弧度制

合集下载

2.弧度制

2.弧度制
2 r l 2 , n 则 l n , 360 r 360 可以看出,等式右端不含
半径,表示弧长与半径的
比值跟半径无关,只与α的
大小有关。
弧度制的性质
弧度制的性质
①半圆所对的圆心角为
r
r
.
弧度制的性质
①半圆所对的圆心角为
r
r
.
2 r ②整圆所对的圆心角为 2 . r
o
45
o
60
o
90
o
120
o
270
o
360
o
特殊角的弧度
角 o 0 度 弧 度 30
o
45
o
60
o
90
o
120
o
0
270
o
角 o o o 135 150 180 度 弧 度
360
o
特殊角的弧度
角 o 0 度 弧 度 30
o
45
o
60
o
90
o
120
o
0

6
270
o
角 o o o 135 150 180 度 弧 度
l ⑥角的弧度数的绝对值||= . r
角度与弧度之间的转换
①将角度化为弧度:
角度与弧度之间的转换
①将角度化为弧度:
角度与弧度之间的转换
①将角度化为弧度:
角度与弧度之间的转换
①将角度化为弧度:
角度与弧度之间的转换
①将角度化为弧度:
n 180
角度与弧度之间的转换
②将弧度化为角度:
角度与弧度之间的转换
1 2 1 (2)根据S= lR= αR ,且S=2R2. 2 2

弧度制

弧度制
3弧度制
一)问题的提出 1,度量角的方法——度分秒制——把圆周角分 为360等份——1度的角——60等份——1分的 角——60等份——1秒的角. 2,在同一个圆中,圆心角的大小与它所对的弧 长一一对应. 当半径不同时,同样大的圆心角所对的弧 长不பைடு நூலகம்等. 因此,可用半径度量弧长的方法定义角的大小.
3,实验结果表明:当半径不同时,同样的圆 心角所对的弧长与半径的比是常数.称这个常数 为该角的弧度数.
方法:用互化公式先约分
练习: 练习:填表
度 弧度 30 ° 45 ° 60 ° 90 ° 180 ° 270 ° 360 °
π
6
π
4
π
3
π
2
π
3π 2

弧度 度 弧度 度
0 0°
5π 12
π
12
π
6
π
4
π
3
60 °
5π 3
15 °
30 °
3π 4
45 °
π
2
90 °
3π 2
270 °
75 °
135°

四,弧度与度分秒的互化 基本关系:2πrad=3600 1rad=(1800/π)≈57.300=57018/ 10=π/180 rad ≈0.01745 rad.
例1 解
把45°化成弧度 45°=
π
180
×45rad=
π
4
rad
3π 例2 把 rad化成度 5

3 3π rad = ×180° =108° 5 5
300 °
练习
1)用弧度制写出与300同终边的角的集合; )用弧度制写出与 同终边的角的集合; π S = {β | β = + 2k π k ∈ z } 6 2)用弧度制写出各个象限角的集合; )用弧度制写出各个象限角的集合; 3)用弧度制写出轴上角的集合. )用弧度制写出轴上角的集合 kπ S = {β | β = k ∈ z} 2 4)指出下列用弧度制表示的角是第几象限角 )

弧度制

弧度制

弧度制弧度制的定义等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度。

用弧度作单位来度量角的制度叫做弧度制。

以已知角a的顶点为圆心,以任意值R为半径作圆弧,则a角所对的弧长与R之比是一个定值﹝与R无关﹞,我们称L=R时的正角为1弧度的角。

以1弧度角为量角大小的单位,称此度量制为弧度制,以示与角的另一种度量制──角度制区别。

弧度制的特点任意一个角一边所对应的射线,逆时针旋转所形成的角称为正角;顺时针转动所形成的角称为负角;射线未作任何旋转,仍留在原来位置,那么我们也把它看成一个角,叫做零角.无论采用角度制或弧度制,都能使角的集合与实数集合R存在一一对应关系:每一个角都对应唯一的一个实数。

正角的弧度值是一个正量(正实数),负角的弧度值是一个负量(负实数),零角的弧度值是零.弧度制的基本思想弧度制的基本思想是使圆半径与圆周长有同一度量单位,然后用对应的弧长与圆半径之比来度量角度,这一思想的雏型起源于印度。

印度著名数学家阿利耶毗陀﹝476?-550?﹞定圆周长为21600分,相度地定圆半径为3438分﹝即取圆周率π3.142﹞,但阿利耶毗陀没有明确提出弧度制这个概念。

严格的弧度概念是由瑞士数学家欧拉﹝1707-1783﹞于1748年引入。

欧拉与阿利耶毗陀不同,先定半径为1个单位,那么半圆的弧长为π,此时的正弦值为0,就记为sinπ= 0,同理,1/4圆周的弧长为π/2,此时的正弦为1,记为sin(π/2)=1。

从而确立了用π、π/2分别表示半圆及1/4圆弧所对的中心角。

其它的角也可依此类推。

弧度制的精髓弧度制的精髓就在于统一了度量弧与半径的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。

1弧度的大小一弧度的角:等于半径长的圆弧所对的圆心角叫做1弧度的角。

1弧度约等于57.3°大约是57°17′45″但准确的是等于180°/π180°=πrad利用弧度制证明扇形面积公式S=1/2LR.其中L是扇形的弧长,R是圆的半径如果半径为R的圆的圆心角a所对弧的长l那么|a|=l/R(a的正负由旋转方向决定。

1.1.2弧度制(一)

1.1.2弧度制(一)

