山西大同大学数字信号处理答案2013B

合集下载

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案
试判断系统是否是线性的?是否是移不变的?
分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n

[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =

《数字信号处理》复习思考题、习题(二)答案.doc

《数字信号处理》复习思考题、习题(二)答案.doc

一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。

但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。

2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。

3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。

就是说滤波器结构与特性没有必然的联系。

4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。

轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。

四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。

数字信号处理课后答案

数字信号处理课后答案

k = n0

n
x[ k ]
(B) T {x[n]} =

x[k ]
(C) T {x[ n]} = 0.5
x[ n ]
(D) T {x[n]} = x[− n]
1-5 有一系统输入为 x[n] ,输出为 y[n] ,满足关系 y[n] = ( x[n] ∗ u[n + 2])u[n] ,则系统是(A) (A)线性的 (B)时不变的 (C)因果的 (D)稳定的 解:
(a) T { x[ n ]} = h[ n] + x[ n ], (c) T {x[ n]} = ∑ x[ n − k ]
δ [n] + aδ [n − n0 ] ,单位阶跃响应 s[n] = u[n] + au[n − n0 ] 。
1-15 线性常系数差分方程为 y[n] − y[n − 1] +
y[n] = 0 , n < 0 , 则 y[3] = 0.5 。 解: y[0] = y[ −1] − 0.25 y[ −2] + x[0] = 1 y[1] = y[0] − 0.25 y[ −1] + x[1] = 1 y[2] = y[1] − 0.25 y[0] + x[2] = 0.75 y[3] = y[2] − 0.25 y[1] + x[3] = 0.5
∞ ∞ k =−∞ n '=−∞
解: (a)
n =−∞
∑ y[n] = ∑ ∑ x[k ]h[n − k ] = ∑ x[k ] ∑ h[n − k ] = ∑ x[k ] ∑ h[n ']
n =−∞ k =−∞ k =−∞ n =−∞


数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
+6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8

数字信号处理习题答案

数字信号处理习题答案

部分练习题参考答案第二章2.1 )1(2)(3)1()2(2)(-+++-+=n n n n n x δδδδ)6()4(2)3()2(-+-+-+-+n n n n δδδδ2.2 其卷积过程如下图所示)5(5.0)4()3()2(5.2)1(5)(2)(-------+-+=n n n n n n n y δδδδδδ2.3 (1)3142,73==ωππω这是有理数,因此是周期序列。

