2015届高考物理大二轮专题复习训练:专题二 第1课时 动力学观点在力学中的应用

合集下载

【免费下载】【步步高】(全国通用)2015届高考物理大二轮复习 专题训练二 第2课时 动力学观点在电学中的应用

【免费下载】【步步高】(全国通用)2015届高考物理大二轮复习 专题训练二 第2课时 动力学观点在电学中的应用
板在恒力作用下做匀加速运动,a′=M=0.2 m/s2=3 m/s2.可知滑块先与木板一起做匀加速 直线运ቤተ መጻሕፍቲ ባይዱ,然后发生相对滑动,做加速度减小的变加速运动,最后做速度为 10 m/s 的匀速 运动,故 A、B 错误,C 正确.木块开始的加速度为 2 m/s2,一段时间后加速度逐渐减小,当
减小到零时,与木板脱离做匀速直线运动,知 5 s 末的速度小于 10 m/s,知此时摩擦力不为
1
F电
考向 2 磁场内动力学问题分析 例 2 如图 3 所示,空间有一垂直纸面向外的磁感应强度为 0.5 T 的匀强磁场,一质量为 0.2 kg 且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速度放置一质量为 0.1 kg、电荷量 q=+0.2 C 的滑块,滑块与绝缘木板之间动摩擦因数为 0.5,滑块受到的最大静 摩擦力可认为等于滑动摩擦力.t=0 时对木板施加方向水平向左,大小为 0.6 N 的恒力,g 取 10 m/s2.则( )
第 2 课时 动力学观点在电学中的应用
1.带电粒子在磁场中运动时,洛伦兹力的方向始终垂直于粒子的速度方向. 2.带电粒子在电场力、重力和洛伦兹力共同作用下的直线运动只能是匀速直线运动. 3.带电粒子(不计重力)在匀强电场中由静止开始被加速或带电粒子沿着平行于电场的方向 射入匀强电场中时,带电粒子做匀变速直线运动. 4.电磁感应中导体棒在安培力和其他恒力作用下的三种运动类型:匀速直线运动、加速度 逐渐减小的减速直线运动、加速度逐渐减小的加速直线运动.
-1-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的
受力和运动分析
(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增

2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。

W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2

(全国通用)高考物理大二轮总复习 增分策略强化练 专题二 第1讲 动力学观点在力学中的应用

(全国通用)高考物理大二轮总复习 增分策略强化练 专题二 第1讲 动力学观点在力学中的应用

专题二第1讲 动力学观点在力学中的应用1.(2015·永州市三模) 一质量为m 的铁块以初速度v 1沿粗糙斜面上滑,经过一段时间又返回出发点,整个过程铁块速度随时间变化的图象如图1所示,下列说法正确的是( )图1A .铁块上滑过程与下滑过程满足v 1t 1=v 2(t 2-t 1)B .铁块上滑过程处于超重状态C .铁块上滑过程与下滑过程的加速度方向相反D .铁块上滑过程损失的机械能为12mv 212.(多选)(2015·东北三省四市模拟)如图2甲所示,一物体悬挂在轻绳下端,由静止开始沿竖直方向运动,运动过程中物体的机械能E 与物体通过的路程x 的关系图如图乙所示,其中0~x 1过程的图象为曲线,x 1~x 2过程的图象为直线(忽略空气阻力).下列说法正确的是( )图2A .0~x 1过程中物体所受拉力是变力,且一定不断减小B .0~x 1过程中物体的动能一定先增加后减小,最后为零C .x 1~x 2过程中物体一定做匀速直线运动D .x 1~x 2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动3. (2015·北京石景山区一模)如图3所示,一轻质弹簧沿竖直方向放置在水平地面上,其下端固定,当弹簧的长度为原长时,其上端位于O点.现有一小球从O点由静止释放,将弹簧压缩至最低点(弹簧始终处于弹性限度内).在此过程中,关于小球的加速度a随下降位移x的变化关系,下图中正确的是( )图34. (2015·重庆市西北狼教育联盟二模)如图4所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,已知v1>v2,P与定滑轮间的绳水平.不计定滑轮质量,绳足够长.直到物体P从传送带右侧离开.以下判断正确的是( )图4A.物体P一定先加速后匀速B.物体P可能先加速后匀速C.物体Q的机械能先增加后不变D .物体Q 一直处于超重状态5.(2015·枣庄市模拟) 如图5所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上,A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ,最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则下列说法中错误的是( )图5A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg6.(2015·吉林市三模)航天飞机水平降落在平直跑道上,其减速过程可简化为两个匀减速直线运动.航天飞机以水平速度v 0着陆后立即打开减速阻力伞,加速度大小为a 1,运动一段时间后减速为v ;随后在无阻力伞情况下匀减速直至停下,已知两个匀减速滑行过程的总时间为t ,求:(1)第二个减速阶段航天飞机运动的加速度大小; (2)航天飞机降落后滑行的总路程.7.(2015·东北三省四市模拟)如图6所示,一足够长的固定斜面倾角θ=37°,两物块A 、B 的质量分别为1 kg 和4 kg ,它们与斜面之间的动摩擦因数均为μ=0.5.两物块之间的轻绳长L =0.5 m ,轻绳承受的最大张力F T =12 N ,作用于B 上沿斜面向上的力F 逐渐增大,使A 、B 一起由静止开始沿斜面向上运动,g 取10 m/s 2.(sin 37°=0.6,cos 37°=0.8)图6(1)某一时刻轻绳被拉断,求此时外力F的大小;(2)若轻绳拉断前瞬间A、B的速度为2 m/s,绳断后保持外力F不变,求当A运动到最高点时,A、B之间的距离.8.(2015·漳州市三模)质量为2 kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图7甲所示.A和B经过1 s达到同一速度,之后共同减速直至静止,A和B的v-t图象如图乙所示,重力加速度g=10 m/s2,求:图7(1)A与B上表面之间的动摩擦因数μ1;(2)木板B与水平面间的动摩擦因数μ2;(3)A的质量.9.(2015·云南一模)如图8所示,一传送带AB段的倾角为37°,BC段弯曲成圆弧形,CD 段水平,A、B之间的距离为12.8 m,BC段长度可忽略,传送带始终以v=4 m/s 的速度逆时针方向运行.现将一质量为m=1 kg的工件无初速度放到A端,若工件与传送带之间的动摩擦因数为μ=0.5,在BC段运动时,工件速率保持不变,工件到达D点时速度刚好减小到与传送带相同.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图8(1)工件从A到D所需的时间;(2)工件从A到D的过程中,与传送带之间因摩擦产生的热量.二轮专题强化练答案精析专题二力与物体的直线运动第1讲动力学观点在力学中的应用1.A 2.AB 3.A 4.B 5.A6.(1)a1va1t-v0+v(2)va1t-vv 0+v202a1解析如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据v=v0+at有:第一段匀减速运动的时间为:t1=v-v0-a1=v0-va1则B到C过程的时间为:t2=t-t1=t-v0-va1B到C过程的加速度大小为:a2=v B-v Ct2=vt-v0-va1=a1va1t-v0+v(2)根据v2-v20=2ax得:第一段匀减速的位移x1=v2-v20-2a1=v20-v22a1第二段匀减速的位移为:x2=0-v2-2a2=v22a1va1t-v0+v=v a1t-v0+v2a1所以航天飞机降落后滑行的总路程为:x=x1+x2=va1t-vv0+v202a17.(1)60 N (2)0.8 m解析(1)轻绳刚好被拉断时,轻绳承受的张力达到最大F T=12 N,对于A物块,由牛顿第二定律得:F T-m A g sin θ-μm A g cos θ=m A a,而对两物块组成的整体,有:F-(m A+m B)g sin θ-μ(m A+m B)g cos θ=(m A+m B)a,a为此时两物块运动的加速度,联立两式求得此时外力F=60 N.(2)轻绳拉断后,A做匀减速运动,a A=g(sin θ+μcos θ)=10 m/s2B 在外力F 的作用下继续加速 F -m B g (sin θ+μcos θ)=m B a B , a B =5 m/s 2A 沿斜面运动到最高点 t =va A=0.2 s , 上升的位移x A =12vt =0.2 mB 在这段时间内向上运动的位移 x B =vt +12a B t 2=0.5 m这时A 、B 间的距离为d =x B +L -x A =0.8 m. 8.(1)0.2 (2)0.1 (3)6 kg解析 (1)由图象可知,A 在0~1 s 内的加速度a 1=v 1-v 0t 1=-2 m/s 2, 对A 由牛顿第二定律得,-μ1mg =ma 1, 解得μ1=0.2.(2)由图象知,A 、B 在1~3 s 内的加速度a 3=v 3-v 1t 2=-1 m/s 2,对A 、B 整体由牛顿第二定律得, -(M +m )gμ2=(M +m )a 3, 解得μ2=0.1.(3)由图象可知B 在0~1 s 内的加速度a 2=v 1-v 0′t 1=2 m/s 2.对B 由牛顿第二定律得,μ1mg -μ2(M +m )g =Ma 2,代入数据解得m =6 kg. 9.(1)3.2 s (2)129.6 J解析 (1)工件在传送带上先加速下滑, 根据牛顿第二定律,有:mg sin 37°+μmg cos 37°=ma 1,解得:a 1=10 m/s 2时间为:t 1=v a 1=410 s =0.4 s位移为:x 1=v 2t 1=42×0.4 m=0.8 m工件与传送带速度相等后,由于μ<tan 37°,继续加速下滑,根据牛顿第二定律,有:mg sin 37°-μmg cos 37°=ma 2,解得:a 2=2 m/s 2根据速度位移公式, 有:v 21-v 2=2a 2(L -x 1), 代入数据解得:v 1=8 m/s 故运动时间为:t 2=v 1-v a 2=8-42s =2 s , 滑上水平传送带后,加速度为:a 3=-μg =-5 m/s 2根据速度公式,有:t 3=v -v 1a 3=4-8-5s =0.8 s故t =t 1+t 2+t 3=(0.4+2+0.8) s =3.2 s. (2)从A 到B 过程,传送带的对地路程:x =v (t 1+t 2)=4×(0.4+2) m =9.6 m故工件从A 到B 的过程中与传送带之间因摩擦产生的热量:Q 1=μmg cos 37°·(L +x )=0.5×1×10×0.8×(12.8+9.6) J =89.6 J从C 到D 过程,工件的对地路程:x 3=v +v 12t 3=4+82×0.8 m=4.8 m从C 到D 过程,传送带的对地路程:x ′=vt 3=4×0.8 m=3.2 m故工件从C 到D 的过程中与传送带之间因摩擦产生的热量:Q 2=μmg (x 3+x ′)=40 J 故工件从A 到D 的过程中,与传送带之间因摩擦产生的热量:Q =Q 1+Q 2=129.6 J.。

