二次函数含参问题

合集下载

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。

这就使得本来简单的二次函数变得复杂起来。

例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。

由于参数的存在,这个函数是动态的。

为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。

对于这个问题,需要分类讨论。

在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。

因此,我们需要分别考虑这些情况。

具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。

这个分界线就应该在$2$和$4$中间的位置上,即$3$。

当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。

因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。

代入上面的式子,得到$f_{\max}(x)=-8$。

因此,最大值为$-8$。

接下来,我们来讨论含参的二次函数的最大值和最小值问题。

这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。

我们可以按照对称轴的位置进行分类讨论。

首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。

其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。

另外,还有一类问题叫做定轴动区间的问题。

对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。

2023中考数学重难点练习 专题03 二次函数含参解析式问题(学生版+解析版)

2023中考数学重难点练习 专题03 二次函数含参解析式问题(学生版+解析版)

专题03二次函数含参解析式问题一、E知识回顾】(1)二次函数的一般形式:丘且主且正怡,b,c是常数,a手。

)注:未知数的最高次数是2,a,;c:0,b, c是任意实数。

(2)二次函数的国i象与性质二次函数y=ax2+b x+c(a,b, c为常数,a学0)图象开口方向对称输顶点坐标增减。

|全故值y\ :/x(a>O)开口向七b直线x=-一2a(」4a c一2a’4a当x<-2a时,y随x的增大而减尘:当x>一丢.:a时,y|施x的瞅而增大2ba’_:4ac-b2当x=一' y有最尘直4a(3)二次函数阁像与系数的关系Y,队。

\x(a<O)开口向下b直线x=-一2a(-!. 4a c-b引2a’4ab当x<-2a时,y随x的增大而盟主:b当x>-2a时,d罐x的增大而温尘当x=一一时,y有最本值4a…c-b22a 4a某1比特别t形式代数式的决定抛物线的当a>O时,抛物线开口向上;a开口方向及开口大小当a<O时,抛物线开口向下.符号.a±b+c即为x=+l时一,y 当a,b问号,二<O,对称轴在泱定对称轴的值:②4a±2b+c1111为x=±2时,y的值a、y轴左边:(x=一一〉的位2a2a吨的符号,需判置当时时,斗o,对称轴为y b对称轴τ..;;与1tt飞!大小.轴:b当a,b异号,τ.;aγ>O,对称输布,y轴�边.当c>O时,抛物线与y轴的交点决定抛物线与在夜半轴上.c y轴的交点的当c=O时,抛物线经过原点:位置当c<O时,抛物线与y轴的交点在1这半轴上.b2-4ac>O时,抛物线与且铀有2个交点;决定抛物线与b2-4ac=O时,抛物线与x轴有l b2-4ac x轴的交点个个交点;数b2-4a c<O时,抛物线与x轴i立主交点(4)利用二次函数的对称轴判断函数值大小关系〈福建常考i在择题10)方法技巧g 若对称粉1在直线x=l的b左边,贝tl2a>l,再根据a的符号即可得出络果.④2a-b的符号,需步I]断对称轴与-1的大小.①已知点A Ca. b)为二次函数图像上一点,对称轴已失U x=c,则A点对称点B(2c-a b)②己知点A(a, c)、B( b, c)为二次函数图像上一点,则根据网点纵坐标相等,可知A、B为对称点,那么对称轴x干③不等式解读:la-cl斗b-c卜a到对称轴c的距离>b到对称输的距离l a-cJ=lb-cj a到对称轴c的距离=b到对称轴的距离la-cl斗b-c卜a到对称轴c的距离<b到对称铀的距离二、E考点类型】考点1:二次函数函数图像与系数的关系典例1:( 2022福建商|到校考一模〉二次函数y=a).-2+你+c(α,b, c是常数,但0)的图象如阁所示,对称轴为直线x=-1.有以下结论:①abc>O;①a(/!+2) 2+b (仇2)<a (k2+1) 2+b (的1)(k为实数〉:①m (am+b) �,。

含参二次函数的最值问题

含参二次函数的最值问题

5a x
(2)当1 a 5时
f (x)min =f(1)=-4 f (x)max =f(-3)=12
(3)当a 5时
f (x)min=f(1)=-4 f (x)max =f(a)= a2-2a-3
小结:
本节课讨论了两类含参数的二次函数最 值问题:
(1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
❖第2类:函数对称轴固定,动区间 例2:
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
3 4a, (a 2)
变式作业上第9题
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 23:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
a -3 o 1
(1)当 3 a 1时
f (x)min=f(a)=a2-2a-3 x f (x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)

