《数值分析》课件

合集下载

数值分析全册完整课件

数值分析全册完整课件
0
解: 将 ex2 作Taylor展开后再积分
1 eБайду номын сангаас x2 dx
1
(1
x2
x4
x6
x8
... ) dx
0
0
2 ! 3! 4!
1 1 1 1 1 1 1 1 ... 3 2! 5 3! 7 4! 9
S4
R4
取 1 e
x
2
dx
0
S4
,

R4
1 1 4! 9
1 1 5! 11
...
值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将 在操场上空出现。如果下雨的话,就让士兵穿着野战服列 队前往礼堂,这一罕见的现象将在那里出现。
连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗 星将身穿野战服在礼堂中出现。如果操场上下雨,营长将 下达另一个命令,这种命令每隔76年才会出现一次。
1.由实际问题应用有关知识和数学理论建立模型, -----应用数学任务
2.由数学模型提出求解的数值计算方法直到编程出结果, -----计算数学任务
计算方法是计算数学的一个主要部分,研究的即是后半 部分,将理论与计算相结合。
特点:
面向计算机,提供切实可行的算法; 有可靠的理论分析,能达到精度要求,保证近
计算方法
数值分析全册完整课件
教材和参考书
教材:
数值分析,电子科技大学应用数学学院,钟尔杰, 黄廷祝主编,高等教育出版社
参考书:
数值方法(MATLAB版)(第三版),John H. Mathews,Kurtis D. Fink 著,电子工业出版社;
数值分析(第四版),李庆扬,王能超,易大义编,清华 大学出版社;

数值分析课程课件 直接三角分解方法

数值分析课程课件  直接三角分解方法


u22
u11
u2n



l n1 l n2
1

unn


a11 a12 a 21 a22
a1n
a2n


u11 l21u11
u12 l21u12 u22
u1n

l21u1n

u2n


a n1 a n2
ann
ln1u 11
由(5.3.1)- (5.3.4)求得L和U后,解方程组Ax=b 化为求解LUx=b,若记Ux=y,则有Ly=b。于是可分两部解 方程组LUx=b,只要逐次向前代入的方法即可求得y。第
二步求解Ux=y,只要逐次用向后回代的方法即可求得x。 设 x=(x1 ,x2, ···xn) T, y=(y1, y2, ···yn) T,
n

i1
lniuin

unn

第四章方程组的直接解法
由A的第1行和第1列可计算出U的第1行和L的第1列,即
u1 j a1 j , j 1, 2, , n,
(5.3.1)
lk1

ak1 u11
,k

2, 3,
, n.
(5.3.2)
如果U的第1至k-1列和L的第1至k-1列已经算出,则由
解 设 A=LU,即
l11 a11 1, l21 a21 2, l31 a31 0
u12

a12 l11
2, u13

a13 l11
1,

l22 a22 l21u12 3, l32 a32 l31u12 1

数值分析学习课件

数值分析学习课件

对任意 u ≠ 0 ∈ R n +1 ,必有 Φ u ≠ 0 。 则 u T B u = u T Φ T Φ u =|| Φ u || 2 > 0 2 若不然, 若不然,则 存在唯一解 ⇒ B为正定阵,则非奇异,所以法方程组存在唯一解。 为正定阵,则非奇异,所以法方程组存在唯一 n +1 存在一个 u ≠ 0 ∈ R 使得 Φ u = 0 … 即
则 (ϕ i , ϕ j ) =

1 0
x i x j dx =
1 i + j+1
Hilbert阵! 阵
若能取函数族Φ={ ϕ0(x), ϕ1(x), … , ϕn(x), … }, , 两两( 使得任意一对ϕi(x)和ϕj(x)两两(带权)正交, 和 两两 带权)正交, 改进: 改进: 对角阵! 就化为对角阵 则 B 就化为对角阵! (ϕ k , y ) 这时直接可算出a 这时直接可算出 k = (ϕ k , ϕ k ) 正交多项式的构造: 正交多项式的构造: 多项式的构造 取为k 多项式,为简单起见, 将正交函数族中的ϕk 取为 阶多项式,为简单起见,可取 ϕk 的首项系数为 1 。

总体上尽可能小 尽可能小。 这时没必要取 P(xi) = yi , 而要使 P(xi) − yi 总体上尽可能小。 常见做法: 常见做法:
m
不可导, 不可导,求解困难
太复杂
使 max | P ( x i ) − y i | 最小 /* minimax problem */ 1≤ i ≤ m 使 ∑ | P ( x i ) − y i | 最小 使 ∑ | P ( x ) − y | 最小 /* Least-Squares method */ 定义 最佳平方逼近:即连续型 逼近,在 || f ||2 = 最佳平方逼近:即连续型L-S逼近 平方逼近 逼近,

数值分析课件

数值分析课件

辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。

数值分析学习课件

数值分析学习课件

§2.正交多项式
性质3. n次多项式 P (x)有n个互异实根,且全部(a, b)内。 n 性质4.设 P (x)的n个实根为x1 , x2 ,..., xn P + 1 (x) 的n+1 ,n n 个实根为 x1 , x2 ,..., xn1 ,则有
a x1 x1 x 2 x2 ...
{ j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
polynomial */
§1.函数逼近的基本概念
定义 权函数:

离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
Pk(x)
kl kl
由 P0 1, P1 x 有递推 (k 1) Pk 1 (2k 1) xP kPk 1 k
k
0
1
2 3
P0 ( x) 1 P ( x) x 1
P2 ( x ) =
4
1 P3 ( x ) = (5 x3 - 3x) 2 1 P4 ( x ) = (35 x 4 - 30 x 2 + 3) 8
第三章
函数逼近
/* Approximation Theory */
第一讲
§1.函数逼近的基本概念
§2.正交多项式
§1.函数逼近的基本概念
已知 x1 … xm ; y1 … ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 近似函数 P(x) 使得 a [ P( x) f ( x)]2 dx 最小。

数值分析课件

数值分析课件

n=20 需要运算 多少次?
➢ 存贮量 ➢ 逻辑结构
n=100?
§2 误差来源与误差分析的重要性
一、误差的来源与分类
➢ 从实际问题中抽象出数学模型—— 模型误差
例:质量为m的物体,在重力作用下,自由下落, 其下落距离s 与时间t 的关系是:
m
d 2s dt2
mg
其中 g 为重力加速度。
➢ 通过测量得到模型中参数的值—— 观测误差
S2 计算 D a11a22 a21a12
S3 如果 D 0
则输出原方程无解或有无穷多组解的信息;
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果
x1, x2
x2
a11b2 a21b1 D
开始
输入
a11, a12 , a21, a22 , b1 , b2
D=a11a22-a12a21
(1)如果 D 0,则令计算机计算
x1 b1a22 b2a12 D , x2 b2a11 b1a21 D
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。
令 D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
S1 输入 a11, a12, a21, a22,b1,b2
➢ 求近似解 —— 方法误差 (截断误差)
例如,当函数 f 用 xTaylor多项式
Pn x
f
0
f 0
x 1!
f 0 x2
2!
f (n) 0 xn
n!
近似代替时,数值方法的截断误差是
( 在 与x0之间)。
Rn x
f
x Pn x

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析-第一章ppt课件

数值分析-第一章ppt课件

数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,

|
e ( x*) x*
|
较小时,

e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.
e a
b
a e (b) b e (a)
, b2
b0
设a,b 分别是准确值x,y 的近似值,则
4.
er
(a
b)
e (a)
a
e (b)
b
5.
er
(a
b)
e (a)
a
e (b)
b
6. e r (ab) e r (a) e r (b)
7.
er
a b
er
(a)
er
(b)
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
➢截断误差
求解数学模型所用的数值计算方法,如果是一种 近似的方法,只能得到模型的近似解,由此产生 的误差称为截断误差或方法误差。
➢舍入误差
由于计算机的字长有限,参加运算的数据及其 运算结果在计算机中存放会产生误差。这种误 差叫舍入误差或计算误差。
例如 在 16 位微机上计算,单精度实数存放仅有 7 位有效数字。在其上运算,会有 1 3 0.333 333 3, (1.000 002)2 1.000 004 0, 后者的准确结果是 4 1012。
分析 x x *
= f '( )(x x *)
x* 与 x 非常接近时,可认为 f '( ) f '(x*) ,则有:
|e(y)| | f '(x*)|·|e(x)|
(1)
e ( y) f ' (x*) e (x)
(2)
即:x*产生的误差经过 f 作用后被放大/缩小了| f '(x*)|
注: 1、同一个准确值的不同近似值,有效数字 越多,其绝对误差和相对误差都越小.
2、准确值的有效数字可看做有无限多位.
例 3.1415926535897932 ; * 3.1416
问: * 有几位有效数字?请证明你的结论。
证明:
0.31416 101 and 0.5104 0.51015 有 5 位有效数字 , 精确到小数点后第 4 位。
经过四舍五入而得到的近似值,
问: e(a),e(b),e r(a),er(b) 各是多少?
解: e (a) 0.005 , e (b) 0.000 05 e r(a) e (a) 0.005 0.23%,
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
例:近似计算 1 ex2 dx = 0.747… … 0
解法之01一e大:x2 d家将x 一1e/1起x0e12作(1猜13T?axy212l!or01展215xe4!开x312后!dx3!x6再71积x4!分481!119
)
dx