2015高考物理(全国通用)二轮专题复习热点考向解析 新题重组练:专题二 功和能2-6

2015高考物理(全国通用)二轮专题复习热点考向解析 新题重组练:专题二 功和能2-6

其中0~x1、x2~x3过 程 的 图 线 是 曲 线 , x轴 的 直 线 , 且 x=0处 曲 线 的 切 线 斜 率 与
曲 线 的 切 线 斜 率 绝 对 值 相 等 。 则 下 列 说 法 中 正 确 的 是
专题二 第6讲
第10页
金版教程 ·大二轮复习 ·物理
基础细说 热点考向 归纳建模 新题重组 专题检测
P连 接 , 另 一 端 与 物 体
桌 面 上 , A右 端 连 接 一 细 线 , 细 线 绕 过 光 滑 的 定 滑 轮 与 物 体 连 。 开 始 时 托 住 B,让 A 处 于 静 止 且 细 线 恰 好 伸 直 , 然 后 由 静 止
释放 B, 直 至 B获 得 最 大 速 度 。 下 列 有 关 该 过 程 的 分 析 中 正 确 的 是( )
](多选)如 图 甲 所 示 , 在 倾 角 为 m的 物 体 受 到 一 个 沿 斜 面 向 上 的 变 力
θ的光 F
滑 斜 面 上 , 有 一 个 质 量 为
作 用 , 由 静 止 开 始 运 动 。 物 体 的 机 械 能 图 乙 所 示 , 图 线 为 平 行 于
E随路程x的 变 化 关 系 如 x1~x2过 程 的 x=x2处 ( )
金版教程 ·大二轮复习 ·物理
基础细说 热点考向 归纳建模 新题重组 专题检测
①E-x 图 象 斜 率 表 示 什 么 ? 提 示 : 表 示 拉 力 F。
②如 何 判 断 物 体 超 重 还 是 失 重 ? 提 示 : 看 物 体 加 速 度 的 方 向 。
专题二 第6讲
第12页
金版教程 ·大二轮复习 ·物理
A. 物 体 一 直 沿 斜 面 向 上 运 动 B.在0~x1过 程 中 , 物 体 的 加 速 度 大 小 先 减 小 后 增 大 C.在x1~x2过 程 中 , 物 体 的 重 力 势 能 一 直 在 增 加 D.在x2~x3过 程 中 , 物 体 先 超 重 后 失 重

【创新设计】2015届高考物理二轮精选题组:专练4-动力学综合问题(含解析)

【创新设计】2015届高考物理二轮精选题组:专练4-动力学综合问题(含解析)