(完整版)二次函数含参问题

(完整版)二次函数含参问题

二次函数含参问题本质:解决二次函数含参问题就是解决对称轴与定义域的问题。

课堂例题:1. 若函数a ax x x f --=2)(在区间[0,2]上的最大值为1,则实数=a ;2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为⎥⎦⎤⎢⎣⎡-0,49,则m 的取值范围为 ;当堂练习:1. 若函数)0(22≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ;2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;1. 若函数f(x)=4x−12−a ·2x +272在区间[]2,0上的最大值为9,求实数a 的值;当堂练习:1. 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值;2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值;家庭作业:1.函数432--=x x y 的定义域为[]m ,0,值域为⎥⎦⎤⎢⎣⎡--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ;3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ;4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ;5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ;3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a1.不等式(2−α)x2−2(a−2)x+4>0对于一切实数x都成立,求α的取值范围;2.若不等式x2−2αx+a2−a>0,当x∈[0,1]时恒成立,求 α的取值范围;当堂练习:1.求对于−1≤α≤1,不等式x2+(α−2)x+1−a>0恒成立的x的取值范围;)恒成立,则α的取值范围是多少;2. 若不等式 x2+αx+1≥0对于一切x∈(0,123.不等式αx2+2x+1>0在x∈[−2,1]上恒成立,求实数α的取值范围;4.设不等式αx2−2x−a+1<0对于满足|α|≤2的一切值都恒乘以,求x的取值范围;家庭作业:1.函数f(x)=αx2−2x+2 (a∈R),对于满足1<x<4的一切x值都有f(x)>0,求实数α的取值范围;>0 对任意2.已知f(x)是定义在区间[−1,1]上的函数,且f(1)=1,若m,n∈[−1,1],m+n≠0时,有f(m)+f(n)m+n x∈[−1,1],f(−x)=−f(x)都成立。

