九年级第一学期期中考试数学试卷含答案

合集下载

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。

湖南省长沙市明德教育集团2024-2025学年九年级上学期期中考试数学试卷(含答案)

湖南省长沙市明德教育集团2024-2025学年九年级上学期期中考试数学试卷(含答案)

九年级期中考试数学试卷24-25学年第一学期时量:120分钟 满分:120分一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项.本大题共10小题,每小题3分,共30分)1.近年来,新能源行业迎来了爆发式增长,新能源不仅环保,而且发展潜力巨大.下列能源产业图标中,是中心对称图形的是( ).A. B. C. D.2.下列方程中,属于一元二次方程的是( ).A. B. C. D.3.图形经过旋转变换后所具有的性质是( ).A.形状不变,大小改变B.大小不变,形状改变C.形状和大小都不变D.形状和大小都改变4.如图,绕点A 逆时针旋转60°得到,若,则().A.90° B.100° C.110° D.120°5.已知二次函数解析式为,则抛物线的顶点坐标是( ).A. B. C. D.6.如图,在中,,则的度数为( ).A.130°B.135°C.140°D.150°7.下列函数关系中,是二次函数的是( ).A.生产100吨钢材,工作效率x 和工作时间y 之间的关系B.当速度为100km/h 时,汽车行驶的距离s 与时间t 之间的关系C.长方形的周长一定时,长方形的长y 与宽x之间的关系y x =22310x x -+=258x +=1x x=ABC △ADE △10CAD ∠=︒E BA ∠=()2419y x =++()1,9-()1,9()1,9--()9,1-O 70BAC ∠=︒BOC ∠D.圆的面积s 与半径r 之间的关系8.已知一正多边形的一个外角等于72°,则该正多边形的中心角等于().A.144° B.120° C.108° D.72°9.关于x 的一元二次方程有实数根,则k 的取值范围是().A.且 B. C.且 D.10.已知函数的图象如图所示,下列四个结论中,正确的是().A.若直线与函数图象至少有3个公共点,则m 的取值范围是B.图象与坐标轴的交点为和C.当或时,函数值y 随x 值的增大而减小D.当时,函数有最大值是4二、填空题(本大题共6个小题,每小题3分,共18分)11.若是方程的根,则______.12.若点与点关于原点对称,则______.13.已知的半径为5,若点P 在外,则OP _______5(填“>”、“<”、“=”).14.如图,抛物线与直线交于和两点,则不等式的解集是______.15.如图,AB 、BC 、CD 、DA 都是的切线,,,则______.16.学校科学社团成员制作了一个物体发射器,可使用该发射器从地面竖直向上发射出物体,已知发射出的2410kx x -+=4k <0k ≠4k ≤4k ≤0k ≠4k ≤-223y x x =--y m =04m <<()1,0-()3,01x <-13x <<1x =2x =20x a -=a =(),3A m ()2,3B n -mn =O O 2y ax c =+y kx b =+()1,A m -()4,B n 20ax c kx b +--<O 8BC =6CD =AB AD -=物体离地面的高度h (单位:m )满足关系式,其中t (单位:s )是物体运动的时间,(单位:m/s )是物体被发射时的初始速度.若发射小球时的初始速度,当小球离地面的高度为21m 时,t 的值为______s.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.解下列方程:(1)(2)18.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用.长沙一公园计划建一个圆拱形的门洞,如图,要求门洞高,地面入口宽,求门洞的半径.19.已知二次函数的图象关于y 轴对称,且经过点和点.(1)求这个二次函数的解析式;(2)求该抛物线与x 轴的交点坐标.20.如图,在平面直角坐标系中,已知三个顶点的坐标分别为,,.(1)绕点O 旋转180°后得到,则点的坐标为______,点的坐标为______;(2)请在给出的平面直角坐标系中画出绕点A 逆时针旋转90°后得到的;(3)在第(2)问的条件下,计算点C 的运动轨迹的长度.21.已知关于x 的一元二次方程.(1)求证:无论m 取何值,此方程总有实数根;(2)若方程有两个实数根,,且,求m 的值.22.美化城市、改善人们的居住环境已成为城市建设的一项重要内容.长沙市近几年来,通过拆迁旧房、植草、栽树、修公园等措施,使城区绿地面积不断增加.