2、弧度与角度的换算
L 若L=2 π r,则∠AOB= = 2π弧度 r
此角为周角 即为360° 即为 °
L=2 π r
2π弧度 弧度
360° 360°= 2π 弧度 180° 180°= π 弧度
O
r
(B) ) A
180°= 1°× 180 ° °×
由180°= π 弧度 还可得 ° π 1°= —— 弧度 ≈ 0.01745弧度 ° . 弧度 180 180)°≈ 57.30°= 57°18′ 57.30° 57° 1弧度 =(——) π
( 2)终边在 y 轴上的角的集合
(3)终边在坐标轴上的角的集合 ) (4)第Ⅱ象限角的集合 )
例4将下列各角化成 0到2π的角加上 2 kπ ( k ∈ Z)的形式。 23 23 (1) π(2) − π(3) (4) 450 ° 450 ° − 3 3
已知四边形的四个内角之比是1: : : , 例5已知四边形的四个内角之比是 :3:5:6, 已知四边形的四个内角之比是 分别用角度制和弧度制将这些内角的大小表 示出来。
4.若三角形的三个内角之比是2: 3:4,求其三个内角的弧度数.
5.下列角的终边相同的是(
).
kπ π 与 kπ + ,k ∈ Ζ C. 2 2
D.
π π A. kπ + 与 2kπ ± ,k ∈ Ζ 4 4 π 2π B. 2kπ − 与 π + ,k ∈ Ζ 3 3
(2k +1)π 与 3kπ,k ∈ Ζ
四、课堂小结: 课堂小结:
1.弧度制定义 弧度制定义 2.角度与弧度的互化 角度与弧度的互化 3.特殊角的弧度数 特殊角的弧度数
360° ° 度 0° 30 °45 ° 60 ° 90 ° 180 270° ° 弧 0 度

弧度制

弧度制

例3.利用弧度制证明下列关于扇形的公式:
() 1 l R;
1 (2)S= R 2 ; 2
1 (3)S= lR. 2
用弧度制表示终边相同的角
(1)将-1 500° 表示成2kπ+α(0≤α<2π,k∈Z)的形式,并指出它是第 几象限角; 2π (2)在0° ~720° 范围内,找出与角 5 终边相同的角.
3π 3 (2)β1= 5 = 5 ×180° =108° ,设θ=108° +k· 360° (k∈Z),则由-720° ≤θ<0° , 即-720° ≤108° +k · 360° <0° ,得k=-2,或k=-1. 故在-720° ~0° 范围内,与β1终边相同的角是-612° 和-252° . π β2=-3=-60° ,设γ=-60° +k· 360° (k∈Z),则由-720° ≤-60° + k· 360° <0° ,得k=-1,或k=0. 故在-720° ~0° 范围内,与β2终边相同的角是-420° .
布置作业
教材 第10页 A组1、2、3
(三)弧度与角度的换算
360°=2π rad
180°=π rad
运用新知
例1按照下列要求,把67°30′化成弧度:
(1)精确值;
(2)精确到0.001的近似值. 135 ) 解:(1) 因为 6730' ( 2 135 3 所以 6730' rad rad 180 2 8 (2)利用计算器计算
r
2 r
逆时针方向 逆时针方向 逆时针方向 顺时针方向 顺时针方向 未旋转 逆时针方向 逆时针方向

2
1 -2
180 360
r
2r
57.30 114.60 180

1.1.2弧度制

1.1.2弧度制

弧 度 制基础归纳:1、弧度与角度的换算:360°=2π弧度;180°=π弧度.2、弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2. 其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.知识点一 弧度制的概念1、 定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1rad ,读作1弧度.2、 如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值|α|=lr3、 约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.4、用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关.例1、在半径不等的两个圆内,1弧度的圆心角( C ) A .所对弧长相等 B .所对的弦长相等C .所对弧长等于各自半径D .所对弧长等于各自半径知识点二 角度制与弧度制互换1、将角度化为弧度2、将弧度化为角度例1A. 6π radB.-6π rad C. 12πrad D.-12πrad例2、将下列弧度转化为角度: (1)12π= °;(2)-87π= ° ′;(3)613π= °; 例3、将下列角度转化为弧度:(1)36°= rad ;(2)-105°= rad ;(3)37°30′= rad ; 答案: 15 -157 30; 390 5π;127π-;245π.知识点三 弧长及扇形面积公式1、弧长公式2、扇形面积公式 例1、半径为πcm ,中心角为120o 的弧长为( D )rad π2360=︒rad π=︒18001745.01801≈=︒rad πrad n 0=︒=3602π︒=180π(0=n rl •=α22121r r l S •=•=αA .cm 3πB .cm 32π C .cm 32πD .cm 322π 例2、(1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?(1)设圆心角是θ,半径是r ,则⎩⎪⎨⎪⎧ 2r +rθ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧ r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12. (2)设圆心角是θ,半径是r ,则2r +rθ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100, 当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2. 答案: 2巩固练习:1、圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 2、如图,用弧度制表示下列终边落在阴影部分的角的集合(不包括边界).3、某种蒸汽机上的飞轮直径为1.2m ,每分钟按逆时针方向转300周,求: (1)飞轮每秒钟转过的弧度数。