数学《二次函数的含参问题》专题训练及答案

数学《二次函数的含参问题》专题训练及答案

2020-2021学年中考数学培优训练讲义(九)《二次函数的含参问题》专题训练○2班级姓名座号成绩1.(2019秋•台州期中)已知:在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为2.(2020•永嘉县模拟)已知:抛物线y=a(x﹣2)2+1经过点A(m,y1),B(m+2,y2),若点A在抛物线对称轴的左侧,且1<y1<y2,则m的取值范围是3.(2020•宁波模拟)已知:点P(m,n)在抛物线y=a(x﹣5)2+9(a≠0)上,当3<m<4时,总有n>1,当7<m<8时,总有n<1,则a的值为4.(2020•厦门模拟)函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是5.(2021•闽侯县模拟)在平面直角坐标系xOy中,已知抛物线y=x2+bx.(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K.①判断△AOB的形状,并说明理由;②已知E(﹣2,0),F(0,4),设△AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围.6. (2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.作业思考:1.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m 的取值范围.1.(2019秋•台州期中)在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y1【分析】先求出a<0和对称轴是直线x=1,根据二次函数的性质得出当x>1时,y随x的增大而减小,再根据点的坐标和二次函数的性质比较即可.【解答】解:∵抛物线y=ax2﹣2ax﹣3a与y轴的交点在正半轴上,∴﹣3a>0,∴a<0,即抛物线的开口向下,∵抛物线的解析式是y=ax2﹣2ax﹣3a,∴对称轴是直线x=﹣=1,∴当x>1时,y随x的增大而减小,∴点A(﹣0.5,y1)关于直线x=1的对称点的坐标是(2.5,y1)∵图象过点(2.5,y1)、B(2,y2)和C(3,y3),又∵2<2.5<3,∴y2>y1>y3,故选:B.【点评】本题考查了二次函数图象上点的坐标特征和二次函数的图象函数性质,能熟记二次函数的性质是解此题的关键.2.(2020•永嘉县模拟)已知抛物线y=a(x﹣2)2+1经过点A(m,y1),B(m+2,y2),若点A在抛物线对称轴的左侧,且1<y1<y2,则m的取值范围是()A.0<m<1 B.0<m<2 C.1<m<2 D.m<2【分析】根据题目中的抛物线,可以得到该抛物线的对称轴,然后根据题意,可知点A和点B在对称轴两侧,从而可以得到m的取值范围,本题得以解决.【解答】解:∵抛物线y=a(x﹣2)2+1,∴该抛物线的对称轴为直线x=2,∵点A(m,y1),B(m+2,y2)在抛物线y=a(x﹣2)2+1上,点A在抛物线对称轴的左侧,且1<y1<y2,∴1<m<2,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.(2020•宁波模拟)已知点P(m,n)在抛物线y=a(x﹣5)2+9(a≠0)上,当3<m<4时,总有n >1,当7<m<8时,总有n<1,则a的值为()A.1 B.﹣1 C.2 D.﹣2【分析】依解析式可知顶点坐标,根据当7<m<8时,总有n<1,可知a<0,由增减性可列不等式组,解出即可.【解答】解:∵抛物线y=a(x﹣5)2+9(a≠0),∴抛物线的顶点为(5,9),∵当7<m<8时,总有n<1,∴a不可能大于0,则a<0,∴x<5时,y随x的增大而增大,x>5时,y随x的增大而减小,∵当3<m<4时,总有n>1,当7<m<8时,总有n<1,且x=3与x=7对称,∴m=3时,n≤1,m=7时,n≥1,∴,∴4a+9=1,∴a=﹣2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是熟练掌握增减性,理解“3<m<4时,总有n>1,当7<m<8时,总有n<1”的意义.4.(2020•厦门模拟)函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5 B.m=4b+8 C.m=6b+15 D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2,x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=>3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.【点评】主要考查图象与二次函数系数之间的关系,解题的关键是利用韦达定理处理根和系数之间的关系.5.