专练4动力学综合问题一、单项选择题1.(2014·北京卷,18)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是()A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度解析手掌平托物体由静止开始竖直向上运动直至将物体抛出前的过程中,物体与手掌相对静止,先向上加速运动后减速运动,即物体先处于超重状态后处于失重状态,故A、B均错;物体离开手的瞬间,手的加速度必须向下且大于重力加速度,故C错、D对.答案 D2.(2014·湖南五市十校联合检测)物体的运动情况或所受合外力的情况如图所示,四幅图的图线都是直线,从图中可以判断这四个质量一定的物体的某些运动特征.下列说法正确的是()A.甲物体受到不为零且恒定的合外力B.乙物体受到的合外力越来越大C.丙物体受到的合外力为零D.丁物体的加速度越来越大解析甲物体做匀速直线运动,合外力为零,选项A错误;乙物体做匀加速运动,合外力恒定,且不为零,选项B错误;丙物体做匀加速运动,合外力恒定且不为零,选项C错误;丁物体所受合外力越来越大,加速度越来越大,选项D正确.答案 D3.(2014·北京卷,19)伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图1所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是()图1A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小解析由图可知,斜面的粗糙程度越低,物体沿右侧斜面上升的越接近与O点等高的位置,故当斜面光滑时,小球会上升到与O点等高的位置,故A对,B、C、D均错.答案 A4.2013年6月20日中国载人航天史上的首堂太空授课开讲,“天宫一号”中的质量测量仪上的弹簧能够产生一个恒定的力F,航天员把一个物体固定在质量测量仪支架一端,然后轻轻拉开支架,一放手,支架便在弹簧的作用下回到原位,若测速装置测量出支架复位的速度v和时间t,则待测物体的质量为()A.Fv t B.FtvC.vFt D.v tF解析 设待测物体的质量为m ,根据题意,放手后待测物体在恒力F 作用下做匀加速运动,其加速度a =v t ,由牛顿第二定律F =ma 可得待测物体的质量为m=Ft v ,选项B 正确.答案 B5. 如图2所示,A 、B 两小球分别连在轻线两端,B 球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为 ( )图2A .都等于g 2B.g 2和0C.g 2和m A m B ·g 2D.m A m B·g 2和g 2 解析 由整体法知,F 弹=(m A +m B )g sin 30°剪断线瞬间,由牛顿第二定律:对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B·g 2.对A :m A g sin 30°=m A a A ,得a A =12g .所以C 项正确.答案 C6.(2014·安徽省级示范高中联考,17)高空跳伞运动是跳伞者乘飞机、气球等航空器或其他器械升至高空后跳下,或者从陡峭的山顶、高地上跳下,如图3所示,在张开降落伞之前可看做是自由落体运动,开伞后受到的空气阻力与速度成正比,运动员减速下降,最后匀速下降,在指定区域安全着陆,从下落时开始计时,在整个过程中,用v 表示运动员下落的速度,h 表示运动员从初位置开始下落的高度,F 表示运动员受到的合力,E p 表示运动员的重力势能(选地面为零势能面).下列图象正确的是()图3解析跳伞运动员先做自由落体运动,再做加速度减小的减速运动,最后所受合外力为零,做匀速运动,A、B错;打开降落伞后做加速度逐渐减小的减速运动,所受合外力向上,与开始时的合外力方向相反,为负值且逐渐减小;最后匀速下降,合外力为零,C错;运动员的重力势能E p=mg(H-h),D正确.答案 D7.(2014·陕西省高三教学质量检测)如图4所示,运动员手持网球拍托球沿水平面匀加速运动,设球拍和球的质量分别为M、m,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们之间的摩擦及空气阻力不计,则()图4A.运动员的加速度大小为g tan θB.球拍对球的作用力为mg cos θC.运动员对球拍的作用力为Mg cos θD.若运动员的加速度大于g sin θ,则球一定沿球拍向上运动解析 球拍对球的支持力与球的重力的合力等于ma ,由此可得运动员的加速度大小为a =g tan θ,球拍对球的作用力为F =mg cos θ,选项A 正确,B 错误;运动员对球拍的作用力为(M +m )g cos θ,选项C 错误;若运动员的加速度大于g tan θ,球一定沿球拍向上运动,选项D 错误.答案 A8.(2014·皖北协作区联考)一足够长的倾角为θ的斜面固定在水平面上,在斜面顶端放置一长木板,木板与斜面之间的动摩擦因数为μ,木板上固定一力传感器,连接传感器和光滑小球间是一平行于斜面的轻杆,如图5所示,当木板固定时,传感器的示数为F 1.现由静止释放木板,木板沿斜面下滑,稳定时传感器的示数为F 2.则下列说法正确的是 ( )图5A .稳定后传感器的示数一定为零B .tan θ=μF 1F 2C .tan θ=F 1μF 2D .tan θ=F 2μF 1解析 木板与球的质量分别为M 和m ,对球由平衡条件和牛顿第二定律得:F 1-mg sin θ=0,mg sin θ-F 2=ma ,对木板和球整体得:(M +m )g sin θ-μ(M +m )g cos θ=(M +m )a ,则a <g sin θ,解得F 2=mg sin θ-ma >0,A 项错;tan θ=μF 1F 2,B 项对,C 、D 项错. 答案 B9.(2014·云南第一次检测,15)物块A 放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g =10 m/s 2,则物块A 沿此斜面下滑的加速度大小为( )A.5 3 m/s2B.3 3 m/s2C.(5-3) m/s2 D.1033m/s2解析由物块在倾角为30°的木板上匀速下滑,得F f=mg sin θ,又F N1=mg cos 30°,F f=μF N1,求得动摩擦因数μ=33;在倾角为60°的木板上物块加速下滑,有F N2=mg cos 60°,mg sin 60°-μF N2=ma,求得a=103 3 m/s2,D对.答案 D10. 一皮带传送装置如图6所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放在皮带的瞬间,滑块的速度为零,且弹簧正好处于自然长度,则当弹簧从自然长度到第一次达最长这一过程中,滑块的速度和加速度变化的情况是()图6A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大解析滑块在水平方向受向左的滑动摩擦力F f和弹簧向右的拉力F拉=kx,合力F合=F f-F拉=ma,当弹簧从自然长度到第一次达最长这一过程中,x逐渐增大,拉力F拉逐渐增大,因为皮带的速度v足够大,所以合力F合先减小后反向增大,从而加速度a 先减小后反向增大;滑动摩擦力与弹簧弹力相等之前,加速度与速度同向,滑动摩擦力与弹簧拉力相等之后,加速度便与速度方向相反,故滑块的速度先增大,后减小.答案 D11.如图7所示,在倾角为α的光滑绝缘斜面上放两个质量分别为m 1和m 2的带电小球A 、B (均可视为质点),m 1=2m 2,相距为L .两球同时由静止开始释放时,B 球的初始加速度恰好等于零.经过一段时间后,当两球距离为L ′时A 、B 的加速度大小之比为a 1∶a 2=3∶2,则L ′∶L 等于 ( )图7A .3∶2B .2∶1 C.10∶5 D .5∶10解析 由B 球初始加速度恰好等于零得初始时刻A 对B 的库仑力F =m 2g sin α,当两球距离为L ′时,A 球的加速度a 1=m 1g sin α+F ′m 1,初始时B 球受力平衡,两球相互排斥运动一段距离后,两球间距增大,库仑力一定减小,当两球距离为L ′时库仑力小于m 2g sin α,所以加速度a 2的方向应该沿斜面向下,a 2=m 2g sin α-F ′m 2.由a 1∶a 2=3∶2得F ′=0.25m 2g sin α,由库仑力公式F =k qQ L 2,F ′=k qQ L ′2可求得L ′∶L =F ∶F ′=2∶1. 答案 B二、多项选择题12.(2014·江西师大附中、临川一中联考)如图8甲所示,物块的质量m =1 kg ,初速度v 0=10 m/s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g=10 m/s2.下列说法中正确的是()图8A.0~5 s内物块做匀减速运动B.在t=1 s时刻,恒力F反向C.恒力F大小为10 ND.物块与水平面的动摩擦因数为0.3解析由图象得物块在前5 m位移内做匀减速运动,在5~13 m位移内做匀加速运动,且由图象斜率得匀减速运动的加速度大小a1=1002×5m/s2=10 m/s2,匀加速运动的加速度大小a2=642×(13-5)m/s2=4 m/s2,匀减速运动的时间t=v0a1=1 s,又由牛顿第二定律得,F+μmg=ma1和F-μmg=ma2,联立解得F=7 N,动摩擦因数μ=0.3.选项B、D正确.答案BD13.(2014·江西南昌调研)如图9甲所示,在电梯箱内轻绳AO、BO、CO连接吊着质量为m的物体,轻绳AO、BO、CO对轻质结点O的拉力分别为F1、F2、F3.现电梯箱竖直向下运动,其速度v随时间t的变化规律如图乙所示,重力加速度为g,则()图9A.在0~t1时间内,F1与F2的合力等于F3B.在0~t1时间内,F1与F2的合力大于mgC.在t1~t2时间内,F1与F2的合力小于F3D.在t1~t2时间内,F1与F2的合力大于mg解析对轻质结点O,因没质量,故其无论在何状态下,F1、F2、F3三个力的合力都为零,即F1与F2的合力与F3等大、反向,选项A正确,C错误;对物体进行受力分析,其受到竖直向下的重力mg和竖直向上的绳子的拉力F3,在0~t1时间内,电梯加速向下运动,物体处于失重状态,F3<mg,即F1与F2的合力小于mg,选项B错误;在t1~t2时间内,电梯减速向下运动,物体处于超重状态,F3>mg,即F1与F2的合力大于mg,选项D正确.答案AD14.一年一度的疯狂蹦极跳于2013年12月15日在澳门旅游塔61层隆重举行.为庆祝蹦极跳进驻澳门旅游塔七周年,今年比赛以“运动”为主题.如图10甲所示,蹦极比赛中,质量为60 kg的运动员系在橡皮绳上,橡皮绳另一端固定在O点.运动员从O点由静止下落,下落过程中运动员的速度与下落距离间的关系如图乙所示.橡皮绳的自然长度为12 m,且始终在弹性限度内,遵循胡克定律,不计橡皮绳的质量及空气阻力,重力加速度g=10 m/s2,则()图10A.运动员下落过程中橡皮绳的平均拉力大小约为2 700 NB.运动员下落过程中的最大加速度大小约为20 m/s2C.运动员下落过程中橡皮绳的弹性势能最大值约为2.16×104 JD.当橡皮绳上的拉力为1 200 N时,运动员的速度大小约为18 m/s解析由图乙可知,当运动员速度最大时,橡皮绳的伸长量Δx1=8 m,有kΔx1=mg,解得k=75 N/m.橡皮绳的最大伸长量Δx2=24 m,最大拉力F=kΔx2=1 800 N,则运动员下落过程中橡皮绳的平均拉力F=900 N,A项错误.根据牛顿第二定律得F-mg=ma,最大加速度a=20 m/s2,B项正确.根据机械能守恒定律得E p=mgh=60×10×36 J=2.16×104 J,C项正确.当橡皮绳上的拉力为1 200 N时,橡皮绳的伸长量Δx3=16 m,运动员下落的距离x=28 m,由图乙可知,对应的速度大小约为15 m/s,D项错误.答案BC15.(2014·河北省衡水中学调研)如图11甲所示,A、B两长方体叠放在一起,放在光滑的水平面上,B物体从静止开始受到一个水平变力的作用,该力与时间的关系如图乙所示,运动过程中A、B始终保持相对静止.则在0~2t0时间内,下列说法正确的是()图11A.t0时刻,A、B间的静摩擦力最大,加速度最小B.t0时刻,A、B的速度最大C.0时刻和2t0时刻,A、B间的静摩擦力最大D.2t0时刻,A、B离出发点最远,速度为0解析t0时刻,A、B受力F为0,A、B加速度为0,A、B间静摩擦力为0,加速度最小,选项A错误;在0至t0过程中,A、B所受合外力逐渐减小,即加速度减小,但是加速度与速度方向相同,速度一直增加,t0时刻A、B速度最大,选项B正确;0时刻和2t0时刻A、B所受合外力F最大,故A、B在这两个时刻加速度最大,为A提供加速度的A、B间静摩擦力也最大,选项C正【创新设计】2015届高考物理二轮精选题组:专练4-动力学综合问题(含解析)确;A、B先在F的作用下加速,t0后F反向,A、B继而做减速运动,到2t0时刻,A、B速度减小到0,位移最大,选项D正确.答案BCD- 11 - / 11。