弧度制的定义和公式

弧度制的定义和公式弧度制是一种角度的度量方式,它是通过弧长与半径之比来表示的。

在数学和物理学中,使用弧度制来度量角度可以更加准确和方便。

本文将介绍弧度制的定义和公式,并探讨其在数学和物理学中的应用。

一、弧度制的定义在弧度制中,一个完整的圆周对应的角度为360度,而对应的弧度为2π。

根据这个关系,可以得到弧度制的定义:一个角度的弧度数等于这个角度所对应的弧长与半径之比。

具体来说,假设一个角度θ所对应的弧长为s,半径为r,那么弧度制中这个角度θ所对应的弧度数可以表示为θ = s/r。

这个比值通常用希腊字母π来表示,即θ = πs/r。

二、弧度制的公式在弧度制中,角度和弧度之间的转换可以通过一个简单的公式来实现。

假设一个角度α所对应的弧度数为θ,那么可以用以下公式来计算:θ = α × π/180其中,π/180是将角度转换为弧度的比例因子。

这个公式可以用来将角度转换为弧度,也可以将弧度转换为角度。

三、弧度制的应用弧度制在数学和物理学中有广泛的应用。

首先,在三角学中,弧度制可以用来描述三角函数的周期性。

例如,正弦函数和余弦函数的周期均为2π弧度,而不是360度。

在微积分中,弧度制是计算圆的面积和弧长的重要工具。

通过使用弧度制,可以简化对圆的相关计算,使得结果更加准确和方便。

在物理学中,弧度制被广泛应用于描述角速度和角加速度。

角速度是一个物体单位时间内绕某个轴旋转的角度,通常用弧度制表示。

角加速度则是角速度的变化率,也常用弧度制表示。

总结:弧度制是一种通过弧长与半径之比来度量角度的方式。

它的定义和公式简单明了,可以准确地描述角度和弧度之间的关系。

弧度制在数学和物理学中有广泛的应用,可以用来描述三角函数的周期性、计算圆的面积和弧长,以及描述角速度和角加速度等。

掌握弧度制的概念和应用,可以帮助我们更好地理解和解决与角度相关的问题。

弧度制


按照下列要求,把 ° 化成弧度 化成弧度: 例1 按照下列要求 把67°30′化成弧度 (1)精确值 精确值
135 解: 67 30′ = 2
o o
135 3 67 30′ = rad × = π rad 180 2 8
o
π
按照下列要求,把 ° 化成弧度 化成弧度: 例1 按照下列要求 把67°30′化成弧度 (2)精确到 精确到0.001的近似值 的近似值. 精确到 的近似值 (2)利用计算器 (2)利用计算器
1. 圆心角、弧长和半径之间的关系: 圆心角、弧长和半径之间的关系: 角是由射线绕它的端点旋转而成的, 角是由射线绕它的端点旋转而成的,在旋 转的过程中射线上的点必然形成一条圆弧, 转的过程中射线上的点必然形成一条圆弧, 圆弧 不同的点所形成的圆 弧的长度是不同的, 弧的长度是不同的, 但都对应同一个圆心角。 但都对应同一个圆心角。
思考:如果一个半径为r的圆的圆 心角α所对的弧长是l,那么α的弧 度数是多少? l α= α的弧度数的绝对值是 角α的弧度数的绝对值是 r
r为半径 l为角 所对弧的长 为半径, 为角 为半径 为角α所对弧的长 α的正负由角 的终边旋转方向决定 的正负由角α的终边旋转方向决定 的正负由角
角度制与弧度制的换算
②1弧度是等于半径长的圆弧所对的圆心角(或该弧) 弧度是等于半径长的圆弧所对的圆心角(或该弧) 的大小, 的大小,而 1 是圆的
o
1 360
所对的圆心角(或该弧) 所对的圆心角(或该弧)
的大小; 的大小;
不论是以“ 弧度” 还是以“ ③ 不论是以 “ 弧度 ” 还是以 “ 度 ” 为单位的角 的大小都是一个与半径大小无关的定值. 的大小都是一个与半径大小无关的定值.

弧度制知识点

弧度制知识点弧度制是数学中一种角度计算的单位制,也是一种非常重要的数学工具。

在解决圆的相关问题时,使用弧度制可以使计算更加简单明了。

弧度制的原理其实很简单,就是把弧长和半径之间的比值作为角度的度量单位。

在本文中,我们将介绍弧度制的基本定义、应用、转换以及相关数学问题。

基本定义弧度,是用来衡量圆周的长度和弧之间的关系的单位。

弧度制的基本定义是,一弧度是圆周长度和圆的半径之比。

简单地说,一弧度等于圆周的长度为半径的倍数,因此,圆周总共有360度,也就是2π弧度的长度。

应用及优势弧度制是一种非常重要的数学工具,它的应用涵盖了很多领域。

在三角函数的学习中,弧度制的应用可以帮助我们更加便捷地计算正弦、余弦等函数的值。

此外,弧度制在计算圆的周长、面积、相对位置等方面也发挥了重要的作用。

与角度制相比,弧度制更加优越的原因在于,它的定义更加简单明了,而且计算过程中更为直接简单。

在圆上每增加一个角度,对应的弧长和半径的比值就要增加一个弧度单位。

相比之下,角度制需要考虑360度转化、计算过程繁琐等问题,因此在实际运用中弧度制更为实用。

弧度制转角度制在实际运用中,有可能需要将弧度制转化为角度制。

这时我们可以使用弧度转角度公式:角度=弧度×180/π。

例如:1弧度=180/π度,而1度=π/180弧度。

如果给定一个角的弧度值,我们可以将其乘以180,然后除以π,即可得到对应的角度值。

同理,如果给定一个角的角度值,我们也可以将其乘以π,然后除以180,即可得到对应的弧度值。

数学问题弧度制与三角函数的应用密切相关,因此,其中涉及的数学问题也比较典型。

在本文中,我们将介绍弧度制下的基本三角函数及其相关性质。

正弦函数正弦函数(Sine Function)是一种基本的三角函数。

在数学上,正弦函数f(x)=sin x被定义为一个函数,它的输出值(y值)等于对应的输入值(x值)的弧度值的正弦值。

也就是说,对于任意实数x,f(x)=sin x= y/r,其中,y是一个以x为圆心角的圆的弧度。

弧度制(解析版)