(2021•闽侯县模拟)在平面直角坐标系xOy中,已知抛物线y=x2+bx.(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K.①判断△AOB的形状,并说明理由;②已知E(﹣2,0),F(0,4),设△AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围.【分析】(1)y=x2+bx=(x+b)2﹣b2,即可求解;(2)①求出抛物线的表达式为y=x2,联立y=x2和y=kx+2并整理得:x2﹣2kx﹣4=0,证明△ADO∽△OEB,即可求解;②△AOB的外心为M,则点M是AB的中点,MN是Rt△ABH的中位线,则m=y1﹣MN=(y1+y2)=k2+2,进而求解.【解答】解:(1)∵y=x2+bx=(x+b)2﹣b2,∴抛物线的顶点坐标为(﹣b,﹣b2);(2)①∵抛物线与x轴只有一个公共点,∴△=b2﹣4××0=0,解得b=0,∴抛物线的表达式为y=x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、E,设经过点(0,2)的直线的表达式为y=kx+2,联立y=x2和y=kx+2并整理得:x2﹣2kx﹣4=0,则x1+x2=2k,x1x2=﹣4,∴y1=x12,y2=x22,则y1y2=x12x22=4=﹣x1x2,∵AD=y1,DO=﹣x2,BE=y2,OE=x1,∴,∴∠ADO=∠BEO=90°,∴△ADO∽△OEB,∴∠AOD=∠OBE,∵∠OBE+∠BOE=90°,∴∠BOE+∠DOD=90°,即AO⊥BO,∴△AOB为直角三角形;②过点A作x轴的平行线交BE的延长线于点H,过点M与y轴的平行线于点N,∵△AOB的外心为M,MN∥y轴∥BH,∴点M是AB的中点,MN是Rt△ABH的中位线,∴MN=BH=(y2﹣y1),则m=y1﹣MN=(y1+y2)=(kx1+2+kx2+2)=[k(x1+x2)+4]=k2+2,令y=kx+2=0,解得x=﹣,即点K的坐标为(﹣,0),由题意得:2≤﹣≤4,解得﹣1≤k≤且k≠0,∴≤k2+2≤3,即点M的纵坐标m的取值范围≤m≤3.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【分析】(1)根据抛物线的对称性解决问题即可.(2)由题意点(x1,0),(x2,0)连线的中垂线与x轴的交点的坐标大于,利用二次函数的性质判断即可.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)①当x1≥t时,恒成立.②当x1<x2≤t时,恒不成立.③当x1<t.x2>t时,∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=,∴满足条件的值为:t≤.【点评】本题考查二次函数的性质,二次函数的对称性等知识,解题的关键是理解题意,灵活运用所学知识解决问题.作业思考:1.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m 的取值范围.【分析】(1)直接将解析式配成顶点式,可以求得点A坐标;(2)因为OA与x轴夹角为45°,则点A到坐标轴距离相等,所以需要分类讨论,即横坐标与纵坐标相等,或者横坐标与纵坐标互为相反数,同时,也可以发现点A在直线y=2x+1上运动;(3)先由平移知识,可以得到Q点坐标,且PQ∥x轴,画出草图,可以发现,顶点A所在直线y=2x+1也经过P点,并且当A与P重合时,此时m取得最小值,当A沿直线y=2x+1向上运动时,m值越来越大,最大值位置是当抛物线刚好经过Q点时,同时,要注意排除抛物线与直线PQ的两个交点均落在线段PQ上的特殊情况.【解答】解:(1)∵y=﹣x2+2mx﹣m2+2m+1=﹣(x﹣m)2+2m+1,∴顶点A(m,2m+1);(2)设x=m,y=2m+1,消掉m,得y=2x+1,∴A在直线y=2x+1上运动,∴A所在象限可能为第一、第二、第三象限,∵射线OA与x轴所成的夹角为45°,∴可以分两类讨论,①当A在第一、第三象限时,m=2m+1,解得m=﹣1,②当A在第二象限时,m+2m+1=0,解得m=,∴m=﹣1或;(3)当P(0,1)向右平移4个单位长度得到Q,则Q(4,1),且PQ∥x轴∵抛物线与线段PQ只有一个交点,且抛物线顶点A在直线y=2x+1上运动,∴由图1可得,当顶点A与P点重合时,符合条件,此时m=0,由图2,数形结合,当顶点A沿直线y=2x+1向上运动时,抛物线与直线PQ均有两个交点,当抛物线经过Q点时,即当x=4,y=1时,﹣(4﹣m)2+2m+1=1,∴m=2或8,当m=2时,抛物线为y=﹣(x﹣2)2+5,它与线段PQ的交点为P和Q,有两个交点,不合题意,舍去,当m=8时,抛物线对称轴右侧的部分刚好经过点Q,符合题意,∴当0≤m≤8,且m≠2时,抛物线与线段PQ只有一个交点【点评】此题考查的是二次函数综合题,主要考查的是数形结合思想,根据题意,充分挖掘题目中的数据参数,是画图的关键,根据图像,判断临界位置,即可解决问题.。