周期N =14。

(2)k kp ππ168/12==,k 取任何整数时,p 都不为整数,因此为非周期序列。

(3)k kp k k p 45.02,5126/5221====ππππ,当p 1,p 2 同时为整数时k =5,x (n )为周期序列,周期N =60。

(4)k kp πππ25.16.12==,取k =4,得到p =6,因此是周期序列。

周期N =6。

2.4 (1) ∑∞-∞=-=*=m m n R m R n h n x n y )()()()()(45(a) 当n <0 时,y (n )=0-0.5 -1 2.55h (m ) x (m ) 00 mm-121 0.51 2 h (0-m)m-121 h (-1-m)m-12 1h (1-m) 0m-121y (n )n-12(b) 当30≤≤n 时,11)(0+==∑=n n y nm(c) 当74≤≤n 时,n n y n m -==∑-=81)(34(d) 当n>7时,y (n )=0所以743070810)(≤≤≤≤><⎪⎩⎪⎨⎧-+=n n n n n n n y 或 (2))2(2)(2)]2()([)(2)(444--=--*=n R n R n n n R n y δδ)]5()4()1()([2-----+=n n n n δδδδ(3)∑∞-∞=--=*=m mn m n u m R n y n x n y )(5.0)()()()(5∑∞-∞=--=m mnm n u m R )(5.0)(5.05(a) 当n <0 时,y (n )=0 (b) 当40≤≤n 时,n n nnm mn n y 5.0221215.05.05.0)(1-=--==+=-∑(c) 当5≥n 时,n nm mn n y 5.03121215.05.05.0)(540⨯=--==∑=- 最后写成统一表达式:)5(5.031)()5.02()(5-⨯+-=n u n R n y nn(4)∑∞-∞=-=*=m mn m R n h n x n y 5.0)()()()(3(a) 当n ≤0 时,y (n )=0(b) 当31≤≤n 时,n nnn m mnn y 5.0121215.05.05.0)(1-=--==∑-=-(c) 当54≤≤n 时,25.05.01621)21(25.05.05.0)(6232-⨯=--==---=-∑n n n nn m mnn y(d) 当n ≥6时,y (n )=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(-+-+-+-+-=n n n n n n y δδδδδ2.6 (1)非线性、移不变系统(2)线性、移不变系统 (3)线性、移变系统 (4)非线性、移不变系统 (5)线性、移变系统2.7 (1)若∞<)(n g ,则稳定,因果,线性,时变(2)不稳定,0n n ≥时因果,0n n <时非因果,线性,时不变 (3)线性,时变,因果,不稳定 2.8 (1)因果,不稳定(2)因果,稳定(3)因果,稳定 (4)因果,稳定 (5)因果,不稳定 (6)非因果,稳定 (7)因果,稳定 (8)非因果,不稳定 (9)非因果,稳定 (10)因果,稳定2.9 因为系统是因果的,所以0)(,0=<n h n令)()(n n x δ=,)1(5.0)()1(5.0)()(-++-==n x n x n h n h n y 1)1(5.0)0()1(5.0)0(=-++-=x x h h15.05.0)0(5.0)1()0(5.0)1(=+=++=x x h h 5.0)1(5.0)2()1(5.0)2(=++=x x h h 25.0)2(5.0)3()2(5.0)3(=++=x x h h 15.0)1(5.0)()1(5.0)(-=-++-=n n x n x n h n h所以系统的单位脉冲响应为)1(5.0)()(1-+=-n u n n h n δ2.10 (1)初始条件为n <0时,y (n )=0设)()(n n x δ=,输出)(n y 就是)(n h 上式可变为)()1(5.0)(n n h n h δ+-=可得 11)1(5.0)0(=+-=h h 依次迭代求得5.00)0(5.0)1(=+=h h25.00)1(5.0)2(=+=h hn n h n h 5.00)1(5.0)(=+-=故系统的单位脉冲响应为)(5.0)(n u n h n= (2)初始条件为n ≥0时,y (n )=0)]()([2)1(n x n y n y -=-0,0)(≥=n n h2)]0()0([2)1(-=-=-x h h 22)]1()1([2)2(-=---=-x h h 32)]2()2([2)3(-=---=-x h hn n h n h 2)1(2)(-=+=所以)1(2)(---=n u n h n2.11 证明(1)因为∑∞-∞=-=*m m n h m x n h n x )()()()(令m n m -=',则)()()'()'()()('n x n h m h m n x n h n x m *=-=*∑∞-∞=(2)利用(1)证明的结果有)]()([)()]()([)(1221n h n h n x n h n h n x **=**∑∞-∞=-*-=m m n h m n h m x )]()()[(12∑∑∞-∞=∞-∞=--=m k k m n h k h m x )()()(12交换求和的次序有∑∑∞-∞=∞-∞=--=**k m k m n h m x k h n h n h n x )()()()]()([)(1221∑∞-∞=-*-=k k n h k n x k h )]()()[(12)]()([)(12n h n x n h **= )()]()([21n h n h n x **=(3)∑∞-∞=-+-=+*m m n h m n h m x n h n h n x )]()()[()]()([)(2121∑∑∞-∞=∞-∞=-+-=m m m n h m x m n h m x )()()()(21)()()()(21n h n x n h n x *+*=2.12 ∑∞-∞=--=*=m m n Nm n u a m Rn y n x n y )()()()()(∑∞-∞=--=m m Nnm n u a m Ra)()((a) 当n <0 时,y (n )=0(b) 当10-≤≤N n 时,11/11)/1(1)(110--=--==++=-∑a a a a a aan y n n nnm mn(c) 当N n ≥时,1)/1(1)/1(1)(111--=--==+-+-=-∑a a a a a a aan y N n n N nN m mn最后写成统一表达式:)(1)(11)(111N n u a a a n R a a n y N n n N n ---+--=+-++ 2.13 )]4()([*)()()()(11--=*=n n n u n h n x n y δδ)()4()(4n R n u n u =--=)()()()()(421n u a n R n h n y n y n *=*=)4(1)(113141---+--=-++n u a a a n R a a n n n2.14 (1)采样间隔为005.0200/1==T)()82sin()(ˆ0nT t nT f t xn a -+=∑∞-∞=δππ)()8100sin(nT t nT n -+=∑∞-∞=δππ(2))85.0sin()(ππ+=n n x数字频率πω5.0=,42=ωπ,周期N =42.15 (1)0)()(0n j n n j j e e nn eX ωωωδ-∞-∞=-=-=∑ (2)∑∑∞=-+-∞-∞=-==0)(0)()(n n j n j n nj j e e en x eX ωωαωω∑∞=--=0)(0n nj eeωωα)(01ωωα---=j ee (3)∑∑∑∞=+-∞=--∞-∞=-===)(0)()(n n j n nj nn nj j e eeen x eX ωαωαωω)(11ωαj e +--=(4)∑∑∞=--∞-∞=-==0cos )()(n n j n n nj j ne e en x eX ωαωωω∑∑∞=----+---∞=-+=+=0)()(0][21)(210000n n j j n j j nj n j n j n ne e e e e e ωωαωωαωωωααωαωαωωωαωωαωω2200)()(cos 21cos 111112100------+----+--=⎥⎦⎤⎢⎣⎡-+-=e e e e e e e e e e j j j j j (5)nj N N n n nj j e n N en x eX ωωωπ--=∞-∞=-∑∑⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+==12cos 1)()( ∑∑-=---=-++=1212)(21N N n n j n N j nN j N Nn nj e e e eωππω ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--+--=+-+-+-------)()()()()()(1)1(1)1(211)1(ωπωπωπωπωπωπωωωN j N N j N N j N j N N j N N j j Nj Nj e e e e e e e e e-0.92-0.380.920.38x (n ) 0nωωωωωωπωN j j j j N j e N e e Ne N e N 232)123()2cos(cos 21cos 12sin )2sin(------+--+=2.16 (1)⎰⎰⎰-==--πωπωππωωωπωπωπ002121)(21)(d je d je d e e H n h n j nj n j j ⎪⎩⎪⎨⎧=--=为奇数为偶数n n n n n ππ20)1(1 (2))sin()()()(011n n h n x n y ω=*=)cos()()()(022n n h n x n y ω-=*=2.17 (1))(ωj eX -*(2))]()([21ωωj j e X eX -*+(3))]()([2122ωωj j e X e X -+(4))(2ωj e X2.18采样间隔为25.0=T ,采样频率π8=Ωs)(1t y a 没有失真,因为输入信号的频率π21=Ω小于π42=Ωs)(2t y a 失真,因为输入信号频率π52=Ω大于π42=Ωs第三章3.1 设)(ωj eX 和)(ωj e Y 分别是)(n x 和)(n y 的傅里叶变换,试求下列序列的傅里叶变换:(1))(0n n x - (2) )(*n x (3) )(n x - (4) )(*)(n y n x (5) )()(n y n x ∙ (6) )(n nx (7) )2(n x (8))(2n x (9)⎩⎨⎧===奇数,偶数n n n x n x 0),2()(9解:(1) FT[)(0n n x -]=∑∞-∞=--n n j e nn x ω)(0令0n n n -=',0n n n +'=,则FT[)(0n n x -]=)()(00)(ωωωj n j n n n j e X e e n x -∞-∞=+''-='∑ (2) FT[)(*n x ]=)(*])([)(**ωωωj n n j n nj e X e n x en x-∞-∞=-∞-∞=-∑∑==(3) FT[)(n x -]=∑∞-∞=--n nj en x ω)(令n n -=',则FT[)(n x -]=∑∞-∞=''n n j e n x ω)()(ωj e X -=(4) FT[)(*)(n y n x ]=)(ωj eX )(ωj e Y证明 )(*)(n y n x =∑∞-∞=-m m n y m x )()(FT[)(*)(n y n x ]=∑∑∞-∞=-∞-∞=-n nj m em n y m x ω)]()([令m n k -=,则FT[)(*)(n y n x ]=m j k kj m e ek y m x ωω-∞-∞=-∞-∞=∑∑)]()([=mj k m kj em x ek y ωω-∞-∞=∞-∞=-∑∑)()(=)(ωj eX )(ωj e Y(5) FT[)()(n y n x ∙] =∑∞-∞=-n nj en y n x ω)()(=∑⎰∞-∞=-'-''n n j n j j e d e eY n x ωωππωωπ])(21)[(=ωπωωππω'∑⎰∞-∞='---'d e n x eY n n j j )()()(21=ωπωωππω''--'⎰d e X e Y j j )()(21)( 或者 FT[)()(n y n x ]=)(*)(21ωωπj j e Y e X(6) 因为∑∞-∞=-=n nj j en x eX ωω)()(,对该式两边对ω求导,得到j e n nx j d e dX n n j j -=-=∑∞-∞=-ωωω)()(FT[)(n nx ] 因此 FT[)(n nx ]=ωωd e dX j j )((7) FT[)2(n x ]=∑∞-∞=-n nj en x ω)2(令n n 2=',则FT[)2(n x ]=∑''-'取偶数n n j en x 2)(ω=n j nn e n x n x ω21)]()1()([21-∞-∞=-+∑=])()([212121n j n n j n j n e n x e en x ωπω-∞-∞=-∞-∞=∑∑+ =)]()([21)21(21πωω-+j j e X e X 或者FT[)2(n x ]=)()]()([21212121ωωωj j j e X e X eX =+ (8) FT[)(2n x ]=∑∞-∞=-n n j e n xω)(2利用(5)题结果,令)()(n y n x =,则FT[)(2n x ]=)(*)(21ωωπj j e X e X =ωπωωππω''--'⎰d e X e X j j )()(21)( (9) FT[)(9n x ]=∑∞-∞=-取偶数n n n j e nx ω)2(令∞≤'≤∞-='n n n ,2,则FT[)(9n x ]=)()(22ωωj n n n j e X en x ='∑∞-∞='-取偶数3.2 已知⎩⎨⎧≤<<=πωωωωω||,0||,1)(00j e X求)(ωj eX 的傅里叶反变换)(n x 。