专题45 弧度制1.度量角的两种单位制角度制定义用度作为单位来度量角的单位制 1度 的角 1度的角等于周角的1360,记作1° 弧度制定义以弧度为单位来度量角的单位制1弧度 的角长度等于半径长的圆弧所对的圆心角叫做1弧度的角.1弧度记作1rad(rad 可省略不写)在半径为r 的圆中,弧长为l 的弧所对的圆心角为α rad ,那么|α|=lr.一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.2.弧度数的计算3.角度制与弧度制的换算4.一些特殊角与弧度数的对应关系度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度π6π4π3π22π33π45π6π3π22π5.设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR ;(2)扇形面积公式:S =12lR =12αR 2.(3)在运用公式时,还应熟练地掌握这两个公式的变形运用: ①l =|α|·r ,|α|=l r ,r =l |α|;②S =12|α|r 2,|α|=2Sr2.题型一 角度与弧度的互化与应用1.将下列角度化为弧度(1)105°;(2)1920°;(3)20°;(4)-15°;(5)112°30′;(6)-157°30′;(7)-630°; (8) 2100°;(9)37°30′;(10)-216°;(11)-1 500°;(12)67°30′;(13)2145° [解析] (1)105°=105×π180 rad =7π12rad ;(2) 1920°=5×360°+120°=⎝⎛⎭⎫5×2π+2π3 rad =32π3 rad ;(3)20°=20π180=π9; (4)-15°=-15π180=-π12;(5)因为1°=π180rad ,所以112°30′=π180×112.5 rad =5π8rad ;(6)-157°30′=-157.5°=-3152×π180 rad =-78π rad ;(7) -630°=-630×π180=-72π;(8) 2100°=2100×π180=35π3;(9)37°30′=37.5°=⎝⎛⎭⎫752°=752×π180=5π24; (10)-216°=-216×π180=-6π5;(11) -1500°=-1500×π180=-253π(12)67°30′=67.5°=67.5×π180=3π8;(13) 2145°=2145×π180 rad =143π12 rad.2.将下列弧度化为角度 (1)-5π12rad ;(2)-11π5 rad ;(3)7π5 rad ;(4)7π12;(5)-11π5;(6) -10π3;(7)23π6;(8)-13π6;(9)8π5[解析](1)因为1 rad =⎝⎛⎭⎫180π°,所以-5π12rad =-⎝⎛⎭⎫5π12×180π°=-75°;(2)-11π5 rad =-11π5×⎝⎛⎭⎫180π°=-396°; (3)7π5 rad =⎝⎛⎭⎫7π5×180π°=252°;(4)7π12=712×180°=105°;(5)-11π5=-115×180°=-396°; (6) -10π3=⎝⎛⎭⎫-10π3×180π°=-600°; (7)23π6=⎝⎛⎭⎫23π6×180π°=690°;(8)-13π6=-⎝⎛⎭⎫13π6×180π°=-390°; (9)8π5=85×180°=288°. 3.下列转化结果错误的是( )A .60°化成弧度是π3 radB .-103π rad 化成度是-600°C .-150°化成弧度是-76π rad D.π12rad 化成度是15°[解析]对于A,60°=60×π180 rad =π3 rad ;对于B ,-103π rad =-103×180°=-600°;对于C ,-150°=-150×π180 rad =-56π rad ;对于D ,π12 rad =112×180°=15°.故选C.4.已知α=15°,β=π10 rad ,γ=1 rad ,θ=105°,φ=7π12rad ,试比较α,β,γ,θ,φ的大小.[解析]法一(化为弧度):α=15°=15×π180 rad =π12 rad ,θ=105°=105×π180 rad =7π12rad.显然π12<π10<1<7π12.故α<β<γ<θ=φ.法二(化为角度):β=π10 rad =π10×⎝⎛⎭⎫180π°=18°,γ=1 rad ≈57.30°,φ=7π12×⎝⎛⎭⎫180π°=105°.显然,15°<18°<57.30°<105°.故α<β<γ<θ=φ.题型二 用弧度数表示角1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关[解析]“度”与“弧度”是度量角的两种不同的度量单位,所以A 正确.1°的角是周角的1360,1rad 的角是周角的12π,所以B 正确.因为1 rad =⎝⎛⎭⎫180π°>1°,所以C 正确.用角度制和弧度制度量角,都与圆的半径无关,所以D 错误.2.下列叙述中正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .大圆中1弧度的圆心角与小圆中1弧度的圆心角一样大[解析]弧度是度量角的大小的一种单位,而不是长度的度量单位,1弧度是长度等于半径的圆弧所对圆心角的大小,与圆的半径无关,故选D. 3.下列说法正确的是( )A .在弧度制下,角的集合与正实数集之间建立了一一对应关系B .每个弧度制的角,都有唯一的角度制的角与之对应C .用角度制和弧度制度量任一角,单位不同,数量也不同D .-120°的弧度数是2π3[解析]A 项中,零角的弧度数为0,故A 项错误;B 项是正确的;C 项中,用角度制和弧度制度量零角时,单位不同,但数量相同(都是0),故C 项错误;-120°对应的弧度数是-2π3,故D 项错误.故选B.4.时钟的分针在1点到3点20分这段时间里转过的弧度数为( )A.143π B .-143π C.718π D .-718π [解析]分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是:-4π-13×2π=-143π.5.自行车的大链轮有88齿,小链轮有20齿,当大链轮逆时针转过一周时,小链轮转过的弧度数是( )A.5π11B.44π5C.5π22D.22π5[解析]由题意,当大链轮逆时针转过一周时,小链轮逆时针转过8820周,小链轮转过的弧度是8820×2π=44π5.6.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z},集合B ={x |-4≤x ≤4},则A ∩B =________________. [解析]如图所示,∴A ∩B =[-4,-π]∪[0,π].7.将-1485°表示成2k π+α(0≤α<2π,k ∈Z)的形式是_________.[解析] ∵-1485°=-5×360°+315°,而315°=74π,∴应填-10π+74π.8.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z)B .k ·360°+9π4(k ∈Z) C .k ·360°-315°(k ∈Z) D .k π+5π4(k ∈Z) [解析]A ,B 中弧度与角度混用,不正确.94π=2π+π4,所以94π与π4终边相同.-315°=-360°+45°,所以-315°也与45°终边相同.故选C. 9.用弧度制表示与150°角的终边相同的角的集合为( )A.⎩⎨⎧⎭⎬⎫β⎪⎪β=-5π6+2k π,k ∈Z B.⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+k ·360°,k ∈Z C.⎩⎨⎧⎭⎬⎫β⎪⎪β=2π3+2k π,k ∈Z D.⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+2k π,k ∈Z [解析]150°=150×π180=5π6,故与150°角终边相同的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪β=5π6+2k π,k ∈Z . 10.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=k ·360°+π6,k ∈Z B.