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数类型一 函数类型确定型1. 已知抛物线 y =3ax 1 2+ 2bx +c.(1) 若 a =3k ,b = 5k ,c =k +1,试说明此类函数图象都具有的性质;1(2) 若 a =3, c =2+b ,且抛物线在- 2≤x ≤2区间上的最小值是- 3,求 b 的值;(3) 若a +b +c =1,是否存在实数 x ,使得相应的 y 值为 1,请说明理 由.解:(1)∵a =3k ,b =5k ,c =k +1,∴抛物线 y =3ax 2+ 2bx +c 可化为 y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1,∴令 9x 2+10x + 1=0,1解得 x 1=- 1,x 2=-9,1∴图象必过点 (-1,1),(-9, 1),1(2)∵a =3,c =2+b ,∴抛物线 y =3ax 2+2bx +c 可化为 y =x 2+2bx +2+b ,∴对称轴为直线 x =- 2 =- b ,∴对称轴为直线 x =10k2×9k 59;当-b>2 时,即b<-2,∴x=2时,y 取到最小值为- 3.9∴4+4b+2+b=-3,解得b=-5(不符合题意,舍去),当- b <-2 时即b>2,∴x=-2时,y 取到最小值为- 3.∴4-4b+2+b=-3,解得b=3;当-2<-b<2时,即-2<b<2,当x=-b 时,y取到最小值解得b1=1+221(不符合题意,舍去),1-214(2+b)-4b2为-3,∴4=-3,综上所述,b=3 或2;(3)存在.理由如下:∵ a+b+c=1,∴c-1=-a-b,令y=1,则3ax2+2bx+c=1.∴Δ=4b2-4(3a)(c-1)=4b2+4(3a)(a+b)=9a2+12ab+4b2+3a2=(3a+2b)2+3a2,∵a≠0,∴(3a+2b)2+3a2>0,∴Δ>0,∴必存在实数x,使得相应的y 值为 1.2. 在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴分别相交于 A (-3,0)、B (0,- 3)两点,二次函数 y =x 2+mx +n 的图 象经过点 A.(1)求一次函数 y =kx +b 的表达式;(2)若二次函数 y =x 2+ mx +n 的图象顶点在直线 AB 上,求 m ,n 的 值;(3)①设 m =- 2,当- 3≤x ≤0时,求二次函数 y =x 2+mx +n的最小值; ②若当- 3 ≤x ≤0时,二次函数 y =x 2+mx +n 的最小值为- 4,求 m , n 的值.解: (1)将点 A (-3,0),B (0,-3)代入 y =kx +b 得-3k +b =0,解得b =-3∴一次函数 y =kx +b 的表达式为 y =- x -3; m 4n - m 2 (2)二次函数 y =x 2+mx +n 的图象顶点坐标为 (- 2, 4 ),∵顶点在直线 AB 上,4n - m 2 m ∴ 4 = 2 - 3,又 ∵ 二次函数 y =x 2+ mx +n 的图象经过点 A (- 3,0),∴9- 3m +n =0,4n - m 2 m∴组成方程组为 4 = 2-3,9-3m +n =0k =-1 b =-3(3)①当 m =- 2时,由(2)得 9-3m +n =0,解得 n =- 15, ∴y = x 2-2x -15.∵二次函数对称轴为直线 x =1,在- 3 ≤x ≤0右侧, ∴当x =0 时, y 取得最小值是- 15.②∵二次函数 y = x 2+mx + n 的图象经过点 A , ∴9- 3m +n =0,二次函数 y =x 2+mx +n 的对称轴为直线 x =- m 2 ,i) 如解图①,m4n - m 2当对称轴- 3<- m 2<0 时,最小值为 4 =- 4,联立 4n -m 2 4 =-4 ,9-3m +n =0m = 2m =10 m解得 或 (由- 3<- 2 <0 知不符合题意舍去 )n =- 3 n =21 2m =2 n =-3ii) 如解图②,当对称轴- m 2>0 时,∵-3≤x ≤0,∴当 x =0时,y 有最小值为- 4,m =4 解得或n =3m =6 n =9把(0,- 4)代入 y =x 2+mx +n ,得 n =-4,5把 n =- 4 代入 9-3m +n = 0,得 m =3.m-2>0, ∴m <0,∴此种情况不成立;iii ) 当对称轴- m 2=0 时, y =x 2+mx +n 当 x =0 时,取得最小值 为-4,把(0,- 4)代入 y =x 2+mx +n 得 n =-4, 5 把 n =- 4 代入 9- 3m +n = 0,得 m =3.0,∴m =0,∴此种情况不成立;iiii ) 当对称轴- 2≤-3 时,∵-3 ≤x ≤0,∴当x =- 3 时,y取得最小值-4,∵当x =-3 时,y =0,不成立.第2 题解图综上所述, m3. 在平面直角坐标系中,二次函数y1=x2+2(k-2)x+k2-4k +5.(1)求证:该二次函数图象与坐标轴仅有一个交点;(2)若函数y2=kx+3经过y1图象的顶点,求函数y1的表达式;(3)当1≤x≤3时,二次函数的最小值是2,求k 的值.(1)证明:∵b2-4ac=4(k-2)2-4(k2-4k+5)=-4<0,∴函数图象与x 轴没有交点,当x=0 时,y1=k2-4k+5=(k-2)2+1>0,∴二次函数与坐标轴仅有一个交点;(2)解:∵y1=(x+k-2)2+1,∴函数y1 的顶点坐标为(2-k,1),代入函数y2=kx+3 得(2-k)k+3=1,解得k=1+3或k=1-3,∴y1=x2+2( 3-1)x+5-2 3或y1=x2-2( 3+1)x+5+23;b(3)解:①当对称轴x=-2b a=2-k≤1时,k≥1,当x=1 时,y1 取得最小值2,即1+2(k-2)+k2-4k+5=2,解得k=0(舍去)或k=2;②当对称轴1<2-k<3 时,-1<k<1,当x=2-k 时,最小值恒为1,无解;③当对称轴x=2-k≥3时,k≤-1,当x=3 时,y1 取得最小值2,即9+6(k-2)+k2-4k+5=2,化简得k2+2k=0,解得k =0(舍去)或 k =- 2.