数字信号处理习题及答案解析

数字信号处理习题及答案解析

==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。

山西大同大学数字信号处理dsp2014答案A1

(3)设计模拟低通滤波器的传输函数Ha(S);
(4)将Ha(S)转换成数字滤波器系统函数H(z);
设采样间隔为T,则
(2)(5分)双线性变换法:
10、解:(1)单位脉冲响应H(n)={0.1,0.09,0.21,0.09,0.1} (2分)
(2)由于满足中间点对称H(n)=H(N-1-n),所以具有第一类线性相位特性。(2分)
(3)循环卷积长度大于线性卷积的长度或c≥L1+L2-1(2分)
4、解:系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2
因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<2(5分)
(5分)
5、解:
二、绘图题:
6、解:由x(n)翻转得x(-n),再右移一个单位得x(1-n),然后幅度扩大一倍得2x(1-n)。
或由x(n)左移一个单位得x(1+n),再翻转得x(1-n),再然后幅度扩大一倍得2x(1-n)。(4分)
(6分)
7、解:
8、解: (5分)
三、计算题:
9、解:
(1)(5分)步,ap,ωs,aS)
(2)确定相应模拟低通滤波器的性能指标;
对于双线性变换法: —预畸变;
山西大同大学
2013-2014学年第二学期期末考试
数字信号处理A课程参考答案及评分标准
一、简答题:
1、解:

满足叠加原理
是线性系统。(5分)

是移不变系统。(5分)
2、解:(1)
3、解:缺步骤扣5分
(1)yL(n)={1,5,9,10,10,5,2;n=0,1,2…6}(4分)
(2)yC(n)= {3,5,9,10,10,5;n=0,1,2,4,5}(4分)

数字信号处理习题集及答案

第一章 数字信号处理概述判断说明题:1.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

( ) 答:错。

需要增加采样和量化两道工序。

2.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。

( )答:错。

受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础。

第二章 离散时间信号与系统分析基础一、离散时间信号与系统频域分析 计算题:1.设序列)(n x 的傅氏变换为)(ωj e X ,试求序列)2(n x 的傅里叶变换。

解: 由序列傅氏变换公式 DTFT ∑∞-∞=-==nnj j e n x e X n x ωω)()()]([可以得到DTFT 2)()2()]2([n j n n jn en x en x n x '-∞-∞='-∑∑'==ωω为偶数)()(21)(21)(21)(21)(21)]()1()([2122)2(2)2(22ωωπωωπωωωj j j j n j n n jn n j nn e X e X e X e X e n x e n x e n x n x -+=+=+=-+=++-∞-∞=∞-∞=--∞-∞=∑∑∑2.计算下列各信号的傅里叶变换。

(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ 解:(a )∑∑-∞=--∞-∞==-=2][2)(n nj n nj n ne en u X ωωωωωj nn j e e 2111)21(0-==∑∞= (b )∑∑∞-=--∞-∞==+=2)41(]2[41)(n n j n n j n n e e n u X ωωω)( ωωωj j m m j m e e e -∞=---==∑41116)41(20)2(2 (c )ωωωδω2]24[][)(j n n j nj n e e n en x X -∞-∞=--∞-∞==-==∑∑ 7.计算下列各信号的傅立叶变换。

