………2分(2)4.25~4.55;…………4分(3)600…………7分26.证明:(1)在平行四边形ABCD 中,AB ∥CD ,∴∠FAB=∠F 在△ABE 和△FCE 中, ∠FAB=∠F 又∠AEB=∠FEC ,BE=CE. ∴ △ABE ≌△FCE .…………4分(2)根据(1),△ABE ≌△FCE ,AE=EF ,BF=CE ,AB=CD=CF ,…………5分 ∴AD=2BE ,DF=2AB ,AF=2AE.∴21=∆∆的周长的周长AFD ABE .…………7分27.解:解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,…………1分 由题意,得=2×+300,解得x=5,经检验x=5是方程的解.…………3分答:该种干果的第一次进价是每千克5元…………4分 (2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000 =1500×9+4320﹣12000 =13500+4320﹣12000 =5820(元).…………6分答:超市销售这种干果共盈利5820元.…………7分28.(1)四边形EFGH 是正方形.…………2分 (2) ①∵∠ADC =ο40,在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=140°; ∵△HAD 和△EAB 都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-140°=130°.………4分②∵△AEB和△DGC都是等腰直角三角形,∴△AEB≌△CGD,∴AE=BE=CG=DG,在□ABCD中,AB=CD,∴AE=DG,∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAE.∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.…………6分③四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠DHG=∠AHE,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.………………9分八年级数学试题第11 页(共11页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1
2.已知 A x x( x 1) 0 , B x x( x 1) 0 ,则A B=( A. B.0 C.{0} D. {1,0,1}




C. a 4 a 5
a
1 5
12.不等式 2 x 2 3 x 2 0 的解集用区间表示为(
) D. 1 2 ,2 )
2
20. P63 的值为(

四、某音乐厅共有30排座位,从第二排起后面每一排都比前 一排多2个座位,如果最后一排有120个座位,这个音乐厅一共有多少个座位? (6分)
A.20 B.35 C.120 D.210 二、判断题(在题后的括号内正确的打“√”,错误的打“×”。每小题2分,共12分) 1.函数 y x 的图像经过点(1,1),并且它在 (0,) 上是减函数
2
B. {x | x 2, 且x 1} D. {x | 2 x 1} )
B卷 第1页共2页
16.直线 2 x y 4 0 与 x 轴的交点B的坐标为( A. ( 2, 0) B. ( 2, 0) C. (0, 4)
D. (0, 4) )
6.函数 y x ( x 0) 的反函数是(
3.不等式组
x 1 0 的解集为( ) x 2 0
B. {x | x 2} D. {x | 1 x 2} )
2, A. , 1 2 B.
C. , 1 2 2,
13.已知角 的终边上一点 P (1,3) ,则 cos ( A.
1


2.偶次根式被开方数大于等于零 ( ) 3.如果一个平面内的两条直线都和另一个平面平行,那么这两个平面平行。 4.向量 a (1, 2) 与向量 b (2, 4) 互相平行




5.抛掷一颗骰子,观察出现的点数,则事件A= 点数为奇数 的概率为


1 3
五、已知向量 a , b 的坐标为 a 2, 4 , b 5, 2 ,求向量 2 a b , a gb . (6分)
A. {x | x 1} C. {x | x 1或x 2}
1 2
B.
3 2

6
C. 3
D.
3 3

14.若直线 l 的倾斜角 4.不等式 ( x 1)( x 3) 0 的解集为( A. , 1 3, 5.函数 y
x2 x 1







( ) 6.为了了解我校2014级某班45名学生本学期数学期末考试的成绩,要从中抽出15名同学数学 期末考试的成绩进行考察,某班45名学生本学期数学期末考试的成绩是总体,所抽出的15名 同学本学期数学期末考试的成绩是样本,样本容量为15( ) 三、填空题(每空2分,共30分) 1.用适当的符号( , , , ,=)填空 : (1) 2 N; (2) 六、已知正四棱锥 S ABCD 的底面边长 a 10cm ,高 h 12cm 。求它的侧面积和体积。
,则直线 l 的斜率 k 为( C. 1 2
1 2
B. ,1 C. 3, D. 1,3 )
A.
3 3
B.
3 2
D.1
15.如果点P ( 2, 6) 在直线 y A. 6 B. 2
x m 上,则 m 的值为( )
D.7 )
的定义域为(
C.9
A. {x | x 2} C. {x | x R, 且x 1}
) D.一些点组成 D. y x ) D. a
1 4
一、 选择题(每小题2分,共40分) 1.设 A a,则下列式子中正确的是( A. a =A B. a A C. a A ) D. a A
A. y
x
B. y x +4
2
C. y x
1
11.若 0 a 1 ,则下列各式中不正确的是( ) A. a 3 a 2 B. a 3 a 2
2 2 2 2
D. ( x 2) ( y 1) 4
2 2
8. 在如图所示的正方体 ABCD ABC D 中, (1)与 BB 平行的直线有 (2)与直线 BA 垂直的直线有 .(要求至少写出两条直线) (3)异面直线 BA 与 CC 所成角的度数为 . ; 、
17.圆心在点 C (2, 1) ,半径 r 2 的圆的标准方程为(
A. ( x 2) ( y 1) 4
2 2
B. ( x 2) ( y 1) 4
2 2
7.直线 y x 5 的斜率 k
,横截距 a
.
C. ( x 2) ( y 1) 4
2
5. 如果两条平行线中的一条和一个平面垂直,那么另一条直线也和这个平面 6.如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角
0 ;
0;
a,b锥 1 (已知 S正棱锥侧 1 )(8分) 2 nah 2 ch 3 sh
2.用不等号“<”或“>”填空: (1)若
2 x 1.2 0 ,则x 3
(2) 2 4
25 .
. . . .
B卷 第2页共2页
3.已知函数 f ( x 1) 2 x 3 ,则 f ( x) 4.函数 f ( x) x 3 的单调递减区间为
武汉职业技术学院
2014/2015学年第一学期期末考试 《初等数学 》 试卷 【B】卷 【闭】卷 2012级 适用班级:
A. y
x ( x 0)
B. y x ( x 0) D.以上答案都不对 ) C.2
2
C. y x ( x 0) 7. 16 的平方根为( A.4 B. 4
(考试时间:100分钟)
D. 2 )
班级:
题号 分值 得分
姓名:
一 40 二 12
学号:
三 30
序号:
四 6 五 6 六 6 总分 100
8.已知函数 f ( x) 3 x 2 ,则 f ( 2) 的值是( A.4 B. 4 C.10 D. 10
9.函数 y 0.5 x , x 2, 4, 6,8的图像是( A.一条直线 B.一条射线 C.一条线段 10.下列函数中是偶函数的是( )
18.圆 ( x 4) ( y 5) 36 的圆心坐标为( A. (4, 5) B. ( 4, 5) C. (4, 5) )
) D. ( 4, 5)
19.从1开始 n 个连续正奇数的和为( A.
n ( n 1) 2
B.
n ( n 1) 2
C. n 2
D. (n 1)
相关文档
最新文档