{}α|α=2k π+30°,k ∈Z C.{}α|α=2k ·360°+30°,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6,k ∈Z [解析] ∵与30°角终边相同的角表示为α=k ·360°+30°,k ∈Z ,化为弧度为α=2k π+π6,k ∈Z ,∴选D.11.若把-570°写成2k π+α(k ∈Z,0≤α<2π)的形式,则α=________.[解析]-570°=-19π6=-4π+5π6.12.终边经过点(a ,a )(a ≠0)的角α的集合是( )A.⎩⎨⎧⎭⎬⎫π4 B.⎩⎨⎧⎭⎬⎫π4,5π4 C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=π4+2k π,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=π4+k π,k ∈Z [解析]因为角α的终边经过点(a ,a )(a ≠0),所以角α的终边落在直线y =x 上,所以角α的集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=π4+k π,k ∈Z . 13.把-114π表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( )A .-3π4B .-π4 C.π4D.3π4[解析] ∵-11π4=-2π-3π4,∴-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪-3π4=3π4是最小的. 14.在[0,4π]中,与72°角终边相同的角有________.(用弧度表示) [解析]因为终边与72°角相同的角为θ=72°+k ·360°(k ∈Z). 当k =0时,θ=72°=25π rad ;当k =1时,θ=432°=125π rad ,所以在[0,4π]中与72°终边相同的角有25π,125π.15.在0到2π范围内,与角-4π3终边相同的角是( )A.π6B.π3C.2π3D.4π3[解析]与角-4π3终边相同的角是2k π+⎝⎛⎭⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C. 16.若角α与角8π5终边相同,则在[0,2π]内终边与α4终边相同的角是________.[解析]由题意得α=8π5+2k π(k ∈Z),α4=2π5+k π2(k ∈Z),又α4∈[0,2π],所以k =0,1,2,3,此时α4=2π5,9π10,7π5,19π10.17.若角α,β的终边关于直线y =x 对称,且α=π6,则在0~4π内满足要求的β=________.[解析]由角α,β的终边关于直线y =x 对称,及α=π6,可得β=-α+π2+2k π=π3+2k π,令k =0,1可得结果.[答案] π3,7π318.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z)D .α-β=2k π+π2(k ∈Z)[解析]选D.因为α=x +π4+2k 1π(k 1∈Z),β=x -π4+2k 2π(k 2∈Z),所以α-β=π2+2(k 1-k 2)π(k 1∈Z ,k 2∈Z).所以k 1∈Z ,k 2∈Z ,所以k 1-k 2∈Z.所以α-β=π2+2k π(k ∈Z).19.若α=2k π-354,k ∈Z ,则角α所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]∵-9<-354<-8,∴-3π<-354<-3π+π2.∴-354在第三象限,故α也在第三象限.20.角-2912π的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]-2912π=-4π+1912π,1912π的终边位于第四象限,故选D.21.角29π12的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]选A.因为29π12=2π+5π12,角5π12是第一象限角,所以角29π12的终边所在的象限是第一象限.22.α=-3 rad ,它是第________象限角.[解析]根据角度制与弧度制的换算,1 rad =⎝⎛⎭⎫180π°,则α=-3 rad =-⎝⎛⎭⎫540π°≈-171.9°. 分析可得,α是第三象限角. 23.α=-2 rad ,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析]∵1 rad ≈57.30°,∴-2 rad ≈-114.60°.故α的终边在第三象限. 24.若θ=-5,则角θ的终边所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限[解析]因为-2π<-5<-3π2,所以α是第一象限角.25.若α3=2k π+π3(k ∈Z),则α2的终边在( )A .第一象限B .第四象限C .x 轴上D .y 轴上[解析]因为α3=2k π+π3(k ∈Z),因为α=6k π+π(k ∈Z),所以α2=3k π+π2(k ∈Z).当k 为奇数时,α2的终边在y轴的非正半轴上;当k 为偶数时,α2的终边在y 轴的非负半轴上.综上,α2的终边在y 轴上,故选D.26.已知角α=-1480°(1) 将α改写成写成2k π+β(k ∈Z)的形式,其中0≤β<2π,并判断它是第几象限角? (2) 在[-4π,4π)范围内找出与α终边相同的角的集合[解析] (1)-1480°=-1 480×π180=-74π9=-10π+16π9,其中0≤16π9<2π,因为16π9是第四象限角,所以-1 480°是第四象限角. (2)与α终边相同的角为2k π+169π(k ∈Z).由-4π≤2k π+169π<4π知 k =-2,-1,0,1.所以所求角的集合为⎩⎨⎧⎭⎬⎫-209π,-29π,169π,349π. 27.已知角α=2005°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在[-5π,0)内找出与α终边相同的角.[解析] (1)2005°=2005×π180 rad =401π36rad =⎝⎛⎭⎫5×2π+41π36 rad , 又π<41π36<3π2,∴角α与41π36终边相同,是第三象限的角.(2)与α终边相同的角为2k π+41π36(k ∈Z),由-5π≤2k π+41π36<0,k ∈Z 知k =-1,-2,-3. ∴在[-5π,0)内与α终边相同的角是-31π36,-103π36,-175π36.28.已知角α=2010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.[解析] (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.29.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求γ,使γ与α的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.[解析] (1)∵-800°=-3×360°+280°,280°=149π,∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z ,又γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.30.已知α=1690°.(1)把α写成2k π+β(k ∈Z ,β∈[0,2π))的形式; (2)求θ,使θ与α终边相同,且θ∈(-4π,4π). [解析] (1)1690°=1440°+250°=4×360°+250°=4×2π+2518π.(2)∵θ与α终边相同,∴θ=2k π+2518π(k ∈Z).又θ∈(-4π,4π),∴-4π<2k π+2518π<4π,∴-9736<k <4736(k ∈Z).∴k =-2,-1,0,1.∴θ的值是-4718π,-1118π,2518π,6118π.31.