(完整word版)实现稀疏矩阵(采用三元组表示)的基本运算实验报告
数据结构-稀疏矩阵实验报告

实验报告
课程 学号 数据结构 姓名 实验名称 实验四 稀疏矩阵 实验日 期: 2012/11/12
实验四 实验目的:稀疏矩阵1.熟悉数组在计算机内存中存储的实现机制; 2.熟练并掌握数组的基本运算; 3.熟悉并掌握特殊矩阵的压缩存储方法及压缩存储下的矩阵的运算; 3.熟悉稀疏矩阵的“三元组表”和“十字链表”存储结构。
if(i<=j) { for(k=1;k<=n;k++) { if(i<=k) p=k*(k-1)/2+i-1; else p=n*(n+1)/2; if(j>=k) q=j*(j-1)/2+k-1; else q=n*(n+1)/2; sum=sum+a[p]*b[q]; } c[j*(j-1)/2+i-1]=sum; sum=0; } else c[n*(n+1)/2]=0; } } void print(int a[], int n) { int i,j; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { if(i<=j) printf("%5d", a[j*(j-1)/2+i-1]); else printf("%5d", a[n*(n+1)/2]); } printf("\n"); } } void main() { int u[]={1,2,4,3,5,6,0}; int v[]={10,20,40,30,50,60,0}; int c[7], n=3; add(u,v,c,n); printf("C=A+B=\n"); print(c,n);
稀疏矩阵运算器实验报告

Qh=Qe=Q.data; // Qh、Qe的初值指向矩阵Q的非零元素首地址的前一地址
while(Mp<=Me&&Np<=Ne)
{
Qe++;
switch(comp(Mp->i,Np->i))
{
case 1: *Qe=*Mp;
Mp++;
while(Mp<=Me)
{
Qe++;
*Qe=*Mp;
Mp++;
}
Q.tu=Qe-Qh; //矩阵Q的非零元素个数
return 1;
}
int MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix &Q) {
//求矩阵乘积Q=M?N,采用行逻辑链接存储表示。
int arow,brow,p,q,t,ctemp[30],l,ccol,tp;
稀疏矩阵运算器
一:问题描述:
稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行储存和计算可以大大节省储存空间,提高计算效率。实现一个能进行称稀疏矩阵基本运算的运算器。
基本要求:
以带逻辑链接信息的三元组顺序表表示稀疏矩阵,实现矩阵相加,相减,相乘的运算。稀疏矩阵的输入形式采用三元组表示。而运算结果的矩阵则用通常的阵列形式列出。
else t = N.tu+1;
for (q=N.rpos[brow]; q< t; ++q) {
ccol = N.data[q].j; //乘积元素在Q中列号
ctemp[ccol] += M.data[p].e * N.data[q].e;
数据结构实验报告三稀疏矩阵的运算

数据结构实验报告三稀疏矩阵的运算实验课程名称数据结构课程设计专业班级学⽣姓名学号指导教师2012 ⾄ 2013 学年第⼀学期第 1 ⾄ 18 周⽬录实验题⽬:稀疏矩阵的运算 (3)⼀:概述 (3)⼆:系统分析 (3)三:概要设计 (3)四:详细设计 (4)五:运⾏与测试 (9)六:总结与⼼得 (9)实验题⽬:稀疏矩阵的运算⼀:概述本实验设计主要实现在⼗字链表存储结构输⼊稀疏矩阵,并对稀疏矩阵进⾏相加操作,最后输出运算结果。
⼆:系统分析本实验要求设计函数在⼗字链表结构下建⽴稀疏矩阵并初始化,在创建稀疏矩阵时,需要设计在⼗字链表下创建稀疏矩阵,在输⼊出现错误时,能够对错误进⾏判别处理,初始化稀疏矩阵都为空值。
在设计输出稀疏矩阵的值的函数时,根据情况编制函数,才能准确的输出稀疏矩阵。
在对稀疏矩阵进⾏初始化时,只输⼊⾮零元素的值和它所在的所在⾏及所在列。
在对稀疏矩阵输出时,以矩阵的完整形式输出。
除此之外还要求设计相加对两个矩阵进⾏运算,并输出最终的稀疏矩阵,定义相应的矩阵类型⽤于存放两个矩阵操作后的结果矩阵,这个结果矩阵的⾏、列数需要综合多⽅⾯情况来确定。
这些函数也是整个程序的难点,需要灵活运⽤数组及指针的特点。
三:概要设计⼗字链表结构体定义:typedef struct sex{int row,col,val; //⾮零元素的⾏、列下标及值struct sex *right,*dowm; //该⾮零元素所在⾏表和列表的后继元素}Node;矩阵的加法:此功能在⼗字链表存储结构下,由函数void addition(Node *cp1, Node *cp2, Node *cp3)实现。
当⽤户选择该功能,系统即提⽰⽤户初始化要进⾏加法的两个矩阵的信息。
然后进⾏加法,最后输出结果。
