大学物理答案-第六章
大学物理第六章题解

第六章 经典质点系动力学6-1.如图,半圆柱立在光滑水平面上从静止开始到下,试判断质心C 的运动方向.解 建立如图x 轴,由于水平方向外力分量之和为零0ix F =∑,所以水平方向动量守恒x P C =.因初始时静止,故 0x Cx P mv == 由d 0d C Cx x v t ==,可知C x =常量,质心C 竖直向下运动. 6-2.如图,船的质量为5000kg ,当质量为1000kg 的汽车相对船静止时,船尾螺旋桨的转动可使船以加速度20.2m s 前进.在船行进中,汽车相对于船以加速度20.5m s 沿船前进的相反方向加速运动,求此时船的加速度的大小.解 将船与汽车作为质点系.当汽车相对于船静止时,船的加速度即为质点系质心的加速度,根据质心运动定理可知船尾螺旋桨转动时的推力()=(50001000)021200(N)e C F ma .=+⨯=在船的行进过程中,以船的行进方向为x 、x '轴正方向.设船相对于岸的速度、加速度用x 、x 表示,汽车相对于船的速度、加速度用x '、x '表示,则汽车相对于岸的速度、加速度为x x '+、x x '+.根据质点系的动量定理()d [()]d e m x m x x F t'++=船车 即 ()()]e m x m x x F '++=船车500010001000051200x x .+-⨯=可求出此时船的加速度的大小2028m s x .=.6-3.三只质量均为0m 的小船鱼贯而行,速率都是v ,中间一船同时以相对本船的速率u 沿水平方向把两个质量均为m 的物体抛到前后两只船上,求两物体落入船后三只船的速率(忽略水对船的阻力).解 以船行方向为速度正方向,设两物体落入船后三只船的速率为1v 、2v 、3v . 以中间船及两物体为质点系,因为在抛出物体的过程中水平方向不受外力,所以质点系水平方向动量守恒00222(2)()()m m v m v m v u m v u +=+++-所以 2v v =以前船与抛入物体为质点系,因为在抛入物体的过程中水平方向不受外力,所以质点系水平方向动量守恒001()()m v m v u m m v ++=+所以 10mu v v m m=++ 以后船与抛入物体为质点系,同样,根据质点系水平方向动量守恒003()()m v m v u m m v +-=+30mu v v m m =-+6-4.质量为70kg 的人和质量为210kg 的小船最初处于静止,后来人从船尾向船头走了3.2m ,不计船所受阻力,问船向那个方向运动,移动了几米?(用质心运动定理求解.)解 建立与地面固连的坐标系Ox ,x 轴的方向为从船尾指向船头.人视为质点1,坐标为1x ;船视为质点2,坐标为2x ;此二质点构成质点系.质点系所受合外力为零,由质心运动定理可知质点系质心加速度为零;由于质心速度为常量,质点系初始状态静止,所以质心速度为零,即质心位置保持不变 110220112201212C C m x m x m x m x x x m m m m ++===++ 11220m x m x ∆+∆=由于123.2x x ∆=+∆,代入上式得12123.2 3.2700.8(m)70210m x m m ⨯∆=-=-=-++ 即船向后移动了0.8米.6-5.试证明质量为m ,长为l 的匀质细杆对过杆中点且与杆垂直的轴的转动惯量为2112ml . 证明 以杆中心为原点,沿杆建立坐标系Oxy 如图.杆的线密度l m lρ=(即单位长度的质量). 用一系列与杆垂直的不同x 的面,把杆分割成无限多个无限小的质元,图中画出了在~d x x x +范围内的小质元.此小质元质量d d d l m m x x lρ==,到Oy 轴的距离为||x ,对Oy 轴的转动惯量为22d d d m I x m x x l==.则整个细杆对Oy 轴的转动惯量 /223/22/2/211d 312l l l l m m I x x x ml l l --===⎰6-6.如图,半径0.1m R =的定滑轮,可绕过轮心的z 轴转动,转动惯量为20.1kg m J =⋅.一不可伸长之轻绳无滑地跨过定滑轮,一端竖直地悬一质量1kg m =的重物,另一端a 受竖直向下的力F 作用,20.8N F =.试用质点系角动量定理求a 点加速度.解 用滑轮、绳、重物构成质点系,质点系所受外力为F 、重物重力mg 和轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理2d d ()()d d J Rmv J mR FR mgR t tωω+=+=- 所以2d d FR mgR t J mR ω-=+,a 点加速度为 22d d F mg a R i R i t J mR ω-==+ 220.819.80.01 1.0(m s )0.110.01i i -⨯==+⨯6-7.可利用阿特伍德机(例题6-3-4)测滑轮转动惯量.设10.46kg m =,20.50kg m =,滑轮半径0.05m R =.