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z}B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧ α⎪⎪⎭⎬⎫α=k ·π2,k ∈Z D .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π4+2k π,k ∈Z [解析]对于A ,终边在x 轴上角的集合是{α|α=k π,k ∈Z},故A 正确; 对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确; 对于C ,终边在x 轴上的角的集合为{ α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故合在一起即为{ α|}α=k π,k ∈Z ∪⎩⎨⎧ α⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确; 对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确. 32.用弧度制表示终边落在x 轴上方的角α的集合为________. [解析]若角α的终边落在x 轴上方,则2k π<α<2k π+π(k ∈Z). 33.用弧度表示终边落在y 轴右侧的角的集合为________.[解析]y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪-π2+2k π<θ<π2+2k π,k ∈Z . 34.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )[解析]当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z.故选C.35.用弧度制表示终边在图中阴影区域内角的集合(包括边界),并判断2019°是不是这个集合的元素.[解析]∵150°=5π6,∴终边在阴影区域内角的集合为S =⎩⎨⎧⎭⎬⎫β⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . ∵2019°=219°+5×360°=⎝⎛⎭⎫219π180+10π rad ,又 5π6<219π180<3π2,∴2019°∈S .36.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角θ的集合.[解析]如题图(1),330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12,所以终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-π6<θ<2k π+5π12,k ∈Z . 如题图(2),因为30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪k π+π6<θ<k π+π2,k ∈Z . 37.用弧度写出终边落在如图阴影部分(不包括边界)内的角的集合.[解析]30°=π6 rad,150°=5π6rad.终边落在题干图中阴影区域内角的集合(不包括边界)是⎩⎨⎧⎭⎬⎫β⎪⎪π6+k π<β<5π6+k π,k ∈Z . 38.如图所示:(1)分别写出终边落在OA ,OB 位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合. [解析] (1)终边在OA 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=3π4+2k π,k ∈Z .终边在OB 上的角的集合为⎩⎨⎧⎭⎬⎫β|β=-π6+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|-π6+2k π≤α≤3π4+2k π,k ∈Z .题型三 弧长公式与扇形面积公式的应用1.半径为2,圆心角为π6的扇形的面积是________.[解析]由已知得S 扇=12×π6×22=π3.2.若扇形的半径为1,圆心角为3弧度,则扇形的面积为________. [解析] 由于扇形面积S =12αr 2=12×3×12=32,故扇形的面积为32.3.圆的半径为r ,该圆上长为32r 的弧所对的圆心角是( )A.23 rad B.32 rad C.2π3rad D.3π2rad [解析]由弧度数公式α=l r ,得α=32r r =32,因此圆弧所对的圆心角是32 rad.4.在半径为2的圆中,弧长为4的弧所对的圆心角的大小是________rad. [解析]根据弧度制的定义,知所求圆心角的大小为42=2 rad.5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1B .2C .4D .1或4[解析]因为扇形的弧长为4,面积为2,所以扇形的面积为12×4×r =2,解得r =1,则扇形的圆心角的弧度数为41=4.故选C.6.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8[解析]设扇形所在圆的半径为R ,则2=12×4×R 2,∴R 2=1,∴R =1.∴扇形的弧长为4×1=4,扇形的周长为2+4=6.故选C.7.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为________ cm 2.[解析]设扇形的半径为r cm ,弧长为l cm ,由圆心角为2 rad ,依据弧长公式可得l =2r , 从而扇形的周长为l +2r =4r =8,解得r =2,则l =4. 故扇形的面积S =12lr =12×4×2=4 cm 2.8.已知扇形的圆心角为120°,半径为 3 cm ,则此扇形的面积为________ cm 2. [解析]设扇形的弧长为l ,因为120°=120×π180 rad =2π3(rad),所以l =αR =2π3×3=23π3(cm).所以S =12lR =12×23π3×3=π(cm 2).故填π.9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的________倍. [解析]设原来圆的半径为r ,弧长为l ,弧所对的圆心角为α,则现在的圆的半径为3r 弧长为l , 设弧所对的圆心角为β,于是l =αr =β·3r ,∴β=13α.10.扇形的半径变为原来的2倍,而弧长也增加为原来的两倍,则( )A .扇形的面积不变B .扇形圆心角不变C .扇形面积增大到原来的2倍D .扇形圆心角增大到原来的2倍[解析]由弧度制定义,等于半径长的圆弧所对的圆心角叫做1弧度的角,所以一扇形所在圆的半径增加为原来的2倍,弧长也增加到原来的2倍,弧长与半径之比不变,所以,扇形圆心角不变,故选B. 11.求半径为π cm ,圆心角为120°的扇形的弧长及面积.[解析]因为r =π,α=120×π180=2π3,所以l =αr =2π23 cm ,S =12lr =π33 cm 2.12.已知扇形OAB 的圆心角为57π,周长为5π+14,则扇形OAB 的面积为________.[解析]设扇形的半径为r ,圆心角为57π,∴弧长l =57πr ,∵扇形的周长为5π+14,∴57πr +2r =5π+14,解得r =7,由扇形的面积公式得=12×57π×r 2=12×57π×49=35π2.13.已知扇形的周长为10 cm ,面积为4 cm 2,求扇形圆心角的弧度数. [解析]设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l , 半径为R ,依题意有⎩⎪⎨⎪⎧l +2R =10,①12lR =4.②①代入②得R 2-5R +4=0,解得R 1=1,R 2=4. 当R =1时,l =8(cm),此时,θ=8 rad >2π rad 舍去. 当R =4时,l =2(cm),此时,θ=24=12 (rad).综上可知,扇形圆心角的弧度数为12rad.14.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .sin 2C .2sin 1D.2sin 1[解析]设圆的半径为R ,则sin 1=1R ,∴R =1sin 1,故所求弧长为l =α·R =2·1sin 1=2sin 1.15.