四:详细设计#include#includetypedef struct sex{int row,col,val; //⾮零元素的⾏、列下标及值struct sex *right,*dowm; //该⾮零元素所在⾏表和列表的后继元素}Node;Node * Init(int m, int n){int t,i;Node *cp;t=(m>=n)?m:n;cp=(Node *)malloc( (t+1)*sizeof(Node) ); //开辟⼀串连续的内存空间(*cp).row=m;(*cp).col=n;(*cp).val=t; //此表头结点的值域⽤来记录⾏列的最⼤值,以便于后⾯的开辟空间for(i=1;i<=t;i++){cp[i].right=cp+i;cp[i].dowm=cp+i; //构成带表头结点的空循环单链表}return cp;}void CreatCrossList(Node *cp){int t,i;Node *s,*temp;printf("请输⼊⾮零元素的个数N:");scanf("%d",&t);printf("\n请输⼊其对应坐标及元素值:\n");for(i=0;i{s=(Node *)malloc( sizeof(Node));scanf("%d%d%d",&s->row,&(*s).col,&s->val);temp=cp+s->row;if( temp->right!=cp+s->row )while( temp->right!=cp+s->row && temp->right->col<=s->col )temp=temp->right;s->right=temp->right;temp->right=s; //修改⾏链表插⼊位置temp=cp+s->col;if( temp->dowm!=cp+s->col )while( temp->dowm!=cp+s->col && temp->dowm->row<=s->row )temp=temp->dowm;s->dowm=temp->dowm;temp->dowm=s; //修改列链表插⼊位置}}void output(Node *cp){int i;Node *temp;printf("\n稀疏矩阵如下:\n");for(i=1;i<=cp->row;i++){temp=cp+i;while( temp->right!=cp+i ){printf("(%d,%d %d)",temp->right->row,temp->right->col,temp->right->val); temp=temp->right;}printf("\n");}}void Insert(Node *cp, Node *s){//此插⼊函数的作⽤是:⽣成⽬标矩阵Node *temp;temp=cp+s->row; //修改⾏链表指针if( temp->right!=cp+s->row )while( temp->right!=cp+s->row && temp->right->col<=s->col ) temp=temp->right;s->right=temp->right;temp->right=s;temp=cp+s->col; //修改列链表指针if( temp->dowm!=cp+s->col )while( temp->dowm!=cp+s->col && temp->dowm->row<=s->row ) temp=temp->dowm;s->dowm=temp->dowm;temp->dowm=s;}void addition(Node *cp1, Node *cp2, Node *cp3){int i;Node *w,*p,*q;for( i=1; i<=cp2->row && i<=cp3->row; i++){p=cp2+i;q=cp3+i;while( p->right!=cp2+i && q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;if( p->right->col==q->right->col ){w->col=p->right->col;w->val=p->right->val+q->right->val; //相同位置上的元素值相加p=p->right;q=q->right;if( w->val )Insert(cp1,w); //把⾮零元插⼊到⽬标矩阵中}else if( p->right->colright->col ){w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w); //把cp2中的⾮零元插⼊到⽬标矩阵中}else{w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w); //把cp2中的⾮零元插⼊到⽬标矩阵中}}if( p->right==cp2+i )while( q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=q->right->row;w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w); //把cp3中剩余的⾮零元插⼊⽬标矩阵中} else if( q->right==cp3+i )while( p->right!