由静止开始释放重物测得2m 在5.0s 内下降0.75m .求滑轮转动惯量J .解 (因为不要求求出绳内张力,故可用质点系角动量定理求解.)用滑轮、绳、重物构成质点系,质点系所受外力为重物和滑轮的重力、以及轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理1122d ()d J Rm v Rm v t ω++ 21221d [()]d J m m R m gR m gR tω=++=- 所以21212()d d ()m m gR t J m m Rω-=++,2m 下降加速度的大小为 212212()d d m m g a R t m m J R ω-==++ 可见质点2m 作匀加速直线运动.由2212x a t ∆=,求出220.060m s a =.由上式可知 221122()[]m m g J R m m a -=-- 222(050046)98005[050046]13910kg m 006........--⨯=⨯--=⨯⋅6-8.匀质细杆长2l ,质量为0m ,杆上穿有两个质量均为m 的小球.初始时杆以角速度0ω绕过杆中点O 且与杆垂直的光滑竖直轴转动,两小球均位于距O 点2l 处.求当两个小球同时滑动到杆的两端点时杆的角速度的大小.解 将杆和两个小球作为质点系.由于竖直轴光滑,轴受到的约束力对竖直转动轴力矩为零;细杆和小球的重力与竖直转动轴平行,对竖直转动轴力矩为零.由于质点系所受外力对竖直转动轴合力矩为零,所以质点系对竖直转动轴角动量守恒,设末态角速度为ω,则002222l l J m J ml l ωωωω+⋅=+⋅ 由于220011(2)123J m l m l ==,所以000(23)2(6)m m m m ωω+=+.6-9.工程上常用摩擦啮合器使两个飞轮以相同的转速转动,如图,飞轮A 、B 可绕同一固定轴转动,C 为啮合器.设飞轮A 、B 对轴的转动惯量210kg m A J =⋅,220kg m B J =⋅,开始A 轮转速600r min A n =(转每分),B 轮静止,求两轮啮合后的转速.解 将二飞轮A 、B 作为质点系.由于二飞轮所受重力和支撑力对固定轴力矩均为零,飞轮所受外阻(动)力矩比二飞轮啮合时飞轮间的相互作用力矩小得多,故啮合过程中质点系对固定轴的角动量近似守恒,有2()2A A A B J n J J n ππ⋅=+10600200(r min )1020A A A B J n n J J ⨯===++6-10.有两根原长为0l 、劲度系数为k 的轻弹簧串接于O 点,另两端各系一质量为m 的滑块,置于光滑水平面上.现将两滑块拉开,使其相距2l (0l l >),从静止放手,求两弹簧恢复原长时,弹簧弹性力对两滑块做功之和.(用三种方法求解)解法一 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用弹簧弹性势能求解.弹簧弹性力对两滑块做功之和等于两弹簧弹性势能增量的负值220012[0()]()2W k l l k l l =-⨯--=- 解法二 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.在惯性系中积分求功.以弹簧自由伸长处为原点、沿弹簧建立x 轴,则00220012()d 2()()2l l W kx x k l l k l l -=⨯-=⨯-=-⎰ 解法三 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用求一对力做功之和的方法,在与一个滑块相对静止的参考系中积分求功.以一个滑块为原点、沿弹簧建立x 轴,当另一滑块位于x 处时,每个弹簧的伸长量为02x l - 00220022[()]d 2()d()222l l l l x x x W k l x k l =--=--⎰⎰ 022202012()|()22l l x k l k l l =--=-6-11.两个滑冰运动员质量均为70kg ,均以6.5m s 速率沿相反方向滑行,滑行路线间的垂直距离为10m .当彼此相错时,各抓住10m 长绳的一端,然后开始旋转.(1)在抓住绳端之前,各自对绳中点的角动量多大?抓住后又为多大?(2)他们各自收绳,到绳长5m 时,各自速率多大?(3)绳长5m 时绳内张力多大?(4)收绳过程中二人总动能如何变化?(5)二人共做多少功?解 (1)抓绳之前,每个运动员对绳中心角动量均为570 6.5L =⨯⨯22275(kg m s)=⋅. 抓绳之后,视两个运动员和绳为质点系,所受外力矢量和为零,所以质点系质心(绳中心)位置不变,绳中心仍为固定点,每个运动员对绳中心的角动量仍为22275kg m s ⋅.(2)绳的张力T F 为质点系内力.收绳过程中质点系所受外力对绳中心的力矩为零,所以质点系的角动量守恒,设收绳后运动员速率为v ,则 2 2.57022275v ⨯⨯⨯=⨯ 所以13m s v =.