综上所述, k 的值为 2 或-2.4. 已知二次函数 y =ax 2+bx +c (a ≠ 0的) 图象经过 A (1,1)、B (2,4) 和 C 三点.(1)用含 a 的代数式分别表示 b 、 c ;(2)设抛物线 y = ax 2+bx +c 的顶点坐标为 (p ,q ),用含 a 的代数式分 别表示 p 、 q ;3(3)当 a >0 时,求证: p <2, q ≤1.(1)解:∵二次函数 y =ax 2+bx +c 的图象经过 A (1,1)、B(2,4)两点, 1=a +b +c 4=4a +2b +c化解得 3= 3a + b , ∴b = 3- 3a , ∴1= a + 3-3a +c , ∴c =2a -2;(2)解:由(1)得 b =3-3a ,c =2a -2,4a (2a -2)-( 3-3a )2 -a 2+10a -9 ∴q =(3)证明: ∵a > 0,3b 3a- 3∴p =-2a=2a4a4a2a<0,3a-3 3 3 3 ∴p=2a =2-2a<2;-(a-3)2 ∵≤0,4a-a2+6a-9 4a-(a-3)2 ∴q=4a+4a=+1 ≤1.4a5. 已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)用含a、c 的代数式表示b;(2)判断点 B 所在象限,并说明理由;c (3)若直线y2=2x+m 经过点B,且与该抛物线交于另一点C(a,b+8),求当x≥1时,y1 的取值范围.解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c)经过点A(1,0),把点A(1,0)代入即可得到a+b+c=0,即b=-a-c;(2)点 B 在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∴抛物线y1与x 轴至少有1个交点,令ax2+bx+c=0,c ∴x1·x2=a,c ∴x1=1,x2=,∵a≠c,a∴抛物线与x 轴有两个不同的交点,又∵抛物线不经过第三象限,∴a>0,且顶点 B 在第四象限;(3)∵ 点C(a c,b+8)在抛物线上,令b+8=0,得b=-8,由(1)得a+c=-b,∴a+c=8,b4ac-b2c把B(-2a,4a)、C(a,b+8)两点代入直线解析式得4ac-b2b4a=2×(-2a)+mc b+8=2× +maa+c=8a= 2 a= 4b=-8 b=-8或(a≠c,舍去),c= 6 c= 4如解图所示,C在A的右侧,6. 在平面直角坐标系中,设二次函数y1=ax2+2ax+3(a≠ 0.)(1)若函数y1的图象经过点(-1,4),求函数y1 的表达式;(2)若一次函数y2=bx+a(b≠ 0的)图象经过y1图象的顶解得m=-6 m=-2当x≥1时,4ac-b2y1≥4a点,探究实数a, b 满足的关系式;(3)已知点P(1,m)和Q(x0,n)在函数y1 的图象上,若m>n,求x0 的取值范围.解:(1)∵二次函数y1=ax2+2ax+3 的图象经过点(-1,4),∴4=a-2a+3,∴a=-1,∴函数y1的表达式为y1=-x2-2x+3;(2)∵y1=ax2+2ax+3=a(x+1)2+3-a,∴y1 图象的顶点坐标为(-1,3-a).∵一次函数y2=bx+a(b≠ 0的)图象经过y1 图象的顶点,∴3-a=-b+a,∴实数a、b 满足的关系式为b=2a-3;2a(3)∵ 二次函数y1=ax2+2ax+3 的图象的对称轴为直线x=-2a=-1,∴当m=n 时,x0=- 3.当a>0时,如解图①所示,第6 题解图m>n,∴-3<x0<1;当a<0时,如解图②所示,∵m>0,∴x0<-3或x0>1.综上所述:-3<x0<1 (a>0)x0 的取值范围为.x0<-3或x0> 1 (a< 0)类型二函数类型不确定型1. 已知函数y=(n+1)x m+mx+1-n(m,n 为实数).(1)当m,n 取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>-1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.解:(1)①当m=1,n≠-2 时,函数y=(n+1)x m+mx+1-n(m,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y=0 时,(n+1)x m+mx+1-n=0,n-1∴x=n+2∴函数y=(n+1)x m+mx+1-n(m,n为实数)与x轴有交点;②当m=2,n≠-1 时,函数y=(n+1)x m+mx+1-n (m,n 为实数)是二次函数,当 y =0 时, (n +1)x m +mx + 1-n =0,即(n +1)x 2+2x +1-n =0,∴Δ=22-4(n +1)(1-n )=4n 2≥0, ∴函数y =(n +1)x m+mx +1-n (m ,n 为实数)与 x 轴有交点;③ 当 n =- 1,m ≠0 时,函数 y =(n +1)x m +mx +1-n 是一次函 n -1数,当 y =0 时, x = m ,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与 x 轴有交点;(2)①假命题,若它是一个二次函数,则 m = 2,函数 y =(n +1)x 2+2x +1-n ,∵n >- 1,∴n + 1>0,抛物线开口向上,∴对称轴在 y 轴左侧,当 x <0时,y 可能随 x 的增大而增大,也 可能随 x 的增大而减小,故为假命题;②它一定过点 (1,4)和 (-1,0),理由如下:当 x =1 时, y =n +1+2+1-n =4.