一段圆弧的长度等于其所在圆的圆内接正方形的边长,则这段圆弧所对的圆心角为( )A.π2 B.π3 C. 2D. 3[解析]设圆内接正方形的边长为a ,则该圆的直径为2a , 所以弧长等于a 的圆弧所对的圆心角α=l r =a22a =2,故选C.16.已知扇形的圆心角为108°,半径等于30 cm ,求扇形的弧长和面积. [解析]∵108°=108×π180=3π5,所以扇形的弧长为3π5×10=6π(cm),扇形的面积为12×3π5×302=270π(cm 2).17.已知扇形的圆心角所对的弦长为2,圆心角为2π3.求:(1)这个圆心角所对的弧长; (2)这个扇形的面积.[解析] (1)因为扇形的圆心角所对的弦长为2,圆心角为2π3,所以半径r =1sin π3=233,所以这个圆心角所对的弧长l =233×2π3=43π9.(2)由(1)得扇形的面积S =12×233×43π9=4π9.18.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m 的弧田,按照上述经验公式计算所得弧田面积约是________m 2.[解析]2π3=120°,根据题设,弦=2×4sin 120°2=43(m),矢=4-2=2(m),因此弧田面积=12×(弦×矢+矢2)=12×(43×2+22)=43+2≈9(m 2).19.已知扇形的周长为10,面积为4,求扇形的圆心角的弧度数. [解析]设扇形的圆心角的弧度数为θ(0<θ<2π),弧长为l ,所在圆的半径为r . 依题意得⎩⎪⎨⎪⎧l +2r =10,12lr =4,消去l ,得r 2-5r +4=0,解得r =1或r =4.当r =1时,l =8,此时θ=8 rad>2π rad ,故舍去;当r =4时,l =2,此时θ=24=12 rad ,满足题意.故θ=12rad.20.已知两角和为1弧度,且两角差为1°,则这两个角的弧度数分别是__________________________. [解析]设两个角的弧度数分别为x ,y .因为1°=π180 rad ,所以⎩⎪⎨⎪⎧x +y =1x -y =π180.解得⎩⎨⎧x =12+π360y =12-π360,所以所求两角的弧度数分别为12+π360,12-π360.21.已知扇形AOB 的周长为10 cm ”,求该扇形的面积的最大值及取得最大值时圆心角的大小及弧长. [解析]设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,面积为S , 由l +2r =10得l =10-2r ,S =12lr =12(10-2r )·r =5r -r 2=-⎝⎛⎭⎫r -522+254,0<r <5. 当r =52时,S 取得最大值254,这时l =10-2×52=5,∴θ=l r =552=2.故该扇形的面积的最大值为254cm 2,取得最大值时圆心角为2 rad ,弧长为5 cm. 22.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?[解析]设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40, 所以l =40-2r,所以S =12lr =12×(40-2r )r =-(r -10)2+100.所以当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,这时θ=l r =40-2×1010=2 rad.23.已知扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求该扇形的圆心角的大小; (2)求这个扇形的面积取得最大值时圆心角的大小和弦AB 的长度. [解析] (1)设该扇形AOB 的半径为r ,圆心角为θ,面积为S ,弧长为l .由题意,得⎩⎪⎨⎪⎧l +2r =8,12lr =3,解得⎩⎪⎨⎪⎧r =1,l =6或⎩⎪⎨⎪⎧r =3,l =2.所以圆心角θ=l r =61=6或θ=l r =23,所以该扇形的圆心角的大小为23rad 或6 rad.(2)θ=8-2r r ,所以S =12·r 2·8-2rr=4r -r 2=-(r -2)2+4, 所以当r =2,即θ=8-42=2时,S max =4 cm 2.此时弦长AB =2×2sin 1=4sin 1(cm).所以扇形面积最大时,圆心角的大小等于2 rad ,弦AB 的长度为4sin 1 cm. 24.已知半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解析] (1)由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, ∴α=∠AOB =60°=π3rad.(2)由(1)可知α=π3 rad ,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎫2π3-3. 25.已知扇形AOB 的圆心角为120°,半径为6,求:(1) AB ︵的长;(2)扇形所含弓形的面积(即阴影面积).[解析] (1)∵120°=2π3,∴AB ︵的长l =2π3×6=4π.(2)S 扇形AOB =12lr =12×4π×6=12π.如图所示,过点O 作OD ⊥AB ,交AB 于D 点,于是有S △OAB =12AB ·OD =12×2×33×3=93,∴弓形的面积为S 扇形AOB -S △AOB =12π-9 3.26.如图所示,以正方形ABCD 中的点A 为圆心,边长AB 为半径作扇形EAB ,若图中两块阴影部分的面积相等,则∠EAD 的弧度数大小为________.[解析]设AB =1,∠EAD =α,∵S 扇形ADE =S 阴影BCD ,由题意可得12×12×α=12-π×124,∴解得α=2-π2.27.已知扇形OAB 的周长是60 cm ,面积是20 cm 2,求扇形OAB 的圆心角的弧度数. [解析]设扇形的弧长为l ,半径为r ,则⎩⎪⎨⎪⎧2r +l =60,12lr =20,∴⎩⎪⎨⎪⎧ r =15+205,l =4015+205或⎩⎪⎨⎪⎧r =15-205,l =4015-205, ∴扇形的圆心角的弧度数为lr=43-3205或43+3205.28.如图,一长为 3 dm ,宽为1 dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)[解析]在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·AB =π2·3+1=π,面积S 1=12·π2·AB 2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·A 1C =π2·1=π2,面积S 2=12·π2·A 1C 2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·A 2D =π3·3=33π,面积S 3=12·π3·A 2D 2=12·π3·(3)2=π2,所以点A 走过的路程长l =l 1+l 2+l 3=π+π2+3π3=(9+23)π6,点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.29.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.[解析] 设P ,Q 第一次相遇时所用的时间是t ,则t ·π3+t ·⎪⎪⎪⎪-π6=2π.解得t =4. 所以第一次相遇时所用的时间是4秒.第一次相遇时点P 已经运动到角π3·4=4π3的终边与圆交点的位置,点Q 已经运动到角-2π3的终边与圆交点的位置,所以点P 走过的弧长为4π3×4=16π3,点Q 走过的弧长为⎪⎪⎪⎪-2π3×4=2π3×4=8π3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧度制
一、教学目标:
1、理解1弧度的角及弧度的定义;
2、掌握角度与弧度的换算公式;
3、熟练进行角度与弧度的换算;
4、理解角的集合与实数集R 之间的一一对应关系;
5、理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