(3)当绳长5m 时,对每一个运动员,由牛顿第二定律可得2T 70134732(N)2.5F ⨯== (4)质点系总动能的增量等于组成质点系的每个质点动能增量之和22k k01270(13 6.5)8873(J)2E E -=⨯⨯⨯-= (5)根据质点系的动能定理,二运动员总共做功等于质点系动能增量,k k08873(J)W E E =-=6-12.匀质细杆长7m 5l =,质量为m ,可绕过其一端的光滑水平轴在竖直平面内转动,在杆自由下垂时有一质量为6m 的黏性小球沿水平方向飞来并黏附于杆的中点,使杆摆动的最大角度为60ο.求小球飞来时的速率.(210m g =)解 在小球与杆的碰撞过程中,以小球和杆为质点系.质点系所受外力中,杆的重力mg 和杆所受轴的支撑力N F 对轴O 的力矩为零;小球重力m g '对轴O 的力矩近似为零;所以质点系的角动量近似守恒221[()]262362l m l m l m v v ml ω'==+ 故92v l ω=.在小球和杆一起上摆的过程中,以小球和杆为质点系,仅有小球和杆所受重力做功,而重力为保守力,所以机械能守恒22211[()]()cos60236262m l m l ml m g ωο+=+ 因此2149g lω=.根据以上结果即可求出9146321(m s)292g v l gl l ===.6-13.在光滑水平桌面上,有一质量为m 的滑块,滑块与一弹簧相连,弹簧另一端固定于O 点,劲度系数为k .当弹簧处于原长0l 时,一质量为0m 的子弹以速度0v 垂直于弹簧地射入滑块,并嵌在其中.之后当滑块运动到B 点时,弹簧长度为l ,如图所示.求滑块于B 时的速度v .解 在子弹射入滑块的过程中,由子弹和滑块构成质点系.因质点系在0v 方向不受外力,故质点系沿0v 方向动量守恒000()m v m m v '=+所以000()v m v m m '=+.在子弹和滑块由A B →的过程中,视子弹和滑块为一个质点.由于过程中只有弹簧弹性力做功,弹簧弹性力为保守力,故质点机械能守恒;又因质点受力对过O 点的竖直轴力矩为零,所以质点对过O 点的竖直轴角动量守恒.222000111()()()222m m v m m v k l l '+=++- 000()()sin m m v l m m vl θ'+=+所以 22212000200()[]()m v k l l v m m m m -=-++ 000222120000arcsin [()()]m v l l m v m m k l l θ=-+-6-14.大容器内水的自由表面的高度为0h ,放在水平地面上,离自由表面h 深处有一小孔A ,小孔横截面积远小于容器横截面积.求:(1)由小孔A 流出的水流到达地面的水平射程x ;(2)与小孔A 在同一竖直线上,距自由表面多深处再开一孔,可使水流的水平射程与前者相等?(3)在多深处开孔,可使水流具有最大水平射程?最大水平射程是多少?解 (1)由于容器横截面积远大于小孔横截面积,水流稳定后可认为容器中水面高度不变.认为水是理想流体.水流稳定后,取一条从容器中水自由表面到小孔的流线,以容器底为重力势能零点,由伯努利方程200001()2gh p g h h v p ρρρ+=-++所以小孔流速2v gh =.流体微团从流出小孔到落地降落的高度2012h h gt -=,可知降落时间02()h h t g-=,因此水平射程02()x vt h h h ==-. (2)在h '深处另开一孔而水平射程相同,则由002()2()h h h h h h ''-=-可求出0h h h '=-.(略去h h '=.)(3)根据(1)02()x h h h =-,由002(2)d 0d 2()h h x h h h h -==-,有唯一极值点012h h =使水流具有最大射程.当012h h =时,max 0x x h ==.6-15.如图是测量液体流量的流量计原理图.已知细管和粗管的横截面积为1S 、2S ,使用时把它串接在水平液流管道中,稳定流动时两竖直管内液体自由表面高度差为h .求流量表达式.解 沿管道中心轴取一流线,对该流线上1、2两点,根据伯努利方程,因12h h =,故2211221122v p v p ρρ+=+ (1) 连续性方程 1122v S v S = (2) 1、2两点压强差 21p p gh ρ-= (3) 由(1)、(3)式,可得22122v v gh -=由(2)式,得1122v S v S =,代入上式 221122(1)2S v gh S -= ,即1222212gh v S S S =- 所以 11221222212gh Q v S v S S S S S ===-6-16.如图装置,出口处堵塞时,注满可视为理想流体的水.水平细管横截面积处处相等,其直径远小于大容器直径.打开塞子在水流稳定后,求两竖直细管内水面高度.