1
e
x
2
dx
0
S4
,
S4
R4 ( Remainder )
倍。故称| f '(x*)|为放大因子 ( amplification factor ) 或
绝对条件数 ( absolute condition number ).
| er ( y) |
e( y) f (x*)
f (x) f (x*) x * x x * x x * f (x*) x *
e x x 其中 x 为精确值,x* 为 x 的近似值。|e|的上界
记为e , 称为绝对误差限 (accuracy),工程上常记为
x = x* ± e .
例如: 1 ex2 dx 0.743 0.006 0
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
x * f (x*) f (x*)
er (x)
| er (x) |
e(x) x*
相对误差条件数
( relative condition number)
f 的条件数在某一点是小\大,则称 f 在该点是好条件的 ( well-conditioned ) \坏条件的 ( ill-conditioned )。
s0
s1
sn
n
p(x) ai xi i0
算法二(秦九韶法)
Tn an Tk xTk1 ak , (k n 1, n 2, ,1, 0) p(x) T0
秦九韶法原理
p(x) an xn an1xn1 a2 x2 a1x a0 =(an xn1 an1xn2 a2 x1 a1)x a0
= (an xn2 an1xn3 a2 x0 )x a1 x a0
❖定义算法的计算复杂性 是指在达到给定精度时, 该算法所需的计算量和所占的内存空间. 前者叫时 间复杂性,后者叫空间复杂性.
例子 计算下面多项式的值。输入数据为ai和x, 输出数据为 p(x) 的值。
n
p(x) ai xi i0
算法一
s0 a0
sk
ak xk
, (k
1, 2,
, n)
p(x)
数值分析
理学院
刘秀娟
第1章 绪论
§1.1 数值分析的研究对象
提问:数值分析是做什么用的?
数值分析是近代数学的一个重要分支,它是研究 各种数学问题的数值解法,包括方法的构造和求 解过程的理论分析。
在电子计算机成为数值计算的主要工具之后,则 要求研究适合于计算机使用的数值计算方法,为 了更好地说明数值分析的研究对象,我们考察用 计算机解决科学计算问题时经历的几个过程:
➢有效数字 ( significant digits)
❖四舍五入带来的绝对误差限
凡是由准确值 x 经四舍五入而得到近似值 x*,其绝对误差 限等于该近似值末位的半个单位。
❖定义 有效数字
设 x* 是数 x 的近似值,如果 x* 的绝对误差限是它的某一 位的半个单位,并且从该位到它的第一位非零数字共有 n 位,则称用 x* 近似 x 时,具有 n 位有效数字。
实际长度 x 和 y 在什么范围内?
解: e (a) e (b) 0.5mm , e r(a) e (a) 0.5 0.16%,
a 312
e r(b) e (b) 0.5 2.08%,
b 24
311.5mm x 312.5mm, 23.5mm y 24.5mm
例2 设 a=-2.18 , b=2.1200 是分别由准确值x和y
1、采用“构造性”方法; 2、采用“离散化”方法; 3、采用“递推化”方法; 4、采用“近似代替”方法等等。
• 研究内容
线性方程组的数值解 矩阵特征值与特征向量计算 非线性方程的数值解 数值逼近 数值积分 常微、偏微的数值解
• 研究方法
理论分析 算法分析 误差分析 收敛性分析 收敛速度
例如
y 5x 6 sin x8, 0 x 106
是实际问题的解,而若数学模型的解是
y 5x 6, 0 x 106, 由此产生的误差叫作模型误差。
➢观测误差
数学模型中包含某些变量,如时间、长度、电压 等,它们一般是通过观测来获得。由于观测得到 的数据与实际数据之间有误差,这种误差叫观测 误差。
—— 观测误差 ( Measurement Error )
➢ 求近似解 —— 方法误差 (截断误差 ( Truncation Error ) )
➢ 机器字长有限 —— 舍入误差 ( Roundoff Error )
➢模型误差
处理实际问题时,要建立数学模型,通常模型只 是近似的。由此产生的数学模型解与实际问题的 解 之间的误差叫模型误差。
如果有f ' (a) f '' (a) f (k1) (a), f (k ) (a) 0, 则有
e( y) f (k ) (a) [e(a)]k
(3)
k!
f (k) (a)
e (y)
[e (a)]k
(4)
k!
问题二:对于n 元函数 u f (x1, x2 ,, xn ), ai是xi的近似值 , 用a将i 代对替uxi产,生什么影响?
提问:绝对误差限的大小能否完全地 表示近似值的好坏?
例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
❖定义 近似值 x* 的相对误差 (relative error)
er
e x
x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
§1.2 误差知识与算法知识
1.2.1 误差的来源与分类
在工程技术的计算中,估计计算结 果的精确度是十分重要的工作,而影响 精确度的是各种各样的误差。误差的来 源是复杂的,但主要有以下四种:
➢ 从实际问题中抽象出数学模型
—— 模型误差 ( Modeling Error )
➢ 通过测量得到模型中参数的值
➢有效数字的确定方法
用科学计数法,记
x* 0.a1a2 an 10m (其中 a1 0 ), 若| x x* | 0.510mn (即 an 的截取按四舍五入规则),
则 x* 至少有n 位有效数字,且精确到10mn.
有效数字的位数 n = 近似数科学记数法的幂指 数-绝对误差限科学记数法的幂指数.
注:1、由准确值经过四舍五入得到的近似值,从它的末位 数字到第一位非零数字都是有效数字。 2、0.2300有4位有效数字,而0.23只有2位有效数字。 12300有5位有效数字,如果写成0.123105,则表示只有 3位有效数字。 数字末尾的0不可随意省去!
相关文档
最新文档