该市某城区2023年底时绿化面积约为10万亩,计划到202520h t v t =-+0v 010m/s v =20x x -=2430x x -+=6m AE =4m CD =()1,3A -()3,5B ABC △()1,2A -()3,4B -()2,6C -ABC △111A B C △1A 1B ABC △222A B C △()2440x m x m +++=1x 2x 12128x x x x ++=年底时绿化面积达到14.4万亩.若每年的年平均增长率相同,试解决下列问题:(1)求该城区绿化面积的年平均增长率;(2)按照(1)中的年平均增长率,该城区期望2026年底绿化面积达到17万亩,请通过计算说明该目标能否实现.23.如图,AB 为半圆O 的直径,点C 在半圆O 上,点D 在弧AC 上,点P 为线段AB 延长线上一点,连接AC 、BD 、CD 、BC 、PC ,已知.(1)求证:PC 为半圆O 的切线;(2)若四边形CDBP 为平行四边形,求的度数.24.如图,在平面直角坐标系xOy 中,已知的半径为2,且与y 轴、x 轴的正半轴分别交于点A 、B ,点P 是该坐标平面内一点,给出如下的定义:①若在上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称点P 为的“集团点”;②若点P (点P 不在直线AB 上)关于直线AB 的对称点在上或其内部,则称点P 为的“明德点”;③若点P 同时满足条件①②,则称点P 为的“明德集团点”.(备用图)(1)在点,,中,的“明德集团点”是______;(2)若点P 是的“集团点”,点P 所在的区域称为“集团辐射区域”,求该“集团辐射区域”的面积:当点P 在直线上时,求点P 的纵坐标的取值范围;(3)若点P 是的“明德点”,且,求点P 的横坐标的最大值.25.已知二次函数(b ,c 是常数).D PCB ∠=∠D ∠O O O O P 'O O O ()11,0P ()21,2P ()32,4P O Oy x =O 90APB ∠=︒23y x bx c =++(1)当是二次函数图象上的点时,求代数式的值;(2)若二次函数的表达式可以写成(h 是常数)的形式,求的最大值;(3)若二次函数的表达式可以写成(m 是常数,且)的形式,该函数图象与x 轴交于B 、C 两点(点B 在点C 左侧),已知点D 、点E 都是该抛物线对称轴上的点,点D 位于第一象限,且,点F 是点O 关于该抛物线的对称轴对称的点,连接FD 并延长交y 轴于点G ,连接BG .当的周长的最小值等于时,求此时m 的值.()3,2A -23y x bx c =++24381b c -23y x bx c =++()232y x h =--b c -23y x bx c =++()()31y x x m =--10m -<<90ODC ∠=︒BEG △94九年级期中考试参考答案数学试卷24-25学年第一学期1-5 BBCCA 6-10 CDDCC11.4; 12.; 13.> 14.; 15.2; 16.3或717.解:(1) ,,(2),,,18.解:OE 为高,且OE 过圆心,OE 平分CD ,又,.设圆的半径是x 米,则,在中,,即:,解得:即此门洞的半径OC的长度是米.19.(1)解:设这个二次函数的解析式为把分别代入中得:解得,,这个二次函数的解析式为(2)解:当时,,解得或这个二次函数与x 轴的交点为和20.(1)、(2)2-14x -<<20x x -= ()10x x ∴-=10x ∴=21x =2430x x -+= ()()130x x ∴--=11x ∴=23x = ∴4CD = 2CE ∴=OE AE x =-Rt OEC △222OC OE CE =+()22226x x =+-103x =1032y ax c=+()1,3A -()3,5B 2y ax c =+3,95,a c a c +=-⎧⎨+=⎩1a =4c =-∴24y x =-0y =240x -=2x =2-∴()2,0-()2,0()11,2A -()13,4B -(3)弧长21.解:(1)恒成立,此方程总有实数根(2)根据韦达定理得:,,有:解得:22.(1)解:设年平均增长率为x ,依题意得:,解得: 答:绿化面积的平均增长率为20%;(2)解:2026年的绿化面积为万亩,该目标能实现.23.(1)如图,连接OC , AB 是圆O 的直径 PC 为半圆O 的切线(2)四边形CDBP 是平行四边形 设为 又,且 即为30°24.