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关动力学、动量和能量观点在力学中的应用1.动量和能量综合应用例 1 (多选)如图甲所示,质量M=0.8kg的足够长的木板静止在光滑的水平面上,质量m=0.2kg的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F,4 s后撤去力F.若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10m/s2,则下列说法正确的是()A.0∼4s时间内拉力的冲量共为3.2N⋅sB.t=4s时滑块的速度大小为9.5m/sC.木板受到滑动摩擦力的冲量共为2.8N⋅sD.木板的速度最大为2m/s练习1-1如图所示,带有圆管轨道的长轨道水平固定,圆管轨道竖直(管内直径可以忽略),底端分别与两侧的直轨道相切,圆管轨道的半径R=0.5 m,P点左侧轨道(包括圆管)光滑,右侧轨道粗糙.质量m=1 kg的物块A以v0=10 m/s的速度滑入圆管,经过竖直圆管轨道后与直轨道上P处静止的质量M=2 kg的物块B发生碰撞(碰撞时间极短),碰后物块B在粗糙轨道上滑行18 m后速度减小为零.已知物块A、B与粗糙轨道间的动摩擦因数均为μ=0.1,取重力加速度大小g=10 m/s2,物块A、B均可视为质点.求:(1)物块A滑过竖直圆管轨道最高点Q时受到管壁的弹力;(2)最终物块A静止的位置到P点的距离.2.综合分析多过程问题例2如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:(1)小物块到达C点时的速度大小;(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(3)要使小物块不滑出长木板,木板的长度L至少多大.练习2-1如图所示,半径为R的四分之一光滑圆弧轨道竖直固定在水平地面上,下端与水平地面在P点相切,一个质量为2m的物块B(可视为质点)静止在水平地面上,左端固定有水平轻弹簧,Q点为弹簧处于原长时的左端点,P、Q间的距离为R,PQ段地面粗糙、动摩擦因数为μ=0.5,Q点右侧水平地面光滑,现将质量为m的物块A(可视为质点)从圆弧轨道的最高点由静止开始下滑,重力加速度为g.求:(1)物块A沿圆弧轨道滑至P点时对轨道的压力大小;(2)弹簧被压缩的最大弹性势能(未超过弹性限度);(3)物块A最终停止位置到Q点的距离.课后检测1. 质量为1 kg的物体静止在水平面上,t=0时受到水平拉力F的作用开始运动,F随时间t 变化的关系图象如图所示.已知t=4 s时物体刚好停止运动,取g=10m/s2,以下判断正确的是()A.物体所受摩擦力为3 NB.t=2 s时物体的速度最大C.t=3 s时物体的动量最大D.物体的最大动能为2 J2. 粗糙水平地面上的物体,在一个水平恒力作用下做直线运动,其v-t图象如图所示,下列物理量中第1 s内与第2 s内相同的是()A.摩擦力的功B.摩擦力的冲量C.水平恒力的功D.水平恒力的冲量3. 如图所示,质量均为m的两带电小球A与B,带电荷量分别为+q、+2q,在光滑绝缘水平桌面上由静止开始沿同一直线运动,当两带电小球运动一段时间后A球速度大小为v,在这段时间内,下列说法正确的是()A.任一时刻B的加速度比A的大B.两球均做加速度增大的加速运动C.两球组成的系统电势能减少了mv2,但动能和电势能之和不变D.两球动量均增大,且总动量也增大4.如图所示,质量为m、带有半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB 的长度为2R,现将质量也为m的小球从距A点正上方为h的位置由静止释放,然后由A点ℎ(不计空气阻力),则() 进入半圆形轨道后从B点冲出,在空中上升的最大高度为12A.小球冲出B点后做斜上抛运动B.小球第二次进入轨道后恰能运动到A点C.小球第一次到达B点时,小车的位移大小是RmgℎD.小球第二次通过轨道克服摩擦力所做的功等于125.光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则()A.物块B的加速度大小为a时弹簧的压缩量为x3xB.物块A从开始运动到刚要离开弹簧时位移大小为23mv2C.物块开始运动前弹簧的弹性势能为32D.物块开始运动前弹簧的弹性势能为3mv26. “飞针穿玻璃”是一项高难度的绝技表演,曾度引起质疑.为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是()A.测出玻璃厚度和飞针穿越玻璃前后的速度B.测出玻璃厚度和飞针穿越玻璃所用的时间C.测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D.测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度7.如图,立柱固定于光滑水平面上O点,质量为M的小球a向右运动,与静止于Q点的质量为m的小球b发生弹性碰撞,碰后a球立即向左运动,b球与立柱碰撞能量不损失,所有碰撞时间均不计,b球恰好在P点追到a球,Q点为OP间中点,则a、b球质量之比M:m=()A.3:5B.1:3C.2:3D.1:28. (多选)如图,在光滑的水平面上有一个长为L的木板,小物块b静止在木板的正中间,小物块a以某一初速度v0从左侧滑上木板.已知物块a、b与木板间的摩擦因数分别为μa、μb,木块与木板质量均为m,a、b之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力.下列说法正确的是()mv02A.若没有物块从木板上滑下,则无论v0多大整个过程摩擦生热均为13B.若μb<2μa,则无论v0多大,a都不会从木板上滑落μa gL,则ab一定不相碰C.若v0≤√32D.若μb>2μa,则a可能从木板左端滑落9.(多选)如图所示,甲、乙两个小滑块(视为质点)静止在水平面上的A、B两处,B处左侧水平面光滑,右侧水平面粗糙.若甲在水平向右的拉力F=kt(其中k=2N/s)的作用下由静止开始运动,当t=3s时撤去力F,随后甲与乙发生正碰而粘合在一起,两滑块共同滑行2.4m后停下,已知甲的质量为1kg,两滑块与粗糙水平面间的动摩擦因数均为0.75,取g=10m/s2,则()A.0∼3s内,力F的冲量大小为18N⋅sB.撤去力F时甲的速度大小为9m/sC.两滑块正碰后瞬间的速度大小为4.5m/sD.乙的质量为0.5kg10. 如图所示,质量为M的木块位于光滑水平面上,在木块与墙壁之间用轻质弹簧连接,当木块静止时刚好位于A点,现有一质量为m的子弹以水平速度v0射向木块并嵌入其中(作用时间极短),求:(1)当木块回到A点时的速度大小;(2)从开始到木块回到A点的过程中,墙壁对弹簧的冲量.11. 如图所示,一轻质弹簧的一端固定在小球A上,另一端与小球B接触但未连接,该整体静止放在离地面高为H=5m的光滑水平桌面上.现有一小球C从光滑曲面上离桌面ℎ= 1.8m高处由静止开始滑下,与小球A发生碰撞(碰撞时间极短)并粘在一起压缩弹簧推动小球B向前运动,经一段时间,小球B脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出.小球均可视为质点,忽略空气阻力,已知m A=2kg,m B=3kg,m C=1kg,g=10m/s2.求:(1)小球C与小球A碰撞结束瞬间的速度;(2)小球B落地点与桌面边缘的水平距离.12. 如图所示,在水平桌面上放有长度为L=2m的木板C,C上右端是固定挡板P,在C 中点处放有小物块B,A、B的尺寸以及P的厚度皆可忽略不计.C上表面与固定在地面上半径为R=0.45m的圆弧光滑轨道相切,质量为m=1kg的小物块A从圆弧最高点由静止释放,设木板C与桌面之间无摩擦,A、C之间和B、C之间的滑动摩擦因数均为μ,A、B、C(包含挡板P)的质量相同,开始时,B和C静止,(g=10m/s2)(1)求滑块从释放到离开轨道受到的冲量大小;(2)若物块A与B发生碰撞,求滑动摩擦因数μ应满足的条件;(3)若物块A与B发生碰撞(设为完全弹性碰撞)后,物块B与挡板P发生碰撞,求滑动摩擦因数μ应满足的条件.13.一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.14. 如图所示,水平光滑地面上有两个静止的小物块A和B(可视为质点),A的质量m=1.0 kg,B的质量M=4.0 kg,A、B之间有一轻质压缩弹簧,且A、B间用细线相连(图中未画出),弹簧的弹性势能E p=40 J,弹簧的两端与物块接触但不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A、B分离后立即撤去弹簧,物块A与墙壁发生弹性碰撞后,A在B未到达斜面前追上B,并与B相碰后结合在一起向右运动,g取10 m/s2,求:(1)A与弹簧分离时的速度大小;(2)A、B沿斜面上升的最大距离.15. 如图所示,半径R1=1 m的四分之一光滑圆弧轨道AB与平台BC在B点平滑连接,半径R2=0.8 m的四分之一圆弧轨道上端与平台C端连接,下端与水平地面平滑连接,质量m =0.1 kg的乙物块放在平台BC的右端C点,将质量也为m的甲物块在A点由静止释放,让其沿圆弧下滑,并滑上平台与乙相碰,碰撞后甲与乙粘在一起从C点水平抛出,甲物块与平台间的动摩擦因数均为μ=0.2,BC长L=1 m,重力加速度g取10 m/s2,不计两物块的大小及碰撞所用的时间,求:(1)甲物块滑到B点时对轨道的压力大小;(2)甲和乙碰撞后瞬间共同速度的大小;(3)粘在一起的甲、乙两物块从C点抛出到落到CDE段轨道上所用的时间.16. 如图所示,一圆心为O、半径为R的光滑半圆轨道固定在竖直平面内,其下端和粗糙的水平轨道在A点相切,AB为圆弧轨道的直径.质量分别为m、2m的滑块1、2用很短的细线连接,在两滑块之间夹有压缩的短弹簧(弹簧与滑块不固连),滑块1、2位于A点.现剪断两滑块间的细线,滑块1恰能过B点,且落地点恰与滑块2停止运动的地点重合.滑块1、2可视为质点,不考虑滑块1落地后反弹,不计空气阻力,重力加速度为g,求:(1)滑块1过B点的速度大小;(2)弹簧释放的弹性势能大小;(3)滑块2与水平轨道间的动摩擦因数.17. 汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.。