数字信号处理课后习题答案

数字信号处理课后习题答案数字信号处理课后习题答案数字信号处理是一门重要的学科,它研究如何对数字信号进行处理和分析。

在学习过程中,我们经常会遇到一些习题,通过解答这些习题可以帮助我们更好地理解和掌握数字信号处理的知识。

本文将为大家提供一些数字信号处理课后习题的答案,希望对大家的学习有所帮助。

一、离散时间信号和系统1. 什么是离散时间信号?答:离散时间信号是在离散时间点上取值的信号,它可以用数学上的序列表示。

2. 什么是离散时间系统?答:离散时间系统是对离散时间信号进行处理的系统,它可以用差分方程或差分方程组来描述。

3. 离散时间信号和连续时间信号有何区别?答:离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

二、离散时间信号的表示和运算1. 如何表示离散时间信号?答:离散时间信号可以用数学上的序列表示,例如x(n)表示离散时间信号x在时间点n上的取值。

2. 离散时间信号的运算有哪些?答:离散时间信号的运算包括加法、减法、乘法和卷积等。

3. 什么是离散时间信号的卷积?答:离散时间信号的卷积是指两个离散时间信号之间的一种数学运算,它可以表示两个信号之间的线性叠加关系。

三、离散时间系统的性质和稳定性1. 离散时间系统有哪些常见的性质?答:离散时间系统常见的性质包括线性性、时不变性、因果性和稳定性等。

2. 什么是离散时间系统的稳定性?答:离散时间系统的稳定性是指当输入信号有界时,输出信号也有界。

3. 如何判断离散时间系统的稳定性?答:可以通过判断系统的冲激响应的绝对可和性来判断离散时间系统的稳定性。

四、离散傅里叶变换1. 什么是离散傅里叶变换(DFT)?答:离散傅里叶变换是将离散时间信号转换为离散频率信号的一种数学变换。

2. 离散傅里叶变换有何作用?答:离散傅里叶变换可以将时域的信号转换为频域的信号,从而方便对信号的频谱进行分析。

3. 如何计算离散傅里叶变换?答:可以通过对离散时间信号进行离散傅里叶变换公式的计算来得到离散傅里叶变换的结果。

数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。

解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m 0
1
专业
一、 得分
1、A 6、A 11、B 2、C 7、C 12、A 3、C 8、A 13、A 4、A 9、C 14、C
选择题(每小题 3 分,共 15 分):
5、A 10、B 15、D
2、解:根据信号观察时间 TP 的选择原则: TP ≥1/F=1/10=0.1s 因为要求: fs≥2fc,最小的采样频率为 2fc ,所以:
学院
密 三、 得分
填空题((每小题 3 分,共 36 分):
第 1页(共 4页)
第 2页(共 4页)
H ( z) H (s)
考号:
S
1 z 1 1 z 1

1 2(
1
1 z 2 1 z 1 ) 3 ( ) 1 1 z 1 1 z 1 1 2 z 1 z 2 6 2 z 1
班级 学院 专业
密 封
姓名:
线
第 3页(共 4页)
第 4页(共 4页)
山西大同大学
考号: 20 11 -20 12 学年第 二 学期期末考试试题纸 专业:
线
1、6 2、 WN
kn0
,0 K N 。
3、频谱混迭
a bz 1 4、 1 cz 1 dz 1
09
电子信息 ( 共 2 页)
八 九 十 总分
考试科目: 姓名:
题号 一 得分 二 三
数字信号处理 B
四 五 六 七
1
5、 1 e3T z 1 6、过渡带、阻带衰减 四、得分 1、解: 计算题(共 34 分):
班级Βιβλιοθήκη 签字封yl ( n) x( n) * h( n) x( m) h( n m) {1, 3, 5, 3}
m 0
1
yc ( n) x( n) h( n) x( m) h(( n m))3 R3 ( n) {4, 3, 5}
Tmax N min 1 1 0.2 10 3s 2 f c 2 2500 2 f c 2 2500 500 F 10
二 、 得分
判断题((每小题 3 分,共 15 分):
3、× 4、× 5、× 7、√ 8、√ 9、√ 10、√
1、×
2、×
频率分辨率提高一倍, 即:F=5 Hz TPmin = 1/ F = 1/5 = 0.2s 2 2500 N min 2f c /F 1000 5 3、解:双线性变换法:
相关文档
最新文档