数值分析全套课件
数值分析全册完整课件

解: 将 ex2 作Taylor展开后再积分
1 eБайду номын сангаас x2 dx
1
(1
x2
x4
x6
x8
... ) dx
0
0
2 ! 3! 4!
1 1 1 1 1 1 1 1 ... 3 2! 5 3! 7 4! 9
S4
R4
取 1 e
x
2
dx
0
S4
,
则
R4
1 1 4! 9
1 1 5! 11
...
值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将 在操场上空出现。如果下雨的话,就让士兵穿着野战服列 队前往礼堂,这一罕见的现象将在那里出现。
连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗 星将身穿野战服在礼堂中出现。如果操场上下雨,营长将 下达另一个命令,这种命令每隔76年才会出现一次。
1.由实际问题应用有关知识和数学理论建立模型, -----应用数学任务
2.由数学模型提出求解的数值计算方法直到编程出结果, -----计算数学任务
计算方法是计算数学的一个主要部分,研究的即是后半 部分,将理论与计算相结合。
特点:
面向计算机,提供切实可行的算法; 有可靠的理论分析,能达到精度要求,保证近
计算方法
数值分析全册完整课件
教材和参考书
教材:
数值分析,电子科技大学应用数学学院,钟尔杰, 黄廷祝主编,高等教育出版社
参考书:
数值方法(MATLAB版)(第三版),John H. Mathews,Kurtis D. Fink 著,电子工业出版社;
数值分析(第四版),李庆扬,王能超,易大义编,清华 大学出版社;
数值分析课件

第3章线性方程组的解法本章探讨大型线性方程组运算机求解的经常使用数值方式的构造和原理,要紧介绍在运算机上有效快速地求解线性方程组的有关知识和方式.重点论述Jacobi迭代法、Seidel迭代法、Guass消元法及LU分解法的原理、构造、收敛性等内容。
实际案例问题的描述与大体概念解线性方程组问题在线性代数中已有很优美的行列式解法,但对大型的线性方程组(阶数n>40)的求解问题利用价值并非大,因为其计算量太大。
实际问题中常常碰到自变量个数n都专门大的线性方程组求解问题,这些线性方程组要借助运算机的帮忙才能求出解。
n 个变元12,,,n x x x ⋯的线性方程组的一样形式为11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()式中,a ij 称为系数,b i 称为右端项,它们都是已知的常数。
若是有***1122,,,n nx x x x x x ===使方程组()成立,那么称值***12,,,nx x x为线性方程组的()的一组解。
本章在不作专门说明的情形下,要紧讨论m=n 的线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的求解问题,且假设它有唯一解。
线性方程组的矩阵表示Ax b =式中A称为系数矩阵,b称为右端项。
数值分析中,线性方程组的数值解法要紧分为直接法和迭代法两大类。
直接法是用有限次计算就能够求出线性方程组“准确解”的方式(不考虑舍入误差);迭代法是由线性方程组构造出迭代计算公式,然后以一个猜想的向量作为迭代计算的初始向量慢慢迭代计算,来取得知足精度要求的近似解。
迭代法是一种逐次逼近的方式。
数值分析学习课件

对任意 u ≠ 0 ∈ R n +1 ,必有 Φ u ≠ 0 。 则 u T B u = u T Φ T Φ u =|| Φ u || 2 > 0 2 若不然, 若不然,则 存在唯一解 ⇒ B为正定阵,则非奇异,所以法方程组存在唯一解。 为正定阵,则非奇异,所以法方程组存在唯一 n +1 存在一个 u ≠ 0 ∈ R 使得 Φ u = 0 … 即
则 (ϕ i , ϕ j ) =
∫
1 0
x i x j dx =
1 i + j+1
Hilbert阵! 阵
若能取函数族Φ={ ϕ0(x), ϕ1(x), … , ϕn(x), … }, , 两两( 使得任意一对ϕi(x)和ϕj(x)两两(带权)正交, 和 两两 带权)正交, 改进: 改进: 对角阵! 就化为对角阵 则 B 就化为对角阵! (ϕ k , y ) 这时直接可算出a 这时直接可算出 k = (ϕ k , ϕ k ) 正交多项式的构造: 正交多项式的构造: 多项式的构造 取为k 多项式,为简单起见, 将正交函数族中的ϕk 取为 阶多项式,为简单起见,可取 ϕk 的首项系数为 1 。
①
总体上尽可能小 尽可能小。 这时没必要取 P(xi) = yi , 而要使 P(xi) − yi 总体上尽可能小。 常见做法: 常见做法:
m
不可导, 不可导,求解困难
太复杂
使 max | P ( x i ) − y i | 最小 /* minimax problem */ 1≤ i ≤ m 使 ∑ | P ( x i ) − y i | 最小 使 ∑ | P ( x ) − y | 最小 /* Least-Squares method */ 定义 最佳平方逼近:即连续型 逼近,在 || f ||2 = 最佳平方逼近:即连续型L-S逼近 平方逼近 逼近,
数值分析课件

辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。
数值分析学习课件

§2.正交多项式
性质3. n次多项式 P (x)有n个互异实根,且全部(a, b)内。 n 性质4.设 P (x)的n个实根为x1 , x2 ,..., xn P + 1 (x) 的n+1 ,n n 个实根为 x1 , x2 ,..., xn1 ,则有
a x1 x1 x 2 x2 ...
{ j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
polynomial */
§1.函数逼近的基本概念
定义 权函数:
①
离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
Pk(x)
kl kl
由 P0 1, P1 x 有递推 (k 1) Pk 1 (2k 1) xP kPk 1 k
k
0
1
2 3
P0 ( x) 1 P ( x) x 1
P2 ( x ) =
4
1 P3 ( x ) = (5 x3 - 3x) 2 1 P4 ( x ) = (35 x 4 - 30 x 2 + 3) 8
第三章
函数逼近
/* Approximation Theory */
第一讲
§1.函数逼近的基本概念
§2.正交多项式
§1.函数逼近的基本概念
已知 x1 … xm ; y1 … ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 近似函数 P(x) 使得 a [ P( x) f ( x)]2 dx 最小。
数值分析ppt

例如:建立积分
1 xn
In
dx 0 x5
n 0,1, , 20
的递推关系式,研究它的误差传递。
解:由
In 5In1
1
xn
5xn1 dx
0 x5
1 xn1dx 1
0
n
和
I0
1 1 dx ln 6 ln 5 0 x5
可建立递推公式
1 In 5In1 n
n 1, 2, , 20
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
在四中误差中,模型误差和观测误差是客 观存在的,截断误差和舍入误差是由计算方法和 计算工具引起的,我们在研究数学问题的数值解 法时,主要是分析讨论计算方法的截断误差和舍 入误差。
例如 在计算机上计算级数
sin x x 1 x3 1 x5 1 x7 3! 5! 7!
取前三项计算 sin x 的近似值
e*( y) y*
( f )* x1
x1* y*
er*
(
x1)
(
f x2
)*
x2* y*
er*(x2 )
(2)
利用(1)、(2)两式,可以得到两数 和、差、积、商的绝对误差与相对误差传播 的估计式.
e* (x1 x2 ) e* (x1) e*(x2 )
数值分析全册完整课件