2015高考物理(全国通用)二轮专题复习热点考向解析 新题重组练:专题二 功和能2-5


专题二 第5讲
第23页
金版教程 ·大二轮复习 ·物理
基础细说 热点考向 归纳建模 新题重组 专题检测
[解析]
v 2v 1 2 1 2 WF1= mv +μ m g · t,WF2= m· 4v +μ m g t,故 2 2 2 2
v 2v WF2<4WF1;Wf1=μ m g · t,Wf2=μ m g · t,故Wf2=2Wf1,C正 2 2 确。
专题二 第5讲
第25页
金版教程 ·大二轮复习 ·物理
基础细说 热点考向 归纳建模 新题重组 专题检测
[解析] 汽 车 以 最 大 速 率 行 驶 时 , 牵 引 力
F等 于 阻 力
f,即F
k1 =f=k m g 。由P=k1mgv1及P=k2mgv2,得v2= v1,故B正 确 。 k2
[答案] B
专题二 第5讲
第18页
金版教程 ·大二轮复习 ·物理
基础细说 热点考向 归纳建模 新题重组 专题检测
拓展提升
计算功 和 功 率 时 应 注 意 的 问 题
1 () 计 算 功 时 , 要 注 意 分 析 受 力 情 况 和 能 量 转 化 情 况 , 分 清 是 恒 力 做 功 , 还 是 变 力 做 功 , 恒 力 做 功 一 般 用 功 的 公 式 或 动 能 定 理 求 解 , 变 力 做 功 用 动 能 定 理 或 图 象 法 求 解 ;
发 生 一 段 位 移 _ _ _ _ _ _ _ _ _ _ _ _
.功 F-l
恒力 W=Flc o s α求 , 但 F必须为_ _ _ _ _ _ _ .也 可 以 利 用 动 能 定 理 ____________ 间 接 求 解 .
图 象 来 求 ; 变 力 的 功 一 般 应 用

高考物理二轮复习教案专题二能量与动量功和功率功能关系

功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。

2015届高考物理二轮专题突破课件(热点突破+命题预测+押题):专题七 动力学和功能观点的应用(共37张PPT)


解析]
2x1 (1)AB 段加速度 a1= 2 =0.5 m/s2 t1
根据牛顿第二定律,有 Fcos α-μ(mg-Fsin α)=ma1 ma1+μmg 解得:F= cos α+μsin α 2×0.5+0.5×2×10 = N=11 N. 0.6+0.5×0.8 (2)到达 B 点时,小物块的速度 v=a1t1=2 m/s 在 BC 段的加速度:a2=gsin 53° =8 m/s2
命题规律:对于物体在变力作用下的多过程运动问题,不能
利用牛顿运动定律和运动学公式求解,可利用动能定理进行
求解.高考对此问题的考查主要涉及的运动形式有:变力作 用下的直线运动、曲线运动,题目难度中等.
1.(2014· 温州五校联考)如图所示,在竖直平面内,粗糙的斜 面轨道 AB 的下端与光滑的圆弧轨道 BCD 相切于 B,C 是最 低点,圆心角∠BOC=37° ,D 与圆心 O 等高,圆弧轨道半径 R=1.0 m,现有一个质量为 m=0.2 kg 可视为质点的小物体, 从 D 点的正上方 E 点处自由下落,DE 距离 h=1.6 m,小物 体与斜面 AB 之间的动摩擦因数 μ=0.5.取 sin 37° =0.6,cos 37° =0.8,g=10 m/s2,求:
(1)若力 F 恒为 4 N,经过时间 1 s,铁块运动到木板的左端, 求木板的长度 L; (2)若力 F 从零开始逐渐增加,且铁块始终在木板上没有掉下 来.试通过分析与计算,在图乙中作出铁块受到的摩擦力 Ff 随力 F 大小变化的图象.
[解析] (1)对铁块,由牛顿第二定律 F-μ2mg=ma1 对木板,由牛顿第二定律 μ2mg-μ1(M+m)g=Ma2 设木板的长度为 L,经时间 t 铁块运动到木板的左端,则 1 2 x 铁= a1t 2 1 2 x 木= a2t 2 又 x 铁-x 木=L 解得 L=0.5 m.