=cp2+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w); //把cp2中剩余的⾮零元插⼊到⽬标矩阵中} else; //两个矩阵同⼀⾏中同时结束}if( i>cp2->row)while(i<=cp3->row){//把cp3中剩余⾏中的⾮零元插⼊到⽬标矩阵中q=cp3+i;while( q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=q->right->row;w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w);}i++; //继续下⼀⾏}else if(i>cp3->row)while( i<=cp2->row ){p=cp2+i;while( p->right!=cp2+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w);}i++; //继续下⼀⾏}}int main(){Node *cp1, *cp2, *cp3;int a, b;printf("\t\t\t*****稀疏矩阵的加法*****\n\n");printf("请输⼊cp2的⾏、列数:");scanf("%d%d",&a,&b);cp2=Init(a,b);printf("请输⼊cp3的⾏、列数:");scanf("%d%d",&a,&b);cp3=Init(a,b);a=cp2->row>=cp3->row?cp2->row:cp3->row;b=cp2->col>=cp3->col?cp2->col:cp3->col;cp1=Init(a,b); //开始初始化结果矩阵printf("\n\t>>>>>>>创建稀疏矩阵cp2\n");CreatCrossList(cp2);printf("\n\t>>>>>>>创建稀疏矩阵cp3\n");CreatCrossList(cp3);output(cp2);output(cp3);addition(cp1,cp2,cp3);printf("\n\n相加后的"); output(cp1);return 0;}五:运⾏与测试进⾏数据测试六:总结与⼼得⼗字链表作为存储结构表⽰随机稀疏矩阵,进⾏两矩阵的相加运算,所以⾸先要定义⼀个⼗字链表作为存储结构。
数据结构实验报告稀疏矩阵运算

数据结构实验报告稀疏矩阵运算实验目的:1.学习并理解稀疏矩阵的概念、特点以及存储方式。
2.掌握稀疏矩阵加法、乘法运算的基本思想和算法。
3.实现稀疏矩阵加法、乘法的算法,并进行性能测试和分析。
实验原理:稀疏矩阵是指矩阵中绝大多数元素为0的矩阵。
在实际问题中,有许多矩阵具有稀疏性,例如文本矩阵、图像矩阵等。
由于存储稀疏矩阵时,对于大量的零元素进行存储是一种浪费空间的行为,因此需要采用一种特殊的存储方式。
常见的稀疏矩阵的存储方式有三元组顺序表、十字链表、行逻辑链接表等。
其中,三元组顺序表是最简单直观的一种方式,它是将非零元素按行优先的顺序存储起来,每个元素由三个参数组成:行号、列号和元素值。
此外,还需要记录稀疏矩阵的行数、列数和非零元素个数。
稀疏矩阵加法的原理是将两个稀疏矩阵按照相同的行、列顺序进行遍历,对于相同位置的元素进行相加,得到结果矩阵。
稀疏矩阵乘法的原理是将两个稀疏矩阵按照乘法的定义进行计算,即行乘以列的和。
实验步骤:1.实现稀疏矩阵的三元组顺序表存储方式,并完成稀疏矩阵的初始化、转置、打印等基本操作。
2.实现稀疏矩阵的加法运算,并进行性能测试和分析。
3.实现稀疏矩阵的乘法运算,并进行性能测试和分析。
4.编写实验报告。
实验结果:经过实验测试,稀疏矩阵的加法和乘法算法都能正确运行,并且在处理稀疏矩阵时能够有效节省存储空间。
性能测试结果表明,稀疏矩阵加法、乘法的运行时间与非零元素个数有关,当非零元素个数较少时,运算速度较快;当非零元素个数较多时,运算速度较慢。
实验分析:稀疏矩阵的运算相对于普通矩阵的运算有明显的优势,可以节省存储空间和运算时间。
在实际应用中,稀疏矩阵的存储方式和运算算法都可以进行优化。
例如,可以采用行逻辑链接表的方式存储稀疏矩阵,进一步减少存储空间的占用;可以采用并行计算的策略加快稀疏矩阵的运算速度。
总结:通过本次实验,我深入学习了稀疏矩阵的概念、特点和存储方式,掌握了稀疏矩阵加法、乘法的基本思想和算法,并通过实验实现了稀疏矩阵的加法、乘法运算。
实验五 稀疏矩阵的实验

实验五稀疏矩阵的实验【实验目的】1、掌握稀疏矩阵的三元组表示法2、学会应用稀疏矩阵的三元组表示法实现稀疏矩阵的运算【实验说明】参考下列步骤完成实验1、三元组存储结构定义# include <stdio.h># include <stdlib.h># define MAXSIZE 1000typedef int ElementType;typedef struct{int row,col;ElementType e;}Triple;typedef struct{Triple data[MAXSIZE+1];int m,n,len;}TSMatrix;2、创建三元组void CreateTmatrix (TSMatrix *A){int i,j; ElementType x;int p;printf("请输入矩阵总的行数,列数及非零元的个数(逗号相隔):");scanf("%d,%d,%d",&A->m,&A->n,&A->len);printf("\n请输入矩阵的三元组(逗号相隔)\n");for(p=1;p<=A->len;p++){scanf("%d,%d,%d",&i,&j,&x);A->data[p].row=i;A->data[p].col=j;A->data[p].e=x;}}//CreateTmatrix3、应用三元组存储稀疏矩阵并实现由矩阵A得其转置矩阵Bvoid TransposeTSMatrix(TSMatrix A,TSMatrix *B){//把矩阵A转置到B所反指向的矩阵中去。
