数值分析-数值计算方法48页PPT
合集下载
计算方法第一章数值计算方法.ppt

x1
a22b1
a12b2 D
S4 输出计算的结果 x1, x2
x2
a11b2
a21b1 D
开始
输入
a11, a12 , a21, a22 ,b1,b2
D=a11a22-a12a21
Yes D=0
No
x1 (b1a22 b2a12 ) / D x2 (b2a11 b1a21) / D
输出无解信息
…
…
第一章计算方法与误差
本章内容
§1 引言 §2 误差的来源及分类 §3 误差的度量 §4 误差的传播 §5 减少运算误差的原则
小结
第一章计算方法与误差
要求掌握的内容
概念 包括有效数字、绝对误差、绝对误差限、 相对误差、相对误差限等
误差 截断误差、舍入误差的详细内容,误差种 类等
分析运算误差的方法和减少运算误差的若 干原则
常用的两种复杂性有:计算时间复杂性和空间复杂性。
二、算法的优劣
➢ 计算量小 例:用行列式解法求解线性方程组:
n阶方程组,要计算n + 1个n阶行列式的值,
总共需要做n! (n - 1) (n + 1) 次乘法运算。
n=20 需要运 算多少次?
n=100?
计算量大小是衡量算法优劣的一项重要标准。
在估计计算量时,我们将区分主次抓住计算过程中费时较多的 环节。比如,由于加减操作的机器时间比乘除少得多,对和式
例:求解二元一次联立方程组
aa1211xx11
a12 x2 a22 x2
b1 b2
用行列式解法:首先判别
D a11a22 a21a12
是否为零,存在两种可能:
(1)如果 D 0,则令计算机计算
数值分析ppt

例如:建立积分
1 xn
In
dx 0 x5
n 0,1, , 20
的递推关系式,研究它的误差传递。
解:由
In 5In1
1
xn
5xn1 dx
0 x5
1 xn1dx 1
0
n
和
I0
1 1 dx ln 6 ln 5 0 x5
可建立递推公式
1 In 5In1 n
n 1, 2, , 20
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
在四中误差中,模型误差和观测误差是客 观存在的,截断误差和舍入误差是由计算方法和 计算工具引起的,我们在研究数学问题的数值解 法时,主要是分析讨论计算方法的截断误差和舍 入误差。
例如 在计算机上计算级数
sin x x 1 x3 1 x5 1 x7 3! 5! 7!
取前三项计算 sin x 的近似值
e*( y) y*
( f )* x1
x1* y*
er*
(
x1)
(
f x2
)*
x2* y*
er*(x2 )
(2)
利用(1)、(2)两式,可以得到两数 和、差、积、商的绝对误差与相对误差传播 的估计式.
e* (x1 x2 ) e* (x1) e*(x2 )
数值计算方法_数值分析课件

,输出数据为 ,a n, x
2
n
a ,a
,, a0 2n 1
秦九韶方法,也称为Horner算法 用递推公式表示为 新冲旧: b ai bx i 1,2,, n
p( x) ((a0 x a1 ) x an1 ) x an
b0 a0 bi ai bi 1 x i 1,2,, n bn pn ( x)
0 x2
1
e
x2
dxΒιβλιοθήκη = 0.747… …取
1
0
e
x2
dx S4 ,
S4
R4 /* Remainder */
1 1 1 则 R4 1 由留下部分 称为截断误差 /* Truncation Error */ 4!/* included 9 5! 11 terms */ 1 1 这里 R4 引起 0 .005 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 . 024 0 .743 引起 3 10 42
| 舍入误差 /* Roundoff Error */ |
0.0005 2 0.001
1 0.02380 42
1 0.33333 3
计算 0 e
1
-x 2
dx 的总体误差 0 .005 0 .001 0 .006
D e f 1 . 4 (数值稳定性/* Numerical
设
称e
为近似值 x 的绝对误差,简称误差。 x x
为真值(精确值), x
为 x
的一个近似值 x
数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分

4
( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2
记
1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1
4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。
( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2
记
1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1
4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。
数值分析 PPT课件

n1
(
x
)
这里 (a,b)且依赖于 x。
第12页/共51页
第13页/共51页
定理表明: (1) 插值误差与节点和点 x 之间的距离有关, 节点距离 x 越近, 插值误差一般情况下越小。 (2) 若被插值函数 f(x) 本身就是不超过 n 次的多项式, 则有 f(x)≡g(x)。
第14页/共51页
y1
)
(
(y y1
y0 )( y y0 )( y1
y2 )( y y y2 )( y1
3) y3
)
f
1 ( y2 )
( y y0 )( y y1 )( y y3 ) ( y2 y0 )( y2 y1 )( y2 y3 )
f
1
(
y3
)
(
(y y3
y0 )( y y0 )( y3
定理2 设 f (n)( x) 在 [a,b] 上连续,f (n1)( x) 在 (a,b) 内存在,节点
a x0 x1 xn b, Ln( x) 是满足拉格朗日插值条件的多项式,则 对任何 x [a,b], 插值余项
Rn ( x)
f ( x) Ln( x)
f ( (n1) )
(n 1)!
2.1 引言
许多实际问题都用函数 y=f(x) 来表示某种内在规 律的数量关系。若已知 f(x) 在某个区间 [a,b] 上存在、 连续,但只能给出 [a,b] 上一系列点的函数值表时,或 者函数有解析表达式,但计算过于复杂、使用不方便只 给出函数值表(如三角函数表、对数表等)时,为了研 究函数的变化规律,往往需要求出不在表上的函数值。 因此我们希望根据给定的函数表做一个既能 反映函数 f(x) 的特性,又便于计算的简单函数 P(x),用 P(x) 近 似 f(x)。这就引出了插值问题。
数值分析华电PPT

