正余弦定理应用举例(一)
正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--.由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距3km的C 、D 两点高,测得∠ACB=750, ∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB. 解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3.在∆BCD 中,∠CBD==600由正弦定理可得,BC=003sin 75sin 60=26)2+在∆ABC 中,由余弦定理,可得 2222AB AC BC AC BC COS ACB =+-••∠,22202626)(3)()2237522AB COS ++=+-⨯⨯⨯=5 ∴AB=5≈2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
正余弦定理应用举例(一)测量距离问题

正余弦定理应用举例(一)测量距离问题一、学习任务:利用解决实际中有关距离、高度、角度的测量问题。
1、巩固正弦定理、余弦定理等知识。
2、利用正弦、余弦定理等知识求解实际中有关距离问题。
二、预习任务:(查资料完成并记住)1、 方位角:2、 方向角:3、 仰角与俯角:4、 坡比和坡角:三、回顾正、余弦定理公式及变式:1、正弦定理公式:2余弦定理公式:四、自主探究(一)、测量距离问题问题1、(1)测量从一个可到达的点A 到一个不可到达的点B 之间的距离问题。
如图所示:(11页图)这实际上就是已知三角形两个角和一边解三角形的问题,应怎样计算? 例如:课本例1.中AC=8cm ,∠BAC=30︒,∠ACB=45︒求A 、B 两点的距离?(2)若A 、B 不能直达之间用一座山隔着,A 、B 、C 都可到达(如图)我们需要测得哪些量就可求出AB 的长?若AD 、BE 的长已知了,如何求出DE=? (这实际上就是已知三角形两个角和一边解三角形的问题)。
例1.中变式:AC=8cm ,∠BAC=30︒,∠ACB=45︒AD=DE=1 cm ,求D 、,E 两点的距离?问题2、测量两个不可到达的点A 、B 之间的距离问题。
如图所示:(12页上图)首先把不可到达的两点A 、B 之间的距离转化为应用正、余弦定理求三角形边长问题,然后把未知的BC 和AC 的距离问题转化为测量可到达的一点与不可到达的一点之间的距离问题。
例2、(课本11页例2、)变式训练1、在一次反恐作战准备中,为了弄清基地组织两个训练营地A 和B 之间的距离,盟军在两个相距为a 23的观测点C 和D 处,测得∠ADB=30︒,∠BDC=30︒,∠DCA=60︒,∠ACB=45︒,求基地组织的这两个训练营地之间的距离。
变式训练2、隔河看两目标A,B,但不能到达,在岸边选取相距3km 的C 、D 两点,并测得∠ACB=75︒,∠BCD=45︒,∠ADC=30︒,∠ADB=45︒,(A 、B 、C 、D 在同一平面内),求两目标A ,B 之间的距离?五、巩固训练1、 已知A 、B 两地相距10km ,B 、C 两地相距20km ,且∠ABC=120︒,则A 、C 两地相距_______。
正弦定理余弦定理应用举例