解:(1)由点P 是的“集团点”得:点P 在以原点为圆心,1和3分别为半径的圆所组成的圆环及圆环内,即.,,,是的“集团点”根据对称性,由点P 是的“明德点”得点P 必在关于直线AB 的对称圆上或其内部(不含A 、B 两点),,只有是的“明德集团点”,故答案为:;AC = ∴2180n r CC π===()()2222441681640b ac m m m m m ∆=-=+-=-+=-≥ ∴()124x x m +=-+124x x m =()448m m -++=4m =()210114.4x +=10.2x =2 2.2x =-()14.410.217.28+=17.2817> ∴BC BC = 弧弧D A ∴∠=∠OA OC= A ACO ∴∠=∠D ACO∴∠=∠D PCB ∠=∠ ACO PCB∴∠=∠ 90ACB ∴∠=︒90ACO OCB ∴∠+∠=︒90OCB PCB∴∠+∠=︒90OCP ∴∠=︒∴ D BPC ∴∠=∠A D BPC PCB∴∠=∠=∠=∠D ∠x ︒180A ACB BCP BPC ∠+∠+∠+∠=︒90ACB ∠=︒390180x ∴+︒=︒30x ∴=︒D ∠O 13OP ≤≤11OP = 2OP=33OP =>1P ∴2P O O O O ' 2O P '∴≤12O P '=> 212O P '=<∴2P O 2P(2)“集团辐射区域”为以原点为圆心,1和3分别为半径的圆所组成的圆环及圆环内部区域点P 在直线上设,令,解得:令,解得:点P 的纵坐标的取值范围为:(3)取AB 中点为H ,连接DH ,,,点P 在以H 为圆心,HA 为半径的圆上 又点P 是的“明德点”点P 位于AB 上方的半圆上运动(不包括端点A 、B ),当过点P 作平行于y 轴的切线时,即轴时,点P 横坐标最大,点P 的横坐标的最大值为故答案为:.25.解:(1)把代入,得:,即 22318S πππ∴=⨯-⨯= y x =∴,P y y ⎫⎪⎪⎭1OP =y =3OP =y =∴y ≤≤y ≤≤90APB ∠=︒ HP HA HB ∴==∴ O ∴H ∴H //PH x ∴112P H H x x PH x AB =+=+=+1+()3,2A -23y x bx c =++2732b c -+=325b c -=()243818132025b c b c ∴-=-=(2)把化成一般式得,.,..把的值看作是h 的二次函数,则该二次函数开口向下,有最大值,当时,的最大值是5.(3)由题意得:、,抛物线对称轴为直线,则设点,由得:从而得:又由对称轴垂直平分线段OF ,且平行于y 轴,则由三角形中位线逆定理得:在中,,点C 是点B 关于函数对称轴的对称点,连接CG 交对称轴于点E ,即C 、E 、G 三点共线时,则点E 即为所求点.理由是:,即则,解得,故()232y x h =--223632y x hx h =-+-6b h ∴=-232c h =-()22362315b c h h h ∴-=--+=-++b c -∴1h =-b c -(),0B m ()1,0C 12m x +=()1,0F m +m 1,2D y +⎛⎫ ⎪⎝⎭90ODC ∠=︒1OD CD k k ⋅=-12m D ⎛+ ⎝(G Rt BOG △2222211BG BO OG m m =+=+-= BE CE∴=11BEG BG GE BE GE CE CG =++=++≥+的周长△914CG +=2222291114CG OC OG m ⎛⎫=+=+-=- ⎪⎝⎭m =10m -<<m =。

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

山东济南高新区2024—2025学年九年级数学第一学期期中考试试题(含答案)

高新区2024-2025学年第一学期九年级数学期中学业水平测试试题(满分150分时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,一个实木正方体内部有一个圆锥体空洞,它的左视图是( )A. B. C. D.2.若a4=b3,则ab的值是( )A.34B.43C.12D.1123.对于反比例函数y=﹣6x的图象,下列说法正确的是()A.它的图象分布在一、三象限B.它的图象与坐标轴可以相交C.它的图象经过点(-4,-1.5)D.当x<0时,y的值随x的增大而增大4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则sinB=( )A.35B.45C.√74D.34(第4题图)(第5题图)(第7题图)5.如图,DE∥BC,且EC:BD=2:3,AD=6,则AE的长为()A.1B.2C.3D.46.函数与y=kx与y=kx-k(k≠0)在同一平面直角坐标系中的大致图象是( )7."今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?"这是我国古代数学著作《九章算术》中的"井深几何"问题,它的题意可以由如图所示(单位:尺),已知井的截面图为矩形ABCD ,设井深为x 尺,下列所列方程中,正确的是( )A.5x =0.45B.x5+x=50.4C.x5﹣x=0.45D.x5+x=0.45A. B. C. D.9.根据图①所示的程序,得到了y与x的函数图象,如图②.若点M是y轴正半轴上任意一点,过点;②△OPO的面积为定M作PQ平行x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=2x值;③x>0时,y随x的增大而增大;④MQ=2PM;⑤∠POO可以等于90°。