解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点,根据伯努利方程22201223304111222p gh p v p v p v ρρρρ+=+=+=+ 因为234S S S ==,根据连续性方程223344S v S v S v ==可得 234v v v ==所以 230p p p ==两竖直细管内为静止流体,根据2002p p p gh ρ==+3003p p p gh ρ==+所以230h h ==.6-17.如题6-16图,若其中装有密度为31000kg m 的黏性流体,流动稳定后10.18m h =,20.1m h =,30.05m h =.求出口流速.(不计大容器内内能量损失)解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点.根据连续性方程,因为水平细管横截面处处相等,故水平细管中的2、3、4点流速相等,以v 表示其流速.根据不可压缩黏性流体作稳定流动时的功能关系式,对3、4点,有2230341122p v p v W ρρ+=++ 竖直细管内为静止流体,可知303p p gh ρ=+,所以 343W gh ρ=根据不可压缩黏性流体作稳定流动时的功能关系式,对1、4点,有20101412p gh p v W ρρ+=++ 由于水平细管横截面处处相等,不计大容器内内能量损失,故可知34143W W =,所以132(3)298(0183005)0767(m s)v g h h ....=-=⨯⨯-⨯=(第六章题解结束)。
四川大学大学物理练习册答案第六章 静电场中的导体与电介质

(2) 如用导线将球和球壳连接起来,则 壳的内表面和球表面的电荷会完全中和 而使这两个表面不带电,二者之间的电 场也变为0,二者成为等势体,球壳外表 面上的电荷仍保持为 q 3 , 并均匀分布, 它外面的电场分布也不变,仍为
B
A
o
q3
q3 B R3 E 2 2 4πε0 r r
R3 R2
R
同理,在导体表面上距O点 为 r 的P点附近的P处场强也应为 零。沿 x 轴分量为
a
P r O
X
由此得
由对称性分析,感应电荷应呈以O点为中心的圆对称分布。 在导体表面取 r—r+dr 的细圆环,则环面上的感应电荷为
整个导体表面的感应电荷总量为
q0
+ + + + + + + ++
尖端放电现象 带电导体尖端附 近的电场特别大,可 使尖端附近的空气发 生电离而成为导体产 生放电现象. 电 风 实 验
+++ ++
σE
+ +
+ + +
尖端放电有弊有利。
避雷针的工作原理
+ +
-
+ + +
+ +
-- - - -
(二) 空腔导体 空腔内无电荷时
0
B
q
+
三
静电屏蔽
静电屏蔽——在静电场中,因导体的存在使某些特 定的区域不受电场影响的现象。
大学物理第6章题解

第6章 光的干涉6.1 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为500D mm =,双缝的间距 1.2d mm =,求:⑴第4级明条纹到中心的距离;⑵第4级明条纹的宽度.解:(1)为明条纹的条件1222r r jλ-= (0,1, 2.....)j =±±12sin r r d j θλ-==由于00,sin /r d tg y r θθ==,y 表示观察点p 到0p 的距离 ,所以r y jdλ=,(0,1, 2.....)j =±± 第4级明条纹得到中心的距离:4/y D d λ=⨯3953450010589.3109.8101.210m ----⨯⨯⨯⨯==⨯⨯ (2):6.2 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为600D mm =,问⑴ 1.0,10d mm d mm ==两种情况相邻明条纹间距分别为多大?⑵若相邻条纹的最小分辨距离为0.065mm ,能分清干涉条纹的双缝间距最大是多少?解:(1)相邻两条强度最大值的条纹顶点间的距离为1i j r y y y dλ+∆=-=0600d r mm ==由此可知,当 1.0d mm =时39360010589.3101.010y ---⨯⨯⨯∆=⨯ 0.3538mm ≈当10d mm =时39360010589.3101010y ---⨯⨯⨯∆=⨯0.03538mm ≈(2)令能分清干涉条纹的双缝间距最大为d ,则有390360010589.310 5.440.06510r d mm y λ---⨯⨯⨯===∆⨯6.3 用白光作光源观察杨氏双缝干涉.设两缝的间距为d ,缝面与屏距离为D ,试求能观察到的清晰可见光谱的级次?解:白光波长在390~750范围,为明纹的条件为sin d k θλ=±在θ=0处,各种波长的光波程差均为零,所以各种波长的零级条纹在屏上0x =处重叠形成中央白色条纹.中央明纹两侧,由于波长不同,同一级次的明纹会错开,靠近中央明纹的两侧,观察到的各种色光形成的彩色条纹在远处会重叠成白色条纹最先发生重叠的是某一级的红光r λ ,和高一级的紫光v λ,因此从紫光到清晰可见光谱的级次可由下式求得:(1)r v k k λλ=+因而: 3901.08750390v r vk λλλ===--由于k 只能取整数,因此从紫光到红光排列清晰可见的光谱只有正负各一级6.4 在杨氏双缝干涉实验中,入射光的波长为λ,现在S2缝上放置一片厚度为d ,折射率为n 的透明介质,试问原来的零级明纹将如何移动?