矩阵用三元组表示int i,j,k;B->m=A.n;B->n=A.m;B->len=A.len;if(B->len>0){j=1;for(k=1;k<=A.n;k++)for(i=1;i<=A.len;i++)if(A.data[i].col==k){B->data[j].row=A.data[i].col;B->data[j].col=A.data[i].row;B->data[j].e=A.data[i].e;j++;}}}//TransposeTSMatrix4、以矩阵形式输出稀疏矩阵void output1(TSMatrix A){ ElementType M[50][50];int i,j,rmax,cmax;rmax=A.m; //得到最大的行数cmax=A.n;for(i=0;i<rmax;i++)for(j=0;j<cmax;j++)M[i][j]=0;for(i=1;i<=A.len;i++)M[A.data[i].row-1][A.data[i].col-1]=A.data[i].e;for(i=0;i<rmax;i++){ for(j=0;j<cmax;j++) printf("%5d ",M[i][j]);printf("\n");}}5、以三元组形式输出稀疏矩阵void output3(TSMatrix A) {int i;printf("\n");for(i=1;i<=A.len;i++){ printf(" %3d %3d %3d",A.data[i].row,A.data[i].col,A.data[i].e);printf("\n");}}//output3//主调函数void main(){TSMatrix A,B;CreateTmatrix(&A);printf("原矩阵:\n");output1(A);TransposeTSMatrix(A,&B);printf("\n转置矩阵:\n");output1(B);printf("\n转置矩阵的三元组形式:\n");output3(B);}【实验内容】⑴以一次定位快速转置法实现稀疏矩阵的转置运算;⑵若矩阵A m×n中的某个元素a ij是第i行中的最小值,同时又是第j 列中的最大值,则称此元素为该矩阵中的一个马鞍点。
稀疏矩阵编程实验报告

一、实验目的1. 理解稀疏矩阵的概念及其存储方式。
2. 掌握稀疏矩阵的基本操作,包括转置、加法、减法和乘法。
3. 通过编程实践,提高对数据结构和算法的理解和应用能力。
二、实验环境1. 编程语言:C语言2. 开发环境:Visual Studio 20193. 操作系统:Windows 10三、实验内容1. 稀疏矩阵的三元组表示及其实现2. 稀疏矩阵的转置3. 稀疏矩阵的加法、减法和乘法四、实验步骤1. 稀疏矩阵的三元组表示及其实现(1)定义稀疏矩阵的三元组结构体:```ctypedef struct {int row; // 行号int col; // 列号double val; // 非零元素值} Triple;```(2)定义稀疏矩阵结构体:typedef struct {int rows; // 矩阵行数int cols; // 矩阵列数int nums; // 非零元素个数Triple data; // 非零元素的三元组数组} SparseMatrix;```(3)编写函数实现稀疏矩阵的创建:```cvoid createSparseMatrix(SparseMatrix sm, int rows, int cols, int nums) { sm->rows = rows;sm->cols = cols;sm->nums = nums;sm->data = (Triple )malloc(nums sizeof(Triple));}```(4)编写函数实现稀疏矩阵的销毁:```cvoid destroySparseMatrix(SparseMatrix sm) {free(sm->data);sm->data = NULL;}2. 稀疏矩阵的转置(1)编写函数实现稀疏矩阵的转置:```cvoid transposeSparseMatrix(SparseMatrix src, SparseMatrix dst) {dst->rows = src->cols;dst->cols = src->rows;dst->nums = src->nums;dst->data = (Triple )malloc(src->nums sizeof(Triple));for (int i = 0; i < src->nums; i++) {dst->data[i].row = src->data[i].col;dst->data[i].col = src->data[i].row;dst->data[i].val = src->data[i].val;}}```3. 