其中正确结论是()A.①②⑤ B.②④⑤ C.③④⑤ D.②③⑤(第9题图)(第10题图)10.如图,正方形ABCD中,点E是CD边上一点,连结BE,以为对角线BE作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF ⊥BD;④2BG2=BH·BD,你认为其中正确的有()A.1个B.2个C.3个D.4个二.填空题:(本大题共5个小题,每小题4分,共20分。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

福建省福州市长乐区2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024—2025学年第一学期期中适应性练习九年级数学(全卷满分:150分,考试时间:120分钟)友情提示:请将答案写在答题卡规定位置上,不得错位、越界答题.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中不是中心对称图形的是()A .B .C .D .2.将抛物线向右平移2个单位,然后向上平移3个单位,则平移后得到的抛物线解析式是( )A .B .C .D .3.如图,是的直径,点在上.若,.则的半径长为( )第3题A .1B .2CD4.下列一元二次方程中,根是的方程是()A .B.C .D .5.已知一个圆心角为120°,半径为3的扇形,则这个扇形的弧长是( )A .B .C .D .6.对于二次函数,下列判断正确的是( )A .当时,取得最大值B .当时,取得最小值2y x =()223y x =--()223y x =+-()223y x =-+()223y x =++AB O e C O e 2AC =BC =O e x =23210x x +-=23210x x --=23410x x +-=2230x x --+=π2π3π4π()226y x =--+2x =y 2x =yC .当时,取得最大值D .当时,取得最小值7.一根排水管的截面如图所示,截面水深是4dm ,水面宽是16dm ,则排水管的截面圆的半径是()第7题A .6dmB .10dmC .D .20dm8.将点绕原点逆时针旋转90°得到点,则点的坐标为( )A .B .C .D .9.如图,,分别切于,两点,点在优弧上,,则的度数为()第9题A .40°B .50°C .80°D .100°10.已知二次函数的图象上有两点和(其中),则下列判断正确的是()A .若时,B .若时,C .若,时,D .若,时,二、填空题:本题共6小题,每小题4分,共24分.11.若一元二次方程的一个根为,则的值为______.12.一元二次方程根的判别式的值是______.13.已知的半径是5cm ,若圆心到直线的距离是4cm ,则直线与的位置关系是______.(填“相交”、“相切”或“相离”)14.如图,在等边三角形中,为的中点,,与关于点中心对称,连接,则的长为______.2x =-y 2x =-y CD ABOB ()2,3A O B B ()2,3-()2,3-()3,2-()3,2-PA PB O e A B C ACB 80P ∠=︒C ∠()220y ax ax c a =-+≠()11,A x y ()22,B x y 12x x <122x x +<120y y ->122x x +>120y y ->0a >122x x +>120y y ->0a <122x x +<120y y -<210x ax +-=1x =a 2310x x --=O e O AB AB O e ABC O BC 2AB =BPQ △BAO △B CP CP第14题15.某品牌汽车刹车后行驶的距离(单位:m )与滑行时间(单位:s )的函数关系式是.汽车刹车后到停下来前进了______m .16.我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.如图,的半径为1,如用的内接正十二边形面积来近似估计圆的面积,则可得的近似值为3.若用半径为1的圆的内接正八边形面积作近似估计,可得的近似值为______.(参考数据:,结果精确到0.1)第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解方程.18.(8分)已知二次函数.(1)完成下表:…0123……__________________…(2)根据(1)的结果在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的图象;(3)结合函数图象,当时,的取值范围是______19.(8分)已知二次函数.求证:不论取何值,该函数图象与轴总有两个交点.s t 2156s t t =-O e O e ππ1.414≈ 1.732≈2410x x --=223y x x =--x 1-223y x x =--0y <x ()2221y x m x m =-++-m x20.