如果观测到零级明纹移到了原来的k 级明纹处,求该透明介质的厚度.解:(1)在小孔2s 未贴薄片时,从两小孔1s 和2s 到屏上0p 点的光程差为零,当小孔2s 被薄片贴住时,零光程差从0p 到p 点的光程差变化量为d y r δ'=,(其中d '为双缝间距) p 点的光程差的变化量等于2s 到p 的光程差的增加,即nd d δ=-,(透明介质的厚度) 00(1)dn d y r -=(1)n dr y d -='(2)如果观察到的零级条纹移动到了原来的k 级明纹处 说明p 离0p 的距离0k r y d λ='00(1)k r n dr d dλ-='' 1k n d λ-=6.5 在双缝干涉实验中,双缝间距0.20d mm =,缝屏间距 1.0D m =,若第二级明条纹离屏中心的距离为6.0mm ,试计算此单色光的波长.解:令单色光的波长为λ,由为明条纹需要满足的条件120sin y r r d j dr θλ-==≈ 可知,33600.210 6.0100.6106002 1.0y d nm r j λ---⨯⨯⨯≈==⨯=⨯6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度.解:由于油膜前后表面反射光都有半波损失,所以光程差为2nd δ=,而膜厚又是均匀的,因此干涉的效果不是产生条纹,而是增透或者是显色反射相消的条件是 : 2(21)2nd k λ=+1λ,2λ两波先后消失,1λ反射消失在k 级,2λ反射消失在1k +级则有 []122(21)2(1)122nd k k λλ=+=-+K =322122220,1, 2......)0.70 1.220.635r k r i n r ==±±===≈14(21)2 6.73102d k d mm nλ-=+=≈⨯6.7 利用等厚干涉可测量微小的角度.折射率 1.4n =的劈尖状板,在某单色光的垂直照射下,量出两相邻明条纹间距0.25l cm =,已知单色光在空气中的波长700nm λ=,求劈尖顶角θ.解:相长干涉的条件为022nd j λλ+=相邻两条纹对应的薄膜厚度差为02012d d d nλ'∆=-=对于劈尖板, 1.4n =,则02012 1.4d d d λ'∆=-=⨯条纹间距x ∆与相应的厚度变化之间的关系为02019422.870010102.80.2510d d d x l rad λθθθ---'∆=-=∆==⨯==⨯⨯6.8 用波长为680nm 的单色光,垂直照射0.12L m =长的两块玻璃片上,两玻璃片的一边互相接触,另一边夹着一块厚度为0.048h mm =云母片,形成一个空气劈尖.求: ⑴两玻璃片间的夹角?⑵相邻明条纹间空气膜的厚度差是多少?⑶相邻两暗条纹的间距是多少?⑷在这0.12m 内呈现多少条明纹?解:(1)两玻璃间的夹角为330.048100.4100.12tg θθ--⨯≈==⨯ (2)相邻两亮条纹对应的薄膜厚度差为002012d d d nλ∆=-=097020168010 3.410222d d d m n λλ--⨯∆=-====⨯(3)条纹间距与相应厚度变化之间的关系00201733.4100.850.410d d d xx mmθ--∆=-=∆⨯∆==⨯ (4)在这0.12m 内呈现的明条纹数为002222nd j nd j λλλλ+=+⇒=当00.048d mm =时J=142说明在这0.12 m 内呈现了142条明条纹6.9. 用500nm λ=的平行光垂直入射到劈形薄膜的上表面上,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面介质的折射率1n 大于薄膜的折射率 1.5n =.求:⑴膜下面介质的折射率2n 与n 的大小关系;⑵第10级暗纹处薄膜的厚度?⑶使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么样的变化?若 2.0e m μ∆=,原来的第10条暗纹处将被哪级暗纹占据?解:(1) (2)因为空气膜的上下都是玻璃,求反射光的光程差时应计入半波损失,0d =处(棱)反射光相消,是暗条纹,从棱算到地10条暗纹之间有9各整条纹间隔,膜厚是2λ的9倍, 9 2.252d um λ=⨯=(3)使膜的下表面向下平移一微小距离e ∆后,膜上表面向上平移,条纹疏密不变,整体向棱方向平移,原来地10条暗纹处的膜厚增加e ∆,干涉级增加 : /82k e λ∆=∆=因此原来的第10条暗纹倍第18条暗纹代替6.10. 白光垂直照射在空气中的厚度为0.40m μ的玻璃片上,玻璃的折射率为1.5.试问在可见光范围内(400700nm nm ),哪些波长的光在反射中加强?哪些波长的光在透射中加强? 