当 x =- 1 时, y = 0.∴它一定经过点 (1,4)和(-1,0).2. 设函数 y =kx 2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并且b对称轴: x =-2b a =-2(n +1)= 1 n +11<0,在同一坐标系中,用描点法画出它们的图象;(2) 根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;(3) 对于任意负实数k,当x<m时,y随x的增大而增大,试求m的取值范围.第 2 题图解:(1)令k=0,k=1,则这两个函数为y=x+1,y=x2+3x+1,描点法画函数图象如解图所示;(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明:①∵当x=0 时,y=1;当x=-2 时,y=- 1.∴函数图象必过(0,1),(-2,-1);②∵当k=0时,函数为一次函数,∴y=x+1的图象是一条直线,且与x 轴有一个交点;∵当k≠0时,函数为二次函数,y=kx2+(2k+1)x+1 的图象是一条抛物线.Δ=(2k+1)2-4×k×1=4k2+4k+1-4k=4k2+1>0,∴抛物线y=kx2+(2k+1)x+ 1 与x 轴有两个交点.综上所述,函数y=kx2+(2k+1)x+1(k 为实数)与x 轴至少有一个交点;(3)∵k<0,2k+1 ∴函数y=kx2+(2k+1)x+ 1 的图象在对称轴直线x=-2k的左侧时,y 随x 的增大而增大.2k+1根据题意,得m≤-2k,2k+ 1 1而当k<0 时,-2k=-1-2k>-1,∴m≤-1.43. 已知函数y=kx2+(3-3k)x-4.(1)求证:无论k 为何值,函数图象与x 轴总有交点;(2)当k≠0时,A(n-3,n-7)、B(-n+1,n-7)是抛物线上的两个不同点.①求抛物线的表达式;②求 n 的值.4(1)证明:当 k =0时,函数为一次函数,即 y =3x -4,与 x 轴交于点(3,0);当 k ≠0时,函数为二次函数,44 ∵Δ=(3-3k )2-4k ×(-4)=(3k +3)2≥0,∴函数与 x 轴有一个或两个交点;综上可知,无论 k 为何值,函数图象与 x 轴总有交点;4 (2)解:①当 k ≠0时,函数 y =kx 2+(3-3k )x -4 为二次函数,∵A (n -3,n -7)、B (-n +1,n -7)是抛物线上的两个不同点,n - 3-n +1∴抛物线的对称轴为直线 x ==- 1, 4解得 k =145, ∴抛物线的表达式为 y =15x2+15x - 4;48 ②∵(n - 3,n -7)是抛物线 y =15x 2+ 15x -4 上的点,4 2 8∴n -7=15(n -3)2+15(n -3)-4,19解得 n 1= 4 , n 2=3.43-3k 2k -1,4. 已知y 关于x 的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k 的取值范围;(2)若x1,x2是函数图象与x 轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k 的值;②当k≤x≤k+2 时,请结合函数图象确定y的最大值和最小值.解:(1)当k=1 时,函数为一次函数y=-2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y=0 得(k-1)x2-2kx+k+2=0.Δ=(-2k)2-4(k-1)(k+2)≥,0解得k≤ 2即. k≤2且k≠ 1. 综上所述,k的取值范围是k≤ 2.(2)①∵ x1≠x2,由(1)知k<2且k≠1,函数图象与x轴有两个交点,∴由题意得(k-1)x12+(k+2)=2kx1①,将①代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.令(k-1)x2-2kx+k+2=0,2k k+2则x1+x2=,x1x2=,k- 1 k-1∴2k 2k·k-1=k+2 4·k-1解得k1=-1,k2=2(不合题意,舍去).∴所求k的值为-1;第 4 题解图13 ②如解图,∵k=-1,∴y=-2x2+2x+1=-2(x-2)2+2.且- 1 ≤x≤ 1.13 由图象知:当x=-1时,y 最小=-3;当x=2时,y 最大=2.∴y的最大值为23,最小值为- 3.5. 设函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,函数y1,y2的图象的顶点分别为B和 C.(1)画出当k=0,1 时,函数y1,y2在直角坐标系中的图象;(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;(3) 设A(x,y),求证:x 是与k 无关的常数,并求y 的最小值.第 5 题图(1)解:画出图象如解图所示;(2)解:∵当k=0时,函数y1=y2=x2的顶点为(0,0),当k=1 时,函数y1=(x-1)2+1的顶点为(1,1),函数y2=(x+1)2-1的顶点为(-1,-1),∴它们的顶点都在直线y=x 的图象上,因为它们的坐标均满足解析式y=x;(3)证明:令(x-k)2+k=(x+k)2-k,整理得4kx=2k,∵函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,∴k≠0,1解得x=12,∴x 是与k 无关的常数;1 1 1 1此时y=(21+k)2-k=k2+41≥14,即y的最小值为41.。