二、教学重、难点
重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。

难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。

教学过程:
【创设情境,揭示课题】
在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的360
1规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。

下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是rad ,读作弧度.
【探究新知】
1.1弧度的角的定义.
(板书)我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角(打开课件).如图1—14(见教材),弧AB 的长等于半径r ,则弧AB 所对的圆心角就是1弧度的角,弧度的单位记作rad 。

在图1(课件)中,圆心角∠AOC 所对的弧长l =2r ,那么∠AOC 的弧度数就
是2rad ;圆心角∠AOD 所对的弧长l =21r ,那么∠AOC 的弧度数就是2
1rad ;圆心角∠AOE 所对的弧长为l ,那么∠AOE 的弧度数是多少呢?学生思考并交流,此我们可以得到弧度制的定义.
2.弧度制的定义:
一般地,(板书)正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数
是o ;角α的弧度数的绝对值|α|=r
l ,其中l 是以角α作为圆心角时所对弧的长,r 是圆
的半径,这种以弧度作为单位来度量角的单位制,叫做弧度制.
在弧度制的定义中,我们是用弧长与其半径的比值来反映弧所对的圆心角的大小的.为什么可以用这个比值来度量角的大小呢?这个比值与所取的圆的半径大小有没有关系?请同学们自主学习课本P12—P13,从课本中我们可以看出,这个比值与所取的半径大小无关,只与角的大小有关。

有兴趣的同学们可以对它进行理论上的证明:
(论证)如图1—13(见教材),设∠α为n °(n °>0)的角,圆弧AB 和A l B l 的长分别为l 和l 1,点A 和A l 到点O 的距离(即圆的半径)分别为r(r >0)和r l (r l
>0),由初中所学的弧长公式有l =180πn r ,l 1=180πn r 1,所以r l =11r l =180
πn ,这表明以角α为圆心角所对的弧长与其半径的比值,与所取的半径大小无关,只与角α的大小有关.
用角度制和弧度制来度量零角,单位不同,但量数相同(都是0);用角度制和弧度制度量任一非零角,单位不同,量数也不同.但它们既然是表示同一个角,那这二者之间就应该可以进行换算,下面我们来讨论角度与弧度的换算.
3.角度制与弧度制的换算.
现在我们知道:1个周角=360°=r
π2r ,所以,(板书)360°=2πrad ,由此可以得到180°=πrad ,1°=180π≈0.01745rad ,1rad =(π
180)°≈57.30°=57°18’。

说明:在进行角度与弧度的换算时,关键要抓住180°=πrad 这一关系式. 今后我们用弧度制表示角时,“弧度”二字或“rad ”通常略去不写,而只写
这个角所对应的弧度数.例如,角α=2就表示是2rad 的角,sin 3π就表示3
πrad 的角的正弦,但用角度制表示角时,“度”或“°”不能省去.而且用“弧度”为单位度量角时,常把弧度数写成多少π的形式,如无特别要求,不必把π写
成小数,如45°=4
πrad ,不必写成45°=0.785弧度. 前面我们介绍了角度制下的终边相同角的表示方法,而角度制与弧度制可以相互转化,所以与角α终边相同的角(连同角α在内),也可以用弧度制来表示.但书写时要注意前后两项所采用的单位制必须一致.
角的概念推广后,无论用角度制还是用弧度制,都能在角的集合与实数集R 之间建立一种一一对应的关系:每一个角都有唯一的一个实数与它对应,例如这个角的弧度数或度数;反过来,每一个实数也都有唯一的一个角与它对应,就是弧度数或度数等于这个实数的角。

【巩固深化,发展思维】
1.例题讲评
例1.把45°化成弧度。

解:45°=180π×45rad=4
πrad. 例2.把5
3πrad 化成度。

解:53πrad =5
3×180°=108°. 例3.利用弧度制证明扇形面积公式S =2
1lr ,其中l 是扇形的弧长,r 是圆的半径。

证:∵圆心角为1的扇形的面积为π
21·πr 2,又∵弧长为l 的扇形的圆心
角的大小为r l ,∴扇形的面积S =r l ·π21·πr 2=2
1lr. 2.学生课堂练习
(2)用弧度制写出终边落在y 轴上和x 轴上的角集合。

五、归纳整理,整体认识
(1)主要学习了弧度制的定义;角度与弧度的换算公式;特殊角的弧度数。

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业:习题1—3中的1、2、6.
七、课后反思。

相关文档
最新文档