解:(1)反射光加强的条件是2,(0,1, 2....)2nd k k λδλ=+==±±透射光加强的条件是2,(0,1, 2....)nd k k δλ===±±对于反射光中波长为λ的成分,在玻璃片表面反射光的光程差2,(0,1, 2....)2nd k k λδλ=+==±± 421ndk λ=- 当 14234254271,44 1.50.4 2.442, 1.50.40.8343, 1.50.40.48544, 1.50.40.3437k nd um umnd k um um nd k um umnd k um umλλλλ===⨯⨯====⨯⨯====⨯⨯====⨯⨯=在白光范围内22480,2(0,1, 2.....)2 1.50.41, 1.22,600,4003,400nd knm nd k j umkk umk nm nm knmλδλλλλλλ====±±⨯⨯=========2480,nm λ=反射光加强 对于透射光2nd k δλ==时,透射光加强22 1.50.4nd k um kλ⨯⨯==当 1, 1.22,6003,400k umk nm k nmλλλ======所以600,400nm nm λλ==时,透射光加强。
大学物理第6章(题库)含答案

06章一、填空题 (一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
大学物理参考答案(白少民)第6章 电磁感应 电磁场

则电子在涡旋电场中所受的力为:
F = −eE = 1 dB F e dB e r ,加速度 a = = r 2 dt m 2m dt
图 6.22 题 6.14 示图
在 a 点, r = 5cm = 5 ×10 −2 m
aa = 1 ×1.76 ×1011 × ( −1.0 ×10 −2 ) × 5 ×10 −2 = −4.4 ×10 7 m / s 2 ,方向向右。 2
f m = IlB = ε υBl cos θ υcos θ 2 2 lB lB = l B R R R υ 2 2 dυ l B cos θcos θ = Rm dt
沿斜面方向应用牛二得:
g sin θ −
图 6.21 题 6.13 示图
这是 υ 对 t 的常微分方程,解之得:
4
− mgR sin θ υ= 2 2 − Ce 2 B l cos θ
ε
R
dt = −
∫ (6 − 8t )dt = − 10
0
1
100
× (6 − 4) = −20C 6 = 0.75s 8
(4)由 ε = −N (6 − 8t ) 知,电动势开始反转的时刻 t =
6.11 如图 6.19(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距 离电流为 a 处开始以速度 υ 向下运动。求铜棒所产生的感应电动势。已知 υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。 又如图 6.19(b)所示若铜线运动的方向 υ 与电流方向平行。 设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。 解:在图(a)中: µ i ε = ∫ υ × B ⋅ dl = υBL = υ 0 L 2πa
大学物理学教程第二(马文蔚)练习册答案6第六章 机械波

解:
6-8 图示为平面简谐波在t=0时刻的波形图,此简谐波 的频率为250Hz,且此图中P点的运动方向向上,求: 第 (1)此波的波动方程;(2)距原点7.5m处质点的运 六 动方程与t=0时该点的振动速度。 y/m 章 解: P点的运动方向向上
习 题 分 析
6-8
波向负方向传播
0.10 0.05 O
6-9
六 章 习 题 分 析
解:
xP 0.2 m
O 0.04
P
0.2 0.4 0.6
x/m
2 0.2 y P 0.04cos[ (t ) ]m 5 0.08 2 2 3 0.04cos[ t ] m 5 2 2 x y 0.04cos[ (t ) ]m 5 0.08 2
第 六 章 习 题 分 析
6-7
y15 A cos 100 t 15 cm 2
y5 A cos 100 t 5 cm 2
解:
15 15.5
5 5.5
2 2 波源振动方程: y0 A cos t cm 2 T 2 x 波动方程:
6-11
6-11 平面简谐波的波动方程为:
第 六 章 习 题 分 析
求:(1)t=2.1s时波源及距波源0.10m两处的相位;(2)离 波源0.80m及0.30m两处的相位差。 解:(1)
y 0.08cos 4 t 2 x (SI 制)
t 2.1s, x 0处, 4 2.1 8.4
x t x y A cos[ (t ) ] A cos[ 2 π ( ) ] u T
) 14-3 已知一波动方程为 y 0.05sin(10 t 2 x)(SI , (1)求波长、频率、波速和周期; (2)说明 x 0 第 六 时方程的意义,并作图表示。
大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