(8分)如图,,是的直径,点在上,,求证:.21.(8分)如图,在中,,,,以点为圆心,2.4为半径作.求证:是的切线.22.(10分)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.(1)求二次函数的解析式;(2)若是二次函数图象上的一点,且点在第一象限,线段交轴于点,,求点的坐标.23.(10分)如图,在矩形中,,.将绕点顺时针旋转一个角度得到,点,的对应点分别为点,.图1图2(1)如图1,若点落在边上,求旋转角的度数;(2)如图2,若点落在线段上,与交于点,求的长.24.(12分)长乐栽培龙眼历史悠久,据文献记载宋光宗皇帝曾赐匾青山龙眼为“黄龙”.请你运用数学知识,根据素材,帮果农解决问题.信息及素材AB CD O e E »BC»»BD BE =CE AB ∥Rt OAB △90AOB ∠=︒3OA =4OB =O O e AB O e 2y x bx c =++x A B y C ()1,0A -()3,0B P P PC x D PAD CAD S S =△△PABCD AB =2BC =ABC △C αFEC △A B F E E AD αE AF CE AD G AG素材一在专业种植技术人员的正确指导下,果农对龙眼种植技术进行了研究与改进,使产量得到了增长,根据果农们的记录,2021年龙眼平均年产量是2.8万吨,2023年达到了3.2万吨,每年的增长率基本相同.素材二龙眼一般用长方体包装盒包装后进行售卖.素材三果农们通过调查发现,顾客们也很愿意购买用美观漂亮的其它造型的纸盒包装的龙眼.任务1:设龙眼产量的年平均增长率为,根据素材一列方程得______;任务2:现有长80cm ,宽75cm 的长方形纸板,将四角各裁掉一个正方形(如图1),折成无盖长方体纸盒(如图2).为了放下适当数量的龙眼,需要设计底面积为的纸盒,计算此时纸盒的高;图1 图2任务3:为了增加包装盒的种类,打算将任务2中的纸板通过图3的方式裁剪,得到底面为正六边形的无盖纸盒(如图4),求纸盒的底面边长.(图中实线表示剪切线,虚线表示折痕.板厚度及剪切接缝处损耗忽略,结果取整数)图3 图425.(14分)学习完一元二次方程的知识后,数学兴趣小组对关于的一元二次方程开展探究.(1)当时,该方程的正根称为“黄金分割数”,求“黄金分割数”;(2)若实数,满足,,且,求的值;(3)若两个不相等的实数,满足,,求的值.x 21400cm 1.732≈x 210x mx +-=1m =a b 21a ma -=224b mb +=2b a ≠-ab p q 21p mp q +-=21q mq p +-=pq m -2024—2025学年第一学期期中阶段反馈练习九年级数学参考答案一、选择题:本题共10小题,每小题4分,共40分.1-5 ACDAB6-10 ABDBD二、填空题:本题共6小题,每小题4分,共24分11.0 12.13 13.相交 14.15.9.375 16.2.8三、解答题:本题共9小题,共86分.17.(8分)解:∴另解:∵,,∴∴∴18.(8分)(1)完成下表:…0123………解:(2)描点、连线,如图所示;(3).19.(8分)证明:令,则241x x -=24414x x -+=+()225x -=2x -=12x =22x =1a =4b =-1c =-()()2244411b ac ∆=-=--⨯⨯-200=>x =2=±12x =22x =x 1-223y x x =--3-4-3-13x -<<0y =()22210x m x m -++-=()()224121m m ⎡⎤∆=-+-⨯⨯-⎣⎦()2240m =-+>∴方程总有两个不相等的实数根∴不论取何值,该函数图象与轴总有两个交点.20.(8分)证明:连接∵ ∴ ∴∵ ∴ ∴.21.(8分)证明:过点作,垂足为∵,, ∴∵ ∴∵的半径为2.4 ∴ ∴是的切线.22.(10分)解:(1)∵二次函数的图象过点,∴ 解得∴二次函数的解析式为;(2)设(,)在中,当时,∴m x OE»»BDBE =BOD BOE ∠=∠12BOD DOE ∠=∠12C DOE ∠=∠BOD C ∠=∠CE AB ∥O OC AB ⊥C90AOB ∠=︒3OA =4OB=5AB ===1122OAB S OA OB AB OC =⋅=⋅△342.45OA OB OC AB ⋅⨯===O e r OC r =AB O e 2y x bx c =++()1,0A -()3,0B 10930b c b c -+=⎧⎨++=⎩23b c =-⎧⎨=-⎩223y x x =--(),P m n 0m >0n >223y x x =--0x =3y =-3OC =∵∴∴∵点在二次函数图象上 ∴解得(舍去)∴点的坐标为. 23.