高考物理二轮复习 第一部分 专题四 动量与能量 第1讲 动量和能量观念在力学中的应用练习(含解析)

动量和能量观念在力学中的应用1.如图甲所示,质量m=6 kg的空木箱静止在水平面上,某同学用水平恒力F推着木箱向前运动,1 s 后撤掉推力,木箱运动的v .t图像如图乙所示,不计空气阻力,g取10 m/s2。

下列说法正确的是()A.木箱与水平面间的动摩擦因数μ=0。

25B.推力F的大小为20 NC.在0~3 s内,木箱克服摩擦力做功为900 JD.在0.5 s时,推力F的瞬时功率为450 W解析撤去推力后,木箱做匀减速直线运动,由速度—时间图线知,匀减速直线运动的加速度大小a2=错误! m/s2=5 m/s2,由牛顿第二定律得,a2=错误!=μg,解得木箱与水平面间的动摩擦因数μ=0.5,故A错误;匀加速直线运动的加速度大小a1=错误! m/s2=10 m/s2,由牛顿第二定律得,F-μmg=ma1,解得F=μmg+ma1=0。

5×60 N+6×10 N=90 N,故B错误;0~3 s内,木箱的位移x=错误!×3×10 m=15 m,则木箱克服摩擦力做功W f=μmgx=0。

5×60×15 J=450 J,故C错误;0。

5 s时木箱的速度v=a1t1=10×0。

5 m/s=5 m/s,则推力F的瞬时功率P=Fv=90×5 W=450 W,故D正确.答案D2.(2019·湖南株洲二模)如图,长为l的轻杆两端固定两个质量相等的小球甲和乙(小球可视为质点),初始时它们直立在光滑的水平地面上。