大学物理第6节练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加;(C) 温度降低,熵增加; (D) 温度不变,熵不变。
2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。
( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。
3. 一定量的理想气体,分别经历如图1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。
判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。
4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。
二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。
2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。
3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E = -380 J 。
4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.8 如题 6.8 图所示,有一弹簧振子,弹簧的倔强系数为 k,振子的质量为 m’,开始时处 于静止平衡状态,有一发质量为 m 的子弹以速度 v0 沿弹簧方向飞来,击中振子并埋 在其中,试以击中为计时零点,写出此系统的振动表达式。 解:碰撞时动量守恒,碰后机械能守恒可列方程:
mv0 = (m + m′)v mv0 所以 v = ,代入下式 m + m′ 1 2 1 kA = (m + m′)v 2 2 2
ρgas = mg 所以 m = ρas
b
a
当木块偏离平衡位置 x 后,有:
题 6.3 图
& mg − ρg (a + x) s = m& x &=0 ρgxs + m& x
∴ω 2 = T=
ρgs
m
=
g a a g
2π
ω
= 2π
6.4 一质量为 1.0×10-3 千克的质点,作简谐振动,其振幅为 2.0×10-4 米,质点在离平衡位 置最远处的加速度为 8.0×103 米/秒。 (1)试计算质点的振动频率; (2)质点通过平衡 -4 位置时的速度; (3)质点位移为 1.2×10 米时的速度; (4)写出作用在这质点上的力 作为位置的函数和作为时间的函数。 解:已知 m = 1.0 × 10 kg , A = 2.0 × 10 m 。 令 x = A cos(ωt + ϕ )
由(2)式可得 f =
ω=
2k 3m
6.10 如题 6.10 图所示,弹簧的倔强系数为 k,定滑轮的质量为 m’,半径为 R,转动惯量为 I,物体的质量为 m。轴处摩擦不计,弹簧和绳的质量也不计,绳与滑轮间无相对滑 动。 (1)试求这一振动系统的振动频率, (2)如果在弹簧处于原长时由静止释放物体 m,m 向下具有最大速度时开始计时,并令 m 向下运动为 x 的正坐标,试写出 m 的振 动表达式。 解: (1)设弹簧原长 l0,系统平衡时,弹簧伸长 x0,平衡时 m 所在点为坐标原点, 有 mg = kx0 运动中,由转动定理有:
6.1 如题 6.1 图所示,用一根金属丝把一均匀圆盘悬挂起来,悬线 OC 通过圆盘质心,圆盘 呈水平状态,这个装置称为扭摆,当使圆盘转过一个角度时,金属线受到扭转,从而产 生一个扭转的回复力矩。若扭转角度很小,圆盘对 OC 轴的转动惯量为 I,扭转力矩可 表示为 M = − kθ ,求扭摆的振动周期。 解:已知 M = − kθ , C
所以
k
m’
m v0 x0题 6.8 图 NhomakorabeaA=
mv0 k (m + m′) k m + m′
ω=
取向右为正方向, ϕ =
π
2
mv0 k (m + m′) cos( k π t+ ) m + m′ 2
x = A cos(ωt + ϕ ) =
6.9 如题 6.9 图所示振动系统,振子是一个作纯滚动的圆柱体,已知圆柱体的质量为 m, 半径为 R,弹簧的倔强系数为 k,并且弹簧是系于圆柱体的中心旋转对称轴上。试求 这一振动系统的频率。 解:设弹簧原长处为平衡点,又因弹簧质量不计,对圆柱体在运动中的受力进行分析有:
的?你想到了这种方法吗?这只鸟的质量是多少? 解:可以认为树技与鸟组成一个谐振子。 利用砝码测得树枝的弹性系数为:
k=
m′g = 81.67(kg / m) l 2 ( s) 3
k 2π = m T
因为,鸟在树枝上在 4 秒内来回摆动了 6 次, 所以, T = 又因为 ω =
可得: m =
kT 2 = 0.92(kg) 4π 2
ω=
μ
8b b 3 / 4 ( ) m 5a
−3
6.13 质量 m=1.0×10-2 千克的小球与轻质弹簧组成的振动系统按 x = 5 ×10 cos(8πt +