正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
正余弦定理应用举例(1)--举例

100 3
D
BC DC = 由正弦定理 ,得 sin ∠BDC sin ∠DBC
DC sin ∠BDC 100 3 sin 75° BC = = = 200 sin 75° sin ∠DBC sin 60°
在△ABC中由余弦定理, ABC中由余弦定理, 中由余弦定理
AB 2 = CA2 + CB 2 − 2CA ⋅ CB cos C = (100 3) 2 + (200 sin 75°) 2
练习2.自动卸货汽车的车厢采用液压机构。 练习 .自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度.已知车厢的最大仰角是 ° 油泵顶点B 油泵顶杆 的长度.已知车厢的最大仰角是55°,油泵顶点 的长度 与车厢支点A之间的距离为 之间的距离为2m, 与水平线之间的夹角为 与水平线之间的夹角为5° 与车厢支点 之间的距离为 ,AB与水平线之间的夹角为 °, AC长为 o ,计算 的长(精确到0.01m). 长为1m,计算BC的长 精确到0.01 的长( 0.01m 长为 60 20′ 分析】例题中涉及一个怎样的三角形? 【分析】例题中涉及一个怎样的三角形? 中已知什么, 在△ABC中已知什么,要求什么? 中已知什么 要求什么?
C
∴ BC = 3 ≈ 1.73(m)
答:顶杆BC约长1.73m。 顶杆BC约长 BC约长 。 A B
课堂小结
解应用题的基本思路
实际问题
抽象概括 示意图 推 理
数学模型 演 算
实际问题的解
数学模型的解
作业
课本第19页 课本第 页 2,5 ,
: ∆ 解 在 ASB , SBA 105° 中 ∠ = , ∠S = 45° 由 弦 理 , 正 定 得 ABsin30° 16sin30° SB = = = 8 2(n mile) sin45° sin45° 设 S到 线 的 离 h, 则 点 直 AB 距 为 h = SBsin75° = 4( 3 + 1)(n mile) Qh > 6.5n mile∴此 可 继 沿 北 向 船 以 续 正 方 航 : 船 以 续 正 方 航 答 此 可 继 沿 北 向 行
正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
正弦定理余弦定理应用举例

。 三角形的面积公式
1 1 SABC 1 absinC bcsin A 2 2 2 acsin B
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离. (2)测量高度. (3)测量角度.
实际应用问题中有关的名称、术语 1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。 (2)当视线在水平线下方时,视线与水平线所成角叫 俯角。 (3)由一点出发的两条视线所夹的角叫视角。(一般 这两条视线过被观察物的两端点) 视线 仰角 俯角 视线 水平线
【变式练习3】 如图,甲船以每小时30 2海里的速度向正北方 向航行,乙船按固定方向匀速直线航行.当甲 船位于A1处时,乙船位于甲船的北偏西105方向 的B1处,此时两船相距20海里.当 甲船航行20分钟到达A2处时,乙船 航行到甲船的北偏西120方向的B2 处,此时两船相距10 2海里.问乙 船每小时航行多少海里?
答:A,B两点间的距离为 20 6米.
练习2.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北 方向,半小时后在B处望见灯塔C在货轮的北偏东30°方向.若货 轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的 西北方向时,求A,D两处的距离.
[解] 如图8所示,在△ABC中,∠A=45° ,∠ABC= 90° +30° =120° ,∴∠ACB=180° -45° -120° =15° ,AB= 30×0.5=15(n AB , sin∠ACB AB· sin∠ABC 15×sin120° 3 2+ 6 ∴AC= = ×15(n sin15° = 2 sin∠ACB mile). 在△ACD中,∵∠A=∠D=45° , ∴△ACD是等腰直角三角形, ∴AD= 2AC=15(3+ 3)(n mile). ∴A,D两处的距离是15(3+ 3) n mile. mile).由正弦定理,得 AC sin∠ABC =
正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结束
2019年4月14日星期日
首页
§ 1.2 应用举例(一)
2019年4月14日星期日
引入
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离; (2)测量高度; (3)测量角度.
包含不可达到的点
2019年4月14日星期日
新课
例1、如图, 设A, B两点在河的两岸, 要测量 两点之间的距离.测量者在A的同侧, 在所 在的河岸边选定一点C , 测出AC的距离是 0 0 55m, BAC 51 , ACB 75 , 求A, B两点 间的距离(精确到0.1m).
2019年4月14日星期日
新课
例2、如图, A, B两点都在河的对岸(不可到 达), 设计一种测量A, B两点间距离的方法.来自2019年4月14日星期日
新课
例3、AB是底部B不可到达的一个建筑物, A为建筑物的最高点.设计一种测量建筑 物高度AB的方法.
2019年4月14日星期日
新课
例4、如图, 在山顶 铁塔上B处测得地 面上一点A的俯角 54 0 40' , 在塔底 C处测得A处的俯 角 50 01'. 已知铁 塔BC 部分的高为 27.3m, 求出山高C D(精确到1m).