二次函数专题——含参二次函数

二次函数专题——含参二次函数

含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。

高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。

例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。

解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。

这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。

可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。

那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。

那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。

那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。

因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。

含参数二次函数的最值问题(初中数学中考专题)

含参数二次函数的最值问题(初中数学中考专题)
解得 综上所述m=1,n=﹣1或m=﹣1,n=﹣1.
变式练习 (1)、当 - 2 x 1时,二次函数 y x2 4ax 3a的最小值等于 -1,求a的值.
(2)、当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4, 最大值是0,求a、b的值.
(3)、当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4, 求实数m的值.
变式练习 (1)、当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,求a的值.
(2)、已知二次函数y=﹣x2+6x﹣5.当t≤x≤t+3时,函数的最 大值为m,最小值为n,若m﹣n=3,求t的值.
变式练习 (3)、设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数 x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数, 它在给定的闭区间上都有最小值.求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1] (t为任意实数)上的最小值f(x)的解析式.
5 55
是闭区间[a,b]上的“闭函数”,求a+b的值.
变式练习
(5)、已知关于x的二次函数y=x2+bx+c(实数b,c为常数).若b2﹣c= 0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值.
初中数学中考专题讲解 二次函数含参数的最值问题
引例 引例.对于二次函数 (1)求它的最小值和最大值. (2)当1≤x≤4时,求它的最小值和最大值. (3)当-2≤x≤1时,求它的最小值和最大值. (4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出 现在哪些位置?
二次函数三要素:开口方向,对称轴,自变量取值范围,画 草图,数形结合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数含参问题(1)
姓名_________ 班级 __________ 学号________________ 1•“动轴定区间”型的二次函数最值
例函数f(x) x2 2ax 3在x [0,4]上的最值。

ax2(2a 1)x 3在区间[|,2]上最大值为1,求实数a的值
例函数f (x)
2 “动区间定轴”型的二次函数最值例求函数f (x) x2 2x 3在x €[a,a+2 [上的最值。

3•“动轴动区间”型的二次函数最值
a [3,),求实数
b 的范围.
巩固习题
1 •已知函数f x x
2 2x 2,若x a, a 2, a R ,求函数的最小值,并作出最小 值的函数图象。

范围。

2
3 •已知k 为非零实数,求二次函数 y kx 2kx 1, x (
2•已知函数f (x)
x 2 3,若f (x) 2kx 6在区间 1,2上恒成立,求实数k 的取值
已知函数f (x)
2 2 9x 6ax a 10a 6在[-,b ]上恒大于或等于0,其中实数 3
,2]的最小值。

2
x x 2
2ax 1在 1,3 上的最大值为 M a ,最小值为 m a , m a ,求 g a 的表达式。

ax 1,若 f x 0恒成立,求实数 a 的取值范围。

3,在0 x m 时有最大值3,最小值2,求实数m 的取值范
6. 当 0 x 2 时,函数 取值
范围。

f x ax 2 4 a 1 x 3在x 2时,取得最大值,求实数 a 的
4.已知 a 3 ,若函数 f 又已知函数 g a M a
2
5. 已知函数 f x ax
2 7. 已知函数y x 2 2x 围。

x 2 2px 1,当 x 0时,有 f x 0恒成立,求实数 p 的取值范围。

ax a 2 3 0 的两根都在 0,2 内,求实数 a 的取值范围。

9. 方程 ax 2 2 x 1
0 至少的一个负数根,求实数 a 的取值范围。

8. 已知函数 f x
10. 方程 x 2。

相关文档
最新文档