J. G. Liu
参考书目:
1 谷根代等,数值分析与应用,科学出版社,2011 2 钟尔杰.数值分析.高等教育出版社,2004. 3 颜庆津.数值分析.修订版.北京航空航天大学出版 社,2000.
4 李庆扬. 数值分析.清华大学出版社,2001.
5 白峰杉.数值计算引论.高等教育出版社,2004.
6 王能超.计算方法.北京: 高等教育出版社, 2005.
School of Math. & Phys.
5
North China Elec. P.U.
Numerical Analysis
2015/11/6
J. G. Liu
数值分析(计算方法)课程介绍
特点
面向计算机 收敛性 有可靠的理论分析 特点 稳定性
时间复杂度 有较好的计算复杂性 空间复杂度 有数值实验
School of Math. & Phys. 6 North China Elec. P.U.
Numerical Analysis
2015/11/6
J. G. Liu
数值分析(计算方法)课程介绍
数值计算方法既有数学类课程中理论上的抽象性和严谨 性,又有实用性和实验性等技术特征,它是一门理论性 和实践性都很强的课程。在20世纪70年代,大多数学校 仅在数学系的计算数学专业和计算机系开设计算方法这 门课程。随着计算机技术的迅速发展和普及,现在计算 方法课程几乎已成为所有理工科大学生的一门必修课程。
School of Math. & Phys. 2 North China Elec. P.U.
Numerical Analysis
2015/11/6
J. G. Liu
数值分析(计算方法)课程介绍
数值分析-数值计算方法

相对误差:
rx y
x
x
y
rx
x
y
y
ry
从上式可见,接近相等的同号数相减时,
会使计算结果的误差变得很大。
故应避免相减相消。
(2) f (x, y) xy : 绝对误差: exy yex xey ; 相对误差: rxy rx ry
(3) f (x, y) x / y :
数据误差在算术运算中的传播
• 初始数据误差和计算结果中产生的误差 之间的关系
• 避免相减相消。
设 x, y 分别是初始数据x, y 的近似值,即
x x ex , y y ey
ex , ey 分别是 x, y 的绝对误差。
考察用 x, y 分别代替x, y 计算函数值
z f (x, y)
例:
若 p 2, t 3, L 1,U 2
则相应的规格化浮点数共有 33 个浮点数。
J=-1 J=0 J=1 J=2
1
1
1
2
4
2
5
5
5
5
16
8
4
2
3
3
3
3
8
4
2
7
7
7
7
16
8
4
2
以及数 0.
6.2 浮点运算和舍入误差
若浮点数 x F ,可选 F 中最接近于 x 的浮点数 xR
定义 fl(x y z) fl( fl(x y) z)
据(6.17)式,
fl(x y z) fl((x y)(1 1) z) ((x y)(1 1) z)(1 2 ) (x y)(1 1)(1 2 ) z(1 2 )
数值计算方法及算法PPT学习教案

ji
1 x xj
(xk )
f (xk )
jk
1 xk x j
ik
(xk x j )
f
(xi )
ji, jk
( xi
xj)
ji
f (xk )
1 f (xi ) (1)ki k!(n k)!
h jk k j ik h k i i!(n i)!
第24页/共98页
误差估计
满足
b xi g(x)dx 0,i 0,1,, n a
b
b
a f (x)dx a (x)dx
则插值 积ab f [分x0,公, x式n, x]具(x 有x0)2n(+x 1x阶n )dx的代
数精度。
证明:
第35页/共98页
b
求多项式空间在(内f , g积) a f (x)g(x)dx
下的标准正交基。 解法1:对任意基作Gram-
输出
原真实始值误差、x 截断误f 差、舍y 入f (x)误
差近似值
~x x x
~f f f ~y ~f (~x ) y
第3页/共98页
一些例子: 计算地球的体V 积34 π R3
π 1 1 1 1
计算4 3 5 7 f (x, y) (x y)3 x3 3x2 y 3xy2 y3
第1章 插值
第6页/共98页
函数逼近 用未知函数f(x)的值构造近似函数φ(x)。 要求误差小、形式简单、容易计算。
常用的函数逼近方法 • 插值:φ(xi)=yi, i=0,1,…,n. • 拟合:||φ(x)-f(x)||尽可能小 通常取 φ(x) = a0φ0(x) + … + anφn(x),其中 {φi(x)}为一组基函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪Leabharlann 29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
48
数值分析-数值计算方法
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子