(10分)解:(1)∵四边形是矩形图1∴, ∴由旋转,得,在中,∴ ∴∴旋转角的度数为45°;(2)由旋转,得,图2∴ ∵∴ ∴∵四边形是矩形∴,,∴ ∴ ∴设,则,在中, ∴解得 ∴的长为.PAD CAD S S =△△1122AD n AD OC ⋅=⋅3n =(),P m n 2233m m --=11m =21m =P ()1ABCD CD AB ==90D ∠=︒AD BC ∥DEC BCE∠=∠2CE BC ==BCE α∠=Rt CDE △DE ===CD DE =45DEC ∠=︒α90FEC B ∠=∠=︒CE BC=90AEC B ∠=∠=︒AC AC=()Rt Rt HL AEC ABC ≌△△ACE ACB ∠=∠ABCD AD BC ∥2AD BC ==CD AB ==90D ∠=︒GAC ACB ∠=∠GAC ACE ∠=∠AG CG =AG m =CG m =2DG AD AG m =-=-Rt CDG △222CG CD DG =+()2222m m =+-32m =AG 3224.(12分)解:任务1:;任务2:设裁掉正方形的边长为,根据题意,得解得,(不合题意,舍去)答:此时纸盒的高为20cm ;任务3:设底面正六边形为,连接,,,和交于点,和交于点,所在直线交长方形纸板的边于点,设底面正六边形的边长为,纸盒的高为∵正六边形的每条边相等,每个内角都为120°∴为等腰三角形, ∴由正六边形的性质可得平分 ∴ ∴∴, 同理可得∵ ∴①∵左侧小三角形顶点的角度∴左侧小三角形是边长为的等边三角形根据图形的轴对称可得与长方形纸板的左右两边垂直∴为等边三角形的高 ∴ 同理可得∵四边形是矩形 ∴∵ ∴②联立①②式可得答:纸盒的底面边长约为30cm .25.(14分)解:(1)将代入,得解得.()22.813.2x +=cm m ()()7528021400m m --=120m =21152m =ABCDEF AC FD BE AC BE G FD BE H BE M Ncm acmb ABC △120ABC ∠=︒30BAC BCA∠=∠=︒BE ABC ∠60ABE ∠=︒90AGB ∠=︒1122BG AB a ==AG CG==12HE BG a ==75b AG CG b +++=275b +=B 360120909060︒︒︒︒︒=---=b MN BM BM =EN BM ==AGHF GH AF a==80BM BG GH HE EN ++++=280a +=16030a =-≈1m =210x mx +-=210x x +-=x ==;(2)∵ ∴ ∴∵ ∴∵ ∴,是一元二次方程的两个根∴ ∴;(3)①,②①-②,得∴∵ ∴ ∴∴③,④将④代入①,得 ∴将③代入②,得 ∴∴,是一元二次方程的两个根∴ ∴.224b mb +=2240b mb +-=21022b b m ⎛⎫+⋅-= ⎪⎝⎭21a ma -=()()210a m a -+⋅--=2b a ≠-a -2b210x mx +-=12ba -⋅=-2ab =21p mp q +-=21q mq p +-=()22p q m p q q p-+-=-()()()()p q p q m p q p q -++-=--p q ≠()1p q m ++=-1p q m +=--1p m q =---1q m p =---211p mp m p +-=---()210p m p m +++=211q mq m q +-=---()210q m q m +++=p q ()210x m x m +++=pq m =0pq m -=。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期中考试数学试卷一、选择题(每小题3分,共24分)1.若1-x 在实数范围内有意义,则x 的取值范围是A. x ≥1B. x >1C. x ≤1D. x ≠1 2.方程22x x 的解是A.021==x xB.221==x xC.2,021==x xD.2,021==x x3.如图,AD ∥BE ∥CF ,直线a 、b 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .若AB =4,BC =6,DE =3,则EF 的长为A.4B. 4.5C. 5D. 6(第3题) (第4题) (第5题)4.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线.若CD =4,AC =6,则cos A 的值是 A.37 B.47 C.34 D.43 5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开辟一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x 米,则下面所列方程正确的是 A. (32-x )(20-x )=600 B.(32-x )(20-2x )=600 C. (32-2x )(20-x )=600 D.