稀疏矩阵的加法、减法和乘法(1)编写函数实现稀疏矩阵的加法:```cvoid addSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val + sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val += sm2->data[j].val;}}}}}```(2)编写函数实现稀疏矩阵的减法:```cvoid subSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val - sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val -= sm2->data[j].val;}}}}}```(3)编写函数实现稀疏矩阵的乘法:```cvoid mulSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm2->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].col == sm2->data[j].row) {double sum = 0;for (int k = 0; k < sm1->nums; k++) {if (sm1->data[k].col == sm2->data[j].row) {sum += sm1->data[k].val sm2->data[j].val;}}if (sum != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val = sum;}}}}}```五、实验结果与分析1. 通过编程实现稀疏矩阵的基本操作,验证了算法的正确性。
用三元组表示稀疏矩阵的乘法

该结点除了( row , col , value )以外,还要有以下两个链域:
right: down: 用于链接同一列中的下一个非零元素。
row Down
col
Value right
第十二讲
1 1 3
1 4 5
2 2 -1
3 1 3
图5.23 十字链表的结构
第十二讲
十字链表的结构类型说明如下:
typedef struct OLNode
第十二讲
用三元组表实现稀疏矩阵的乘法运算
第十二讲
两个矩阵相乘也是矩阵的一种常用的运算。设矩阵 M 是
m1×n1 矩阵, N 是 m2×n2 矩阵;若可以相乘,则必须满足矩
阵 M 的列数 n1 与矩阵 N 的行数 m2 相等,才能得到结果矩阵 Q=M×N(一个m1×n2的矩阵)。
数学中矩阵Q中的元素的计算方法如下:
矩阵不仅节约了空间,而且使得矩阵某些运算的运算时间比经
典算法还少。但是在进行矩阵加法、减法和乘法等运算时,有 时矩阵中的非零元素的位置和个数会发生很大的变化。如
A=A+B, 将矩阵B加到矩阵A上,此时若还用三元组表表示法,
势必会为了保持三元组表“以行序为主序”而大量移动元素。
第十二讲
在十字链表中,矩阵的每一个非零元素用一个结点表示,
0 1 N 2 0
2 0 4 0
0 Q 1 0
6 0 4
图5.17 Q=M×N
第十二讲
图5.18 矩阵M、N、Q的三元组表
第十二讲
经典算法中,不论 M [ i ][ k ]、 N [ k ][ j ]是否为零,
for(k=1; k<=n1; k++)
数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术学生学号************数据结构课程设计报告书题目稀疏矩阵运算器学生姓名秦豹专业名称软件工程指导教师李志敏实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。
需要分析:稀疏矩阵是指那些多数元素为零的矩阵。
利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。
实现一个能进行稀疏矩阵基本运算的运算器。
要求以带“行逻辑链接信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。
输入以三元组表示,输出以通常的阵列形式列出。
软件平台:Windows 2000,Visual C++6.0或WINTC概要设计:ADT Array {数据对象:D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1}数据关系:R = { ROW, COL }ROW = {<ai,j,ai+1,j>| 0≤i≤b1-2, 0≤j≤b2-1}COL = {<ai,j,ai,j+1>| 0≤i≤b1-1, 0≤j≤b2-2}基本操作:CreateSMatrix(&M); //操作结果:创建稀疏矩阵M.Print SMatrix(M);//初始化条件: 稀疏矩阵M存在.//操作结果:输出稀疏矩阵M.AddSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M与N的行数和列数对应相等.//操作结果:求稀疏矩阵的和Q=M+N.SubSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M与N的行数和列数对应相等.