后由于受到微小扰动,系统从图示位置开始倾倒。

当小球甲刚要落地时,其速度大小为()A.错误!B.错误!C.错误!D.0解析甲、乙组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得mv-mv′=0,由于甲球落地时,水平方向速度v=0,故v′=0,由机械能守恒定律得错误!mv错误!=mgl,解得v甲=2gl,故A正确.答案A3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题定位 本专题解决的是物体(或带电体)在力的作用下的匀变速直线运动问题.高考对本专题考查的内容主要有:①匀变速直线运动的规律及运动图象问题;②行车安全问题;③物体在传送带(或平板车)上的运动问题;④带电粒子(或带电体)在电场、磁场中的匀变速直线运动问题;⑤电磁感应中的动力学分析.考查的主要方法和规律有:动力学方法、图象法、临界问题的处理方法、运动学的基本规律等.应考策略 抓住“两个分析”和“一个桥梁”.“两个分析”是指“受力分析”和“运动情景或运动过程分析”.“一个桥梁”是指“加速度是联系运动和受力的桥梁”.综合应用牛顿运动定律和运动学公式解决问题.第1课时 动力学观点在力学中的应用1.物体或带电粒子做匀变速直线运动的条件是:物体或带电粒子所受合力为恒力,且与速度方向共线.2.匀变速直线运动的基本规律为 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 20=2ax .中间时刻的瞬时速度:v t 2=x t =v 0+v 2.任意相邻两个连续相等的时间内的位移之差是一个恒量,即Δx =x n +1-x n =a ·(Δt )2.3.速度—时间关系图线的斜率表示物体运动的加速度,图线与时间轴所包围的面积表示物体运动的位移.匀变速直线运动的v -t 图象是一条倾斜直线.4.位移—时间关系图线的斜率表示物体的速度,匀变速直线运动的x -t 图象是一条抛物线. 5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化.物体发生超重或失重现象与物体的运动方向无关,只决定于物体的加速度方向.当a 有竖直向上的分量时,超重;当a 有竖直向下的分量时,失重;当a =g 且竖直向下时,完全失重.1.动力学的两类基本问题的处理思路2.解决动力学问题的常用方法 (1)整体法与隔离法.(2)正交分解法:一般沿加速度方向和垂直于加速度方向进行分解,有时根据情况也可以把加速度进行正交分解.(3)逆向思维法:把运动过程的末状态作为初状态的反向研究问题的方法,一般用于匀减速直线运动问题,比如刹车问题、竖直上抛运动.考向1 运动学基本规律的应用例1 (2014·新课标Ⅰ·24)公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s .当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.(g 取10 m/s 2) 审题突破 在反应时间内汽车做什么运动?采取刹车措施后呢?要求安全距离和汽车的位移有什么关系?解析 设路面干燥时,汽车与地面间的动摩擦因数为μ0,刹车时汽车的加速度大小为a 0,安全距离为s ,反应时间为t 0,由牛顿第二定律和运动学公式得 μ0mg =ma 0①s =v 0t 0+v 202a 0②式中,m 和v 0分别为汽车的质量和刹车前的速度.设在雨天行驶时,汽车与地面间的动摩擦因数为μ,依题意有μ=25μ0③ 设在雨天行驶时汽车刹车的加速度大小为a ,安全行驶的最大速度为v ,由牛顿第二定律和运动学公式得 μmg =ma ④ s =v t 0+v 22a⑤联立①②③④⑤式并代入题给数据得 v =20 m/s(v =-24 m/s 不符合实际,舍去) 答案 20 m/s以题说法 解决此类问题必须熟练掌握运动学的基本规律和推论(即五个关系式).对于匀减速直线运动还要会灵活运用逆向思维法.对于追及相遇问题要能分别清晰地分析两物体的运动过程,能找出空间和时间的关系等.为了迎接外宾,对国宾车队要求非常严格.设从同一地点先后开出甲、乙两辆不同型号的国宾汽车在平直的公路上排成直线行驶.汽车甲先开出,汽车乙后开出.汽车甲从静止出发先做加速度为a 1的匀加速直线运动,达到速度v 后改为匀速直线运动.汽车乙从静止出发先做加速度为a 2的匀加速直线运动,达到同一速度v 后也改为匀速直线运动.要使甲、乙两辆汽车都匀速行驶时彼此间隔的间距为x .则甲、乙两辆汽车依次启动的时间间隔为多少?(不计汽车的大小) 答案 x v +v2a 1-v 2a 2解析 设当甲经过一段时间t 1匀加速运动达到速度v ,位移为x 1, 对甲,有:v =a 1t 1① v 2=2a 1x 1②设乙出发后,经过一段时间t 2匀加速运动达到速度v ,位移为x 2, 对乙,有:v =ɑ2t 2③ v 2=2ɑ2x 2④设甲匀速运动时间t 后,乙也开始匀速运动,甲、乙依次启动的时间间隔为Δt , 由题意知:Δt =t 1+t -t 2⑤ x =x 1+v t -x 2⑥ 解得:Δt =x v +v2a 1-v 2a 2.考向2 挖掘图象信息解决动力学问题例2 如图1甲所示,在倾角为37°的粗糙且足够长的斜面底端,一质量m =2 kg 可视为质点的滑块压缩一轻弹簧并锁定,滑块与弹簧不相连.t =0 s 时解除锁定,计算机通过传感器描绘出滑块的速度时间图象如图乙所示,其中Ob 段为曲线,bc 段为直线,g 取10 m/s 2, sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( )图1A .在0.15 s 末滑块的加速度为-8 m/s 2B .滑块在0.1~0.2 s 时间间隔内沿斜面向下运动C .滑块与斜面间的动摩擦因数μ=0.25D .在滑块与弹簧脱离之前,滑块一直在做加速运动审题突破 结合图象可知滑块在斜面上分别做什么运动?bc 段为直线说明什么?解析 在v -t 图象中,斜率代表加速度,0.15 s 末滑块的加速度a =ΔvΔt =-8 m/s 2,故A 正确;滑块在0.1~0.2 s 时间间隔内沿斜面向上运动,故B 错误;滑块在0.1~0.2 s 内,由牛顿第二定律可知,-mg sin 37°-μmg cos 37°=ma ,可求得μ=0.25,故C 正确;在0~0.1 s 过程中为滑块和弹簧接触的过程,由图象可知,滑块先做加速运动后做减速运动,故D 错误. 答案 AC以题说法 解图象类问题的关键在于将图象与物理过程对应起来,通过图象的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题.(2014·福建·15)如图2所示,滑块以初速度v 0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零.对于该运动过程,若用h 、s 、v 、a 分别表示滑块的下降高度、位移、速度和加速度的大小,t 表示时间,则下列图象最能正确描述这一运动规律的是( )图2答案 B解析 滑块沿斜面向下做匀减速运动,故滑块下滑过程中,速度随时间均匀变化,加速度a不变,选项C 、D 错误.设斜面倾角为θ,则s =h sin θ=v 0t -12at 2,故h —t 、s —t 图象都应是开口向下的抛物线,选项A错误,选项B 正确.考向3 应用动力学方法分析传送带问题例3 如图3所示,一水平传送带以4 m/s 的速度逆时针传送,水平部分长L =6 m ,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个可视为质点的物块无初速度地放在传送带最右端,已知物块与传送带间的动摩擦因数μ=0.2,g =10 m/s 2.求物块从放到传送带上到第一次滑回传送带最远端所用的时间.图3审题突破 物块在传送带上向左和向右如何判断做何运动?在斜面上向上、向下运动的时间是否一样?解析 物块与传送带间的摩擦力:F f =μmg =ma 1 代入数据得a 1=2 m/s 2设当物块加速到与传送带速度相同时发生的位移为x 1, 由v 2=2a 1x 1,解得:x 1=4 m <6 m 则物块加速到v 的时间:t 1=va 1=2 s物块与传送带速度相同时,它们一起运动,一起运动的位移为x 2=L -x 1=2 m 一起运动的时间:t 2=x 2v =0.5 s物块在斜面上运动的加速度:a 2=mg sin 30°m =5 m/s 2根据对称性,上升和下降的时间相同:t 3=Δva 2=0.8 s返回传送带后,向右减速的时间:t 4=Δva 1=2 s物块从放到传送带上到第一次滑回传送带最远端所用的时间:t 总=t 1+t 2+2t 3+t 4=6.1 s. 答案 6.1 s以题说法 1.传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.因此,搞清楚物体与传送带间的相对运动方向是解决该问题的关键.2.传送带问题还常常涉及到临界问题,即物体与传送带速度相同,这时会出现摩擦力改变的临界状态,具体如何改变要根据具体情况判断.(2014·河南豫东豫北名校五模)如图4所示,与水平方向成37°角的传送带以恒定速度v =2 m/s 顺时针方向转动,两传动轮间距L =5 m .现将质量为1 kg 且可视为质点的物块以v 0=4 m/s 的速度沿传送带向上的方向自底端滑上传送带.物块与传送带间的动摩擦因数为μ=0.5,取g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8,计算时,可认为滑动摩擦力近似等于最大静摩擦力,求物块在传送带上上升的最大高度.图4答案 0.96 m解析 物块刚滑上传送带时,物块相对传送带向上运动,受到摩擦力沿传送带向下,将匀减速上滑,直至与传送带速度相同,物块向上减速时,由牛顿第二定律得 mg sin θ+μmg cos θ=ma 1则有:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s 2=10 m/s 2 物块沿传送带向上的位移为:x 1=v 20-v 22a 1=42-222×10m =0.6 m由于最大静摩擦力F f =μmg cos θ<mg sin θ,物块与传送带速度相同后,物块受到滑动摩擦力沿传送带向上,但合力沿传送带向下,故继续匀减速上升,直至速度为零. 根据牛顿第二定律可得:mg sin θ-μmg cos θ=ma 2 得:a 2=g (sin θ-μcos θ)=10×(0.6-0.5×0.8)m/s 2=2 m/s 2 物块沿传送带向上运动的位移为:x 2=v 22a 2=222×2 m =1 m则物块沿传送带上升的最大高度为: H =(x 1+x 2)sin 37°=(0.6+1)×0.6 m =0.96 m.2.应用动力学方法分析“滑块—木板模型”问题例4 (14分)如图5所示,水平地面上有一质量为M 的长木板,一个质量为m 的物块(可视为质点)放在长木板的最右端.已知m 与M 之间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2.从某时刻起物块m 以v 1的水平初速度向左运动,同时木板M 在水平外力F 作用下始终向右以速度v 2(v 2>v 1)匀速运动,求:图5(1)在物块m 向左运动过程中外力F 的大小; (2)木板至少多长物块不会从木板上滑下来? 思维导图解析 (1)在物块m 向左运动过程中,木板受力如图所示,其中F f1、F f2分别为物块和地面给木板的摩擦力,由题意可知 F f1=μ1mg (1分) F f2=μ2(m +M )g (2分)由平衡条件得:F =F f1+F f2=μ1mg +μ2(m +M )g (2分) (2)设物块向左匀减速至速度为零的时间为t 1,则t 1=v 1μ1g(1分) 设物块向左匀减速运动的位移为x 1,则 x 1=v 12t 1=v 212μ1g(1分)设物块由速度为零向右匀加速至与木板同速(即停止相对滑动)的时间为t 2,则t 2=v 2μ1g(1分) 设物块向右匀加速运动的位移为x 2,则 x 2=v 22t 2=v 222μ1g(1分)此过程中木板向右匀速运动的总位移为x ′,则 x ′=v 2(t 1+t 2)(1分)则物块不从木板上滑下来的最小长度: L =x ′+x 1-x 2(2分)代入数据解得:L =(v 1+v 2)22μ1g .(2分)答案 (1)μ1mg +μ2(m +M )g (2)(v 1+v 2)22μ1g点睛之笔 平板车类问题中,滑动摩擦力的分析方法与传送带类似,但这类问题比传送带类问题更复杂,因为平板车往往受到摩擦力的影响也做匀变速直线运动,处理此类双体匀变速运动问题要注意从速度、位移、时间等角度,寻找它们之间的联系.要使滑块不从车的末端掉下来的临界条件是滑块到达小车末端时的速度与小车的速度恰好相等.