(32-2x )(20-2x )=6006.已知点),(11y x A 、),(22y x B 在二次函数22+4y x x =-+的图象上.若121>>x x ,则1y 与2y 的大小关系是A .21y y ≥B .21y y =C .21y y >D .21y y <7. 如图,在⊙O 中,半径OA 垂直弦BC 于点D .若∠ACB =33°,则∠OBC 的大小为 A.24° B. 33° C. 34° D. 66°(第7题) (第8题)8.如图,△ABC 和△ADE 均为等边三角形,点D 在BC 上,DE 与AC 相交于点F .若AB =9,BD =3,则CF 的长为A.1B.2C.3D.4 二、填空题(每小题3分,共18分) 9.计算:3-27= .10.若关于x 的一元二次方程0122=-++m x x 有实数根,则m 的取值范围是 .11.将抛物线2)1(2+-=x y 向下平移2个单位后,得到的抛物线所对应的函数表达式为 . 12.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点.若∠BAD =105°,则∠DCE 的大小是 度.(第12题) (第13题) (第14题)13. 如图,在平面直角坐标系中,线段AB 两个端点的坐标分别为(6,6),(8,2).以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则点C 的坐标为 . 14.如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若四边形AOBC 的周长为a ,则△ABC 的周长为 (用含a 的代数式表示).三、解答题(本大题共10小题,共78分) 15.(6分)计算:︒+-30sin 22053.16.(6分)解方程:231x x -=.17.(6分)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.求2013年到2015年这种产品产量的年增长率. 18.(7分)图①、图②均是边长为1的正方形网格,△ABC 的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上.(1)在图①中画一个△A 1B 1C 1,满足△A 1B 1C 1∽△ABC ,且相似比不为1. (2)在图②中将△ABC 绕点C 顺时针旋转90°得到△A 2B 2C ,求旋转过程中B 点所经过的路径长.图① 图②19.(7分)如图,AB 是半圆所在圆的直径,点O 为圆心,OA =5,弦AC =8,OD ⊥AC 于E ,交⊙O 于D ,连结BC 、BE . (1)求OE 的长.(2)设∠BEC =α,求tan α的值.20.(7分) 如图,在平面直角坐标系中,过抛物线62412+-=x x y 的顶点A 作x 轴的平行线,交抛物线12+=x y 于点B ,点B 在第一象限. (1)求点A 的坐标.(2)点P 为x 轴上任意一点,连结AP 、BP ,求△ABP 的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂直于地面,AB 表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D 与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9 分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)判断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2).(1)用含t的代数式表示BP、BQ的长.(2)连结PQ,如图①所示.当△BPQ与△ABC相似时,求t的值.(3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,直接写出线段PD的长.图①图②24.(12分)如图,在平面直角坐标系中,抛物线42-+=bx ax y 与x 轴交于A (4,0)、B (-3,0)两点,与y 轴交于点C .(1)求这条抛物线所对应的函数表达式.(2)如图①,点D 是x 轴下方抛物线上的动点,且不与点C 重合.设点D 的横坐标为m ,以O 、A 、C 、D 为顶点的四边形面积为S ,求S 与m 之间的函数关系式.(3)如图②,连结BC ,点M 为线段AB 上一点,点N 为线段BC 上一点,且BM =CN =n ,直接写出当n为何值时△BMN 为等腰三角形.图①图②参考答案一、1.A 2. C 3. B 4. D 5. C 6. D 7. A 8. B二、9.32 10.2≤m 11.2)1(-=x y (化成一般式也可) 12. 105 13.(3,3) 14. a -4三、15.原式=1521252-53+=⨯+.(化简20正确给2分,计算sin30°正确给1分,结果2分) 16. 