//操作结果:求稀疏矩阵的差Q=M-N.MultSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M的列数等于N的行数.//操作结果:求稀疏矩阵的乘积Q=M*N.} ADT Array调试测试:初始界面矩阵的加法矩阵的减法矩阵的转置矩阵的乘法程序源码:#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define MAXSIZE 40 //假设非零元素个数的最大值为40#define MAXRC 20 //假设矩阵的最大行数为20typedef int ElemType;typedef struct{int i,j; //非零元的行下标和列下标ElemType e; //非零元的值}Triple;typedef struct{Triple data[MAXSIZE+1];int rpos[MAXRC+1]; //各行第一个非零元在三元组的位置表int hs,ls,fls;}TSMatrix,*Matrix;void Creat(TSMatrix &M){int i,k;for(i=1;i<=MAXRC+1;i++)M.rpos[i]=0;printf("请输入矩阵的行数、列数和非零元个数(以空格隔开):");scanf("%d %d %d",&M.hs,&M.ls,&M.fls);for(i=1;i<=M.fls;i++){printf("请用三元组形式输入矩阵的元素(行列非零元素):");scanf("%d %d %d",&M.data[i].i,&M.data[i].j,&M.data[i].e);}for(i=1,k=1;i<=M.hs;i++){M.rpos[i]=k;while(M.data[k].i<=i && k<=M.fls)k++;}}void Xiangjia(TSMatrix A,TSMatrix B,TSMatrix &C,int n){int a,b,temp,l;C.hs=A.hs;C.ls=A.ls;a=b=l=1;while(a<=A.fls && b<=B.fls){if(A.data[a].i==B.data[b].i){if(A.data[a].j<B.data[b].j)C.data[l++]=A.data[a++];else if(A.data[a].j>B.data[b].j){C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;}else{temp=A.data[a].e+n*B.data[b].e;if(temp){C.data[l]=A.data[a];C.data[l].e=temp;l++;}a++;b++;}}else if(A.data[a].i<B.data[b].i)C.data[l++]=A.data[a++];else {C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;} }while(a<=A.fls)C.data[l++]=A.data[a++];while(b<=B.fls){C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;}C.fls=l-1;}int Xiangcheng(TSMatrix A,TSMatrix B,TSMatrix &Q){int arow,brow,ccol,tp,p,q,t;int ctemp[MAXRC+1];if(A.ls!=B.hs) return 0;Q.hs=A.hs;Q.ls=B.ls;Q.fls=0;if(A.fls*B.fls){for(arow=1;arow<=A.hs;arow++){for(ccol=1;ccol<=Q.ls;ccol++)ctemp[ccol]=0;Q.rpos[arow]=Q.fls+1;if(arow<A.hs) tp=A.rpos[arow+1];else tp=A.fls+1;for(p=A.rpos[arow];p<tp;p++){brow=A.data[p].j;if(brow<B.hs) t=B.rpos[brow+1];else t=B.fls+1;for(q=B.rpos[brow];q<t;q++){ccol=B.data[q].j;ctemp[ccol]+=A.data[p].e*B.data[q].e;}}for(ccol=1;ccol<=Q.ls;ccol++){if(ctemp[ccol]){if(++Q.fls>MAXSIZE) return 0;Q.data[Q.fls].i=arow;Q.data[Q.fls].j=ccol;Q.data[Q.fls].e=ctemp[ccol];}}}}return 1;}void Print_SMatrix(TSMatrix M){int k,l,n;Matrix p;p=&M;for(k=1,n=1;k<=p->hs;k++){for(l=1;l<=p->ls;l++){if(p->data[n].i==k && p->data[n].j==l){printf("%5d",p->data[n].e);n++;}elseprintf("%5d",0);}printf("\n");}printf("\n");}void Zhuanzhi(TSMatrix *a,TSMatrix *b){int q,col,p;b->hs=a->ls;b->ls=a->hs;b->fls=a->fls;if(b->fls){q=1;for(col=1;col<=a->ls;col++)for(p=1;p<=a->fls;p++)if(a->data[p].j==col){b->data[q].i=a->data[p].j;b->data[q].j=a->data[p].i;b->data[q].e=a->data[p].e;++q;}}}void Destory_SMatrix(TSMatrix &M){M.hs=M.ls=M.fls=0;}void main(){TSMatrix A,B,C;TSMatrix *p=&A,*q=&B;int flag,n;while(1){system("cls");printf("\n\n\n");printf("\t┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n");printf("\t┃*** 稀疏矩阵的加、减、转、乘*** ┃\n");printf("\t┣━━━━━━━━━━━━━━━━━━━━━━━━━━━┫\n");printf("\t┃1、稀疏矩阵的加法┃\n");printf("\t┃2、稀疏矩阵的减法┃\n");printf("\t┃3、稀疏矩阵的转置┃\n");printf("\t┃4、稀疏矩阵的乘法┃\n");printf("\t┃5、退出该应用程序┃\n");printf("\t┗━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n");printf("输入要进行的项目的编号:");scanf("%d",&flag);if(flag==5) break;Creat(A);printf("矩阵A:\n"); Print_SMatrix(A);switch(flag){case 1: Creat(B);n=1;printf("矩阵B:\n");Print_SMatrix(B);if(A.hs==B.hs && A.ls==B.ls){printf("A+B:\n");Xiangjia(A,B,C,n);Print_SMatrix(C);}else printf("错误!行列不一致\n");break;case 2: Creat(B);n=-1;printf("矩阵B:\n");Print_SMatrix(B);if(A.hs==B.hs && A.ls==B.ls){printf("A-B:\n");Xiangjia(A,B,C,n);Print_SMatrix(C);}else printf("错误!行列不一致\n");break;case 3: printf("A->B:\n");Zhuanzhi(p,q);Print_SMatrix(B);break;case 4: Creat(B);printf("矩阵B:\n");Print_SMatrix(B);printf("A*B:\n");n=Xiangcheng(A,B,C);if(!n) printf("错误!行列不匹配\n");else Print_SMatrix(C);break;default: printf("输入错误!\n");}Destory_SMatrix(A);Destory_SMatrix(B);Destory_SMatrix(C);getchar();getchar();}printf("\n\t\t\t ***程序已经退出***\n");getchar();}小结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实现稀疏矩阵(采用三元组表示)的基本运算实验报告一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求:(1)生成如下两个稀疏矩阵的三元组 a 和 b;(上机实验指导 P92 )(2)输出 a 转置矩阵的三元组;(3)输出a + b 的三元组;(4)输出 a * b 的三元组;三实验内容:3.1 稀疏矩阵的抽象数据类型:ADT SparseMatrix {数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n;ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col }Row ={<ai,j ,ai,j+1> | 1≤ i≤m , 1≤ j≤ n-1}Col ={<a i,j , a i+1,j >| 1≤i≤m-1,1≤j≤n}基本操作:CreateSMatrix(&M)操作结果:创建稀疏矩阵MPrintSMatrix(M)初始条件:稀疏矩阵M已经存在操作结果:打印矩阵MDestroySMatrix(&M)初始条件:稀疏矩阵M已经存在操作结果:销毁矩阵MCopySMatrix(M, &T)初始条件:稀疏矩阵M已经存在操作结果:复制矩阵M到TAddSMatrix(M, N, &Q)初始条件:稀疏矩阵M、N已经存在操作结果:求矩阵的和Q=M+NSubSMatrix(M, N, &Q)初始条件:稀疏矩阵M、N已经存在操作结果:求矩阵的差Q=M-NTransposeSMatrix(M, & T)初始条件:稀疏矩阵M已经存在操作结果:求矩阵M的转置TMultSMatrix(M, N, &Q)初始条件:稀疏矩阵M已经存在操作结果:求矩阵的积Q=M*N}ADT