算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
数值分析(浙江大学)全套课件

数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
ห้องสมุดไป่ตู้ 学习方法
1.注意掌握各种方法的基本原理 2.注意各种方法的构造手法 3.重视各种方法的误差分析 4.做一定量的习题 5.注意与实际问题相联系
教材 (Text Book) 数值计算方法 郑慧娆等 编著 (武汉大学出版社)
参考书目 (Reference)
➢ Numerical Analysis:Mathematics of Scientific Computing (Third Edition)
数值分析 (英文版 第3版 )
David Kincaid & Ward Cheney(机械工业出版社)
10
n
0
1
102
0
10 1 101 0
2。与计算机不能分离:上机实习(掌握一 门语言:C语言,会用Matlab)
1.2 误差 ( Error )
§1 误差的背景介绍 ( Introduction ) 1. 来源与分类 ( Source & Classification ) 模型误差 ( Modeling Error ): 从实际问题中抽象出数 学模型
1 e x2 dx 0
(第七章的内容:数值积分)
数值分析的特点
1。近似: 由此产生“误差”
在计算数学和应用数学中一个有趣的问题: 什么是零?
1 10 1 10
原点附近
1
在纯数学中,认为此矩阵为满秩矩阵
10 1
但在计算数学中,它却是降秩矩阵 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光速: 2.99792458e+008 浮点数表示: 0.299792458×109
x 0.a1a2 an 10
尾数部
Байду номын сангаас
m
阶码部
8/16
二进制浮点数表示(IEEE754双精度)
x 1.b1b2 bn1 2
尾数部
m
阶码部
其中,正负号占2个位,尾数占52个位,阶码占 10个位.对应十进制数字长15,阶码308 二进制数1.b1b2×2m ( – 4≤ m ≤3 )分布实验
实际问题 数学模型 获取数据
数值方法、程序 数据结果
4/16
D
R R x y
2 2 2
dxdy
参考P.190
误差分类:
模型误差: 建立数学模型时所引起的误差;
观测误差:测量工具的限制或在数据的获取时随 机因素所引起的物理量的误差;
截断误差:求解数学模型时,用简单代替复杂, 或者用有限过程代替无限过程所引起的误差 舍入误差:计算机表示的数的位数有限,通常用 四舍五入的办法取近似值,由此引起的误差.
1.一元函数 y=f(x)误差分析( 准确值 y*=f(x*) ) 由Taylor 公式 2 ( x * x) f ( x*) f ( x ) ( x * x ) f ( x ) f ( ) 2
所以
( y) | f ( x) | ( x) xf ( x ) | r ( x) 同理: r ( y ) | f ( x) 反问题:估计 r (x )
解: a1=5,利用不等式 取n≥3,有
5 n n | er ( x ) | 10 10 a1
|er(x)|≤10-3
所以,浮点数的有效数字位数至少应取3位。
12/16
例2.圆面积计算的误差估计
圆面积计算公式: S R 2 全微分近似: S 2RR
( S ) 2R ( R)
14/16
2.多元函数 z = f(x1,x2,·,xn)误差分析 · ·
f ( z) | | ( xk ) k 1 xk
n
数据误差对算术运算影响
(1)
(2) (3)
( x1 x2 ) ( x1 ) ( x2 )
| x1 | ( x2 ) | x2 | ( x1 ) ( x1 / x2 ) 2 x2
10/16
一个有n 位有效数字的数
x 0.a1a2 an 10
绝对误差限满足:
m
1 mn e ( x ) x x 10 2
相对误差限满足:
5 n er ( x ) 10 a1
11/16
例1 已知 30 的十进制浮点数第一位是5, 要使近似值的相对误差限小于 0.1%, 问浮 点数的有效数字的位数至少应该为多少?
练习与思考
一、通过网络查找相关资料: 1.关于圆周率的计算方法; 2. IEEE754浮点数标准. 二、回顾微积分内容 1. 球冠面积和体积计算公式及变形; 2. 一元函数及多元函数台劳展式.
三、了解重要数据 1.地球半径、地月距离、太阳半径、…… 2.微处理器尺度、普朗克常数、……
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)
为 x 的相对误差
6/16
如果存在一个适当小的正数ε
,使得
e( x) x x
0
1
2
3
4
5
6
7
9/16
有效数字概念:
取 的有限位数如下( ≈3.1415926)
取 x1 = 3,误差限不超过0.5; 取 x2 = 3.14,误差限不超过0.005 ; 取 x3 = 3.1416,误差限不超过0.00005 ;
若近似值 x 的绝对误差限是某一位上的半个 单位,该位到 x 的第一位非零数字一共有 n 位,则称近似值 x 有 n 位有效数字.
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)
《数值分析》1
科学计算的背景 关于计算误差讨论 浮点数与有效数字 算术运算的误差估计
数值分析——研究用计算机求解 数学问题的数值计算方法及其理论 方程组求解、方程求根、数据插值、 数据拟合、数值积分、微分方程求解 von Neumann and Goldstine: “高阶矩阵的数值求逆” (1947 年) 1958年, 前苏联载人飞船
Ln n si n
ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
von Neumann
1969年, 美国Apollo 登月
1994年, 美国GPS运行
2/16
求未知数据的迭代计算技术: 初始猜测数据、迭代计算格式、 迭代序列的收敛性分析、计算 复杂性分析,…… 评价算法的主要指标: 速度和精度
引例: 圆内接正多边形边长计算Pi方法(P.42&177)
n L2 n Ln / cos 2n
则称ε 为绝对误差限。 如果存在一个适当小的正数ε r ,使得
e( x) x x er ( x ) r x x
称ε r为相对误差限。
7/16
十进制浮点数表示
一台微机价格:¥3999.00, 浮点数表示:0.3999×104 地球半径: 6378137m, (6.378137e+006) 浮点数表示: 0.6378137×107
r ( S ) 2 r ( R)
r (S ) ≈2×1%=2%
取 r = 50 cm, 则有 ( R) 0.5 cm
(S ) ≈150 cm2,
反问题:利用 (S ) 估计
( R), r ( R)
13/16
| e( y) || y * y || x * x || f ( x) || f ( x) | ( x)