0132=--x x .(1分)∵a =1,b =-3,c =-1,∴13)1(14)3(422=-⨯⨯--=-ac b .(2分)(最后结果正确,不写头两步不扣分) ∴21331213)3(±=⨯±--=x . (5分) ∴.2133,213321-=+=x x (6分) 【或222)23(1)23(3+=+-x x ,(2分) 413)23(2=-x .(3分) 21323±=-x ,2133±=x .(5分).2133,213321-=+=x x (6分)】 17.设2013年到2015年这种产品产量的年增长率为x . (1分)根据题意,得121)11002=+x (. (3分) 解得 x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去). (5分) 答:2013年到2015年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分) (2)由图得22=BC . (5分)(结果正确,不写这步不扣分) 旋转过程中B 点所经过的路径长:ππ21802290=⨯=l . (7分)(过程1分,结果1分) 19. (1)∵OD ⊥AC ,∴482121=⨯==AC AE . (1分) 在Rt △OEA 中,3452222=-=-=AE OA OE . (3分)(过程1分,结果1分) (2)∵AB 是⊙O 的直径,∴∠C =90°. (4分)在Rt △ABC 中,AB =2OA =10,∴68102222=-=-=AC AB BC . (5分) ∵OD ⊥AC ,∴482121=⨯==AC CE . (6分)在Rt △BCE 中,tan α=2346==CE BC . (7分) 20. (1)2)4(412)168416241222+-=++-=+-=x x x x x y (.(3分)(过程2分,结果1分) (用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A 的坐标为(4,2). (4分) (2)把2=y 代入12+=x y 中,解得11=x ,12-=x (不合题意,舍去). (6分)∴314=-=AB . (7分) ∴32321=⨯⨯=∆ABP S . (8分)21. 在Rt △ABC 中,sin ∠ABC =ABAC, ∴AC =AB ⋅sin43°=2×0.68=1.36 (m) . (4分)(过程2分,有其中两步即可,结果2分) 在Rt △ADC 中,tan ∠ADC =CDAC, ∴3.260.036.131tan ≈=︒=AC CD (m). (给分方法同上) ∴斜坡AD 底端D 与平台AC 的距离CD 约为2.3m .(8分)(不答不扣分,最终不写单位扣1分) 22. (1)在Rt △ABC 中,∠ACB =90°,∠B =30°,∴242121=⨯==AB AC ,(1分)∠BAC =60°. (2分) ∴AO =AC =2,∠OAD =∠BAC =60°.∵OA =OD ,∴△OAD 是等边三角形. (3分) ∴∠AOD =60°. (4分) ∴323602602ππ=⨯=OAD S 扇形. (5分) (2)CD 所在直线与⊙O 相切.(只写结论得1分)理由:∵△OAD 是等边三角形,∴ AO =AD ,∠ODA =60°. (6分) ∵AO =AC ,∴ AC =AD .∴∠ACD =∠ADC =︒=︒⨯=∠30602121BAC . (7分) ∴∠ODC =∠ODA +∠ADC =60°+30°=90°,即OD ⊥CD . (8分) ∵OD 为⊙O 的半径,∴CD 所在直线与⊙O 相切. (9分)23. (1)BP =5t ,BQ =8-4t . (2分)(2)在Rt △ABC 中,10862222=+=+=BC AC AB . (3分)w W w .x K b 1.c o M11 当△BPQ ∽△BAC 时,BC BQ BA BP =,即848105t t -=.(4分)解得1=t . (5分) 当△BPQ ∽△BCA 时,BA BQ BC BP =,即104885t t -=.(6分)解得4132=t . (8分) (3)821=PD . (10分) 24. (1)把A (4,0)、B (-3,0)代入42-+=bx ax y 中,得⎩⎨⎧=--=-+.0439,04416b a b a 解得⎪⎪⎩⎪⎪⎨⎧-==.31,31b a (2分) ∴这条抛物线所对应的函数表达式为431312--=x x y .(3分) (2)当-3<m <0时,824421)(421+-=⨯⨯+-⨯⨯=m m S .(6分) 当0<m <4时,83832)4313142142122++-=++-⨯⨯+⨯⨯=m m m m m S (.(9分) (每段自变量1分,若加等号共扣1分,解析式2分)(3)25=n ,1125=n ,1130=n .(12分)。

相关文档
最新文档