π
3
)
的规律振动,式中各量均为 SI 单位。求(1)振动的圆频率、周期、振幅和初始相位; (2)振动的速度和加速度(函数式) ; (3)振动的总能量 E; (4)振动的平均动能和 平均势能; (5)t=1.0 秒、10 秒等时刻的相位。 解: (1)Q x = 5 × 10 cos(8πt +
−3
−4
& = − Aω 2 cos(ωt + ϕ ) x 则 &
&max = Aω 2 = 8.0 ×10 3 m ⋅ s −1 由已知条件可得 & x
(1) ω =
2
ν=
ω = 1.0 × 10 3 Hz 2π
& &max x = 4.0 ×10 7 A
& = − Aω sin(ωt + ϕ ) (2) x
∴振动表达式为
1 q2 ,流经电感中的电流若 6.11 在 LC 电路中,电容极板上的电量若为 q,电容器将储能 2 C
为 i,电感中将储存磁能 振荡频率。 解:Q
1 2 dq 1 q 2 1 2 且 Li , i = + Li =恒量,试求 LC 电路的固有 2 dt 2 C 2
1 q2 1 2 + Li = C 2 c 2 1 q 2 1 dq 2 + L( ) = C 2 c 2 dt ∴ q dq dq d 2 q +L =0 c dt dt dt 2 d 2q 1 + q=0 dt 2 LC
[T − k (x + x0 )]R = Iβ
& 对于 m,有 mg − T = m& x
又因
x0 l0
I T mg x
& & = Rβ x
联立以上各式,可得:
I & − kx = (m + 2 ) & x R k &+ x 即 & x=0 I m+ 2 R k 2 设 ω = I (m + 2 ) R
过平衡点时,速度为最大值:
& = Aω = 1.3m / s x
(3) x = A cos(ωt + ϕ ) = 1.2 × 10 (m)
−4
∴ cos(ωt + ϕ ) =
x 3 = A 5
& = − A sin(ωt + ϕ ) = − Aω (± 1 − cos 2 (ωt + ϕ ) ) = ±1.0(m ⋅ s −1 ) x
Δx 2 =
∴ - k(x- l) =
与(5.2)式对比可得:
ω2 =
k
μ
A = l ′-l
此系统作振幅为 A,圆频率为 ω 的简振动。 6.7 有一鸟类学家,他在野外观察到一种少见的大鸟落在一棵大树的细枝上,他想测得 这只鸟的质量,但不能捉住来称量,于是灵机一动,测得这鸟在树枝上在 4 秒内来回 摆动了 6 次,等鸟飞走以后,他又用一千克的砝码系在大鸟原来落的位置上,测出树 枝弯下了 12 厘米,于是他很快算出了这只鸟的质量。你认为这位鸟类学家是怎样算
解: (1)振动频率
ν=
1 ω = 2π 2π v0
g = 1.6( Hz ) l
(2)振幅
2 A = x0 +(
ω
) 2 = 0.02(m)
x0 (3)初相位 ϕ = cos = cos −1 0.9 = ±0.46(rad ) A
−1
k m
题 6.5 图
(v0>0 取正号,v0<0 取负号) (4)振动表达式. X = 0.02 cos(10t − 0.46)(m)
则
题 6.10 图
ν=
ω 1 = 2π 2π
k m+ I R2
(2)以弹簧原长时释放 m,
x0 = −
mg k mg k
所以, A =
又 x0 = − A , v0 = 0 ,
则
ϕ =−
π
2 ⎡ ⎢⎛ ⎜ k mg x= cos ⎢⎜ ⎢⎜ I k ⎢⎜ m + 2 R ⎝ ⎢ ⎣
1 ⎤ ⎞2 ⎥ ⎟ π ⎟ t− ⎥ 2⎥ ⎟ ⎟ ⎥ ⎠ ⎥ ⎦
(3) E =
π
3
) (m ⋅ s −2 )
1 1 KA 2 = m ω 2 A2 = 8 ×10 −6 π 2 ( J ) 2 2 E 1 1 2 2 2 −6 2 (4) < E k >=< E p >= = KA = mω A = 4 ×10 π ( J ) 2 4 4 1 6.14 在阻尼振动中,量 τ = 叫做弛豫时间。 (1)证明 τ 的量纲是时间; (2)经过时间 τ
&& ,可得: 由转动方程 M = Iθ && , M = −kθ = Iθ
&& + k θ = 0 , θ I
对比(6.2)式可知: ω =
2
O 题 6.1 图
k , I
所以
T=
2π
ω
= 2π
I K
6.2 一质量为 m 的细杆状一米长的直尺,如果以其一端点为轴悬挂起来,轴处摩擦不计, 求其振动周期。 解:复摆(物理摆)小角度振动时方程为:
−3
π
3
) 与振动表达式 x = Acos(ωt + ϕ ) 比较便直接可得:
A = 5 × 10 −3 (m)
ω = 8π 2π 1 T= = (s) ω 4 π ϕ= 3
(2) x = −4π × 10 sin (8πt +
−2 .. .
π
3
) (m ⋅ s −1 )
x = −32π 2 × 10 −2 cos(8πt +
Q m1 x1 = m 2 x 2 x= m1 + m2 x1 m2