(限时:15分钟,满分:18分)如图6所示,倾角α=30°的足够长光滑斜面固定在水平面上,斜面上放一长L =1.8 m 、质量M =3 kg 的薄木板,木板的最右端叠放一质量m =1 kg 的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F ,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.图6(1)为使物块不滑离木板,求力F 应满足的条件;(2)若F =37.5 N ,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 答案 (1)F ≤30 N (2)能 1.2 s 0.9 m解析 (1)对M 、m 组成的整体,由牛顿第二定律 F -(M +m )g sin α=(M +m )a 对m ,有F f -mg sin α=ma F f ≤μmg cos α 代入数据得F ≤30 N.(2)F =37.5 N>30 N ,物块能滑离木板 对M ,有F -μmg cos α-Mg sin α=Ma 1 对m ,有μmg cos α-mg sin α=ma 2设物块滑离木板所用时间为t ,由运动学公式 12a 1t 2-12a 2t 2=L 代入数据得:t =1.2 s 物块滑离木板时的速度v =a 2t 由-2gs sin α=0-v 2 代入数据得s =0.9 m.(限时:45分钟)题组1 运动学基本规律的应用1.酒后驾驶会导致许多安全隐患,其中之一是驾驶员的反应时间变长,“反应时间”是指驾驶员从发现情况到开始采取制动的时间.下表中“反应距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离;“刹车距离”是指驾驶员从踩下刹车踏板制动到汽车停止的时间内汽车行驶的距离.分析上表可知,下列说法正确的是( )A.B .驾驶员酒后反应时间比正常情况下多0.5 s C .汽车刹车时,加速度大小为10 m/s 2 D .汽车刹车时,加速度大小为7.5 m/s 2 答案 AD解析 在“反应距离”内汽车做匀速直线运动,驾驶员酒后反应时间为t 1=x 1v 0=1215 s =0.8 s ,正常情况时间应为t 2=x 2v 0=615 s =0.4 s .所以驾驶员酒后反应时间比正常情况下多0.4 s ,故A正确,B 错误.汽车制动时做匀减速直线运动,初速度v 0=15 m/s ,末速度v =0,位移x =15 m, 由v2-v 20=2ax ,得a =v 2-v 202x =0-1522×15m/s 2=-7.5 m/s 2,加速度大小为7.5 m/s 2,故C 错误,D 正确.2.(2014·新课标Ⅱ·24)2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球升至约39 km 的高空后跳下,经过4分20秒到达距地面约1.5 km 高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录.取重力加速度的大小g =10 m/s 2.(1)若忽略空气阻力,求该运动员从静止开始下落至1.5 km 高度处所需的时间及其在此处速度的大小;(2)实际上,物体在空气中运动时会受到空气的阻力,高速运动时所受阻力的大小可近似表示为f =k v 2,其中v 为速率,k 为阻力系数,其数值与物体的形状、横截面积及空气密度有关.已知该运动员在某段时间内高速下落的v —t 图象如图1所示.若该运动员和所带装备的总质量m =100 kg ,试估算该运动员在达到最大速度时所受阻力的阻力系数.(结果保留1位有效数字)图1答案 (1)87 s 8.7×102 m/s (2)0.008 kg/m解析 (1)设该运动员从开始自由下落至1.5 km 高度处的时间为t ,下落距离为s ,在1.5 km 高度处的速度大小为v .根据运动学公式有 v =gt ① s =12gt 2② 根据题意有s =3.9×104 m -1.5×103 m =3.75×104 m ③ 联立①②③式得t ≈87 s ④ v ≈8.7×102 m/s ⑤(2)该运动员达到最大速度v max 时,加速度为零,根据平衡条件有mg =k v 2max ⑥ 由所给的v —t 图象可读出v max ≈360 m/s ⑦ 由⑥⑦式得 k ≈0.008 kg/m.题组2 挖掘图象信息解决动力学问题3.(2014·新课标Ⅱ·14)甲、乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的v —t 图像如图2所示.在这段时间内( )图2A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于v 1+v 22C .甲、乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案 A解析 根据v —t 图像下方的面积表示位移,可以看出汽车甲的位移x 甲大于汽车乙的位移x 乙,选项C 错误;根据v =xt 得,汽车甲的平均速度v 甲大于汽车乙的平均速度v 乙,选项A 正确;汽车乙的位移x 乙小于初速度为v 2、末速度为v 1的匀减速直线运动的位移x ,即汽车乙的平均速度小于v 1+v 22,选项B 错误;根据v —t 图像的斜率反映了加速度的大小,因此汽车甲、乙的加速度大小都逐渐减小,选项D 错误.4.(2014·辽宁省大连二模)如图3甲所示,一个m =3 kg 的物体放在粗糙水平地面上,从t =0时刻起,物体在水平力F 作用下由静止开始做直线运动.在0~3 s 时间内物体的加速度a 随时间t 的变化规律如图乙所示,已知物体与地面间的动摩擦因数处处相等.则( )甲 乙图3A .在0~3 s 时间内,物体的速度先增大后减小B .3 s 末物体的速度最大,最大速度为10 m/sC .2 s 末F 最大,F 的最大值为12 ND .前2 s 内物体做匀变速直线运动,力F 大小保持不变 答案 BD解析 物体在前3 s 内始终做加速运动,第3 s 内加速度减小说明物体速度增加得慢了,但仍是加速运动,故A 错误;因为物体速度始终增加,故3 s 末物体的速度最大,在a -t 图象上图象与时间轴所围图形的面积表示速度变化,Δv =10 m/s ,物体由静止开始加速运动,故最大速度为10 m/s ,所以B 正确;由F 合=ma 知前2 s 内的合外力为12 N ,由于受摩擦力作用,故作用力大于12 N ,故C 错误.5.2013年12月14日21时11分,嫦娥三号着陆器成功降落在月球虹湾地区,实现中国人的飞天梦想.该着陆器质量为1.2×103 kg ,在距离月球表面100 m 处悬停,自动判断合适着陆点后,竖直下降到距离月球表面4 m 时速度变为0,然后关闭推力发动机自由下落,直至平稳着陆.若月球表面重力加速度是地球表面重力加速度的16倍,着陆器下降过程中的高度与时间关系图象如图4所示,则下述判断正确的是( )图4A .着陆器在空中悬停时,发动机推力大小是1.2×104 NB .着陆器从高100 m 下降至4 m 过程中的平均速度为8 m/sC .着陆器着陆时的速度大约是3.65 m/sD .着陆器着陆后,对月球表面的压力是2×104 N 答案 BC解析 着陆器在空中悬停时,发动机推力大小等于月球对它的吸引力,即F =mg ′=m ·16g =1.2×103 kg ×16×10 m/s 2=2×103 N ,选项A 错误;着陆器从高100 m 下降至4 m 过程中的平均速度为v =x t =100-414.5-2.5 m/s =8 m/s ,选项B 正确;着陆器着陆时的速度大约是v =2g ′h=2×16×10×4 m/s ≈3.65 m/s ,选项C 正确;着陆器着陆后,对月面的压力等于它在月球上的重力是2×103 N ,选项D 错误. 题组3 应用动力学方法分析传送带问题6.(2014·四川·7)如图5所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图像可能是( )图5答案 BC解析 若v 1>v 2,且P 受到的滑动摩擦力大于Q 的重力,则可能先向右匀加速,加速至v 1后随传送带一起向右匀速,此过程如图B 所示,故B 正确.若v 1>v 2,且P 受到的滑动摩擦力小于Q 的重力,此时P 一直向右减速,减速到零后反向加速.若v 2>v 1,P 受到的滑动摩擦力向左,开始时加速度a 1=F T +μmgm ,当减速至速度为v 1时,摩擦力反向,若有F T >μmg ,此后加速度a 2=F T -μmgm,故C 正确,A 、D 错误.7.如图6甲所示,水平传送带AB 逆时针匀速转动,一个质量为M =1.0 kg 的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点).已知传送带的速度保持不变,g 取 10 m/s 2.求:甲 乙图6(1)物块与传送带间的动摩擦因数μ; (2)物块在传送带上的运动时间; (3)整个过程中系统产生的热量. 答案 (1)0.2 (2)4.5 s (3)18 J解析 (1)由速度图象可知,物块做匀变速运动的加速度:a =ΔvΔt =2.0 m/s 2由牛顿第二定律得F f =Ma则物块与传送带间的动摩擦因数μ=MaMg=0.2.(2)由速度图象可知,物块初速度大小v =4 m/s 、传送带速度大小v ′=2 m/s ,物块在传送带上滑动t 1=3 s 后,与传送带相对静止. 前2 s 内物块的位移大小x 1=v2t =4 m ,向右,后1 s 内的位移大小x 2=v ′2t ′=1 m ,向左,3 s 内位移x =x 1-x 2=3 m ,向右; 物块再向左运动时间t 2=xv ′=1.5 s.物块在传送带上运动时间t =t 1+t 2=4.5 s.(3)物块在传送带上滑动的3 s 内,传送带的位移x ′=v ′t 1=6 m ,向左 物块的位移x =x 1-x 2=3 m ,向右相对位移为Δx ′=x ′+x =9 m 所以转化的热能E Q =F f ·Δx ′=18 J.题组4 应用动力学方法分析“滑块—木板模型”问题8.(2014·江苏·8)如图7所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )图7A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg答案 BCD解析 当0<F ≤32μmg 时,A 、B 皆静止;当32μmg <F ≤3μmg 时,A 、B 相对静止,但两者相对地面一起向右做匀加速直线运动;当F >3μmg 时,A 相对B 向右做加速运动,B 相对地面也向右加速,选项A 错误,选项C 正确.当F =52μmg 时,A 与B 共同的加速度a =F -32μmg3m =13μg ,选项B 正确.F 较大时,取物块B 为研究对象,物块B 的加速度最大为a 2=2μmg -32μmgm =12μg ,选项D 正确.9.如图8甲所示,由斜面AB 和水平面BC 组成的物块,放在光滑水平地面上,斜面AB 部分光滑,AB 长度为s =2.5 m ,水平部分BC 粗糙.物块左侧与竖直墙壁之间连接着一个力传感器,当传感器受压时示数为正值,被拉时为负值.上表面与BC 等高且粗糙程度相同的木板DE 紧靠在物块的右端,木板DE 质量M =4 kg ,长度L =1.5 m .一可视为质点的滑块从A 点由静止开始下滑,经B 点由斜面转到水平面时速度大小不变.滑块从A 到C 过程中,传感器记录到力和时间的关系如图乙所示.g 取10 m/s 2,求:图8(1)斜面AB 的倾角θ; (2)滑块的质量m ;(3)滑块到达木板DE 右端时的速度大小. 答案 (1)30° (2)2 kg (3)1 m/s解析 (1)在0~1 s 内滑块沿斜面匀加速下滑: mg sin θ=ma s =12at 2 由题图乙知:t =1 s 解得sin θ=12,即θ=30°.(2)在0~1 s 内对物块ABC 受力分析: mg cos θ·sin θ-F =0 由题图乙知:F =5 3 N 解得m =2 kg.(3)滑块到达B 点时的速度v B =at =gt sin θ=5 m/s 1~2 s 滑块在BC 部分做减速运动:μmg =ma ′ 对物块,由图象知:μmg =F =4 N 解得a ′=2 m/s 2,μ=0.2滑块到达C 点时:v C =v B -a ′t =v B -μg ·t =3 m/s 滑块滑上木板DE 时:对滑块:-μmg =ma 1 对木板:μmg =Ma 2解得a 1=-2 m/s 2,a 2=1 m/s 2设滑块在木板上的滑行时间为t , x 滑块=v C t +12a 1t 2x 木板=12a 2t 2L =x 滑块-x 木板解得t =1 s此时,滑块速度v 滑块=v C +a 1t =1 m/s 木板速度v 木板=a 2t =1 m/s滑块恰好滑到木板右端,速度为1 m/s.。

相关文档
最新文档