SparseMatrix3.2存储结构的定义#define N 4typedef int ElemType;#define MaxSize 100 //矩阵中非零元素最多个数typedef struct{ int r; //行号int c; //列号ElemType d; //元素值} TupNode; //三元组定义typedef struct{ int rows; //行数值int cols; //列数值int nums; //非零元素个数TupNode data[MaxSize];} TSMatrix; //三元组顺序表定义3.3基本操作实现:void CreatMat(TSMatrix &t,ElemType A[N][N]){int i,j;t.rows=N;t.cols=N;t.nums=0;for (i=0;i<N;i++){for (j=0;j<N;j++)if (A[i][j]!=0){t.data[t.nums].r=i;t.data[t.nums].c=j;t.data[t.nums].d=A[i][j];t.nums++;}}}void DispMat(TSMatrix t){int i;if (t.nums<=0)return;printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);printf("\t------------------\n");for (i=0;i<t.nums;i++)printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d); }3.4解题思路:1.转置矩阵:只要判定原矩阵有值,那么只要遍历一遍原矩阵,把原来矩阵中非0元素行列变换一下赋值到新的矩阵中即可。
2.矩阵加法:用各种 if 判断,区分出矩阵进行加法时的可能情况,分情况处理即可。
3.矩阵乘法:通过 getvalue(c , i, j)函数查找矩阵c 中i 行j列,所储存的元素的值。
然后便是模拟矩阵乘法的过程进行求解。
3.5解题过程:实验源代码如下:3.5.1顺序表的各种运算#include <stdio.h>#define N 4typedef int ElemType;#define MaxSize 100 //矩阵中非零元素最多个数typedef struct{ int r; //行号int c; //列号ElemType d; //元素值} TupNode; //三元组定义typedef struct{ int rows; //行数值int cols; //列数值int nums; //非零元素个数TupNode data[MaxSize];} TSMatrix; //三元组顺序表定义void CreatMat(TSMatrix &t,ElemType A[N][N]){int i,j;t.rows=N;t.cols=N;t.nums=0;for (i=0;i<N;i++){for (j=0;j<N;j++)if (A[i][j]!=0){t.data[t.nums].r=i;t.data[t.nums].c=j;t.data[t.nums].d=A[i][j];t.nums++;}}}void DispMat(TSMatrix t){int i;if (t.nums<=0)return;printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);printf("\t------------------\n");for (i=0;i<t.nums;i++)printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d );}void TranMat(TSMatrix t,TSMatrix &tb){int p,q=0,v; //q为tb.data的下标tb.rows=t.cols;tb.cols=t.rows;tb.nums=t.nums;if (t.nums!=0){for (v=0;v<t.cols;v++) //tb.data[q]中的记录以c域的次序排列for (p=0;p<t.nums;p++) //p为t.data的下标if (t.data[p].c==v){tb.data[q].r=t.data[p].c;tb.data[q].c=t.data[p].r;tb.data[q].d=t.data[p].d;q++;}}}bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){int i=0,j=0,k=0;ElemType v;if (a.rows!=b.rows || a.cols!=b.cols)return false; //行数或列数不等时不能进行相加运算c.rows=a.rows;c.cols=a.cols; //c的行列数与a的相同while (i<a.nums && j<b.nums) //处理a和b中的每个元素{if (a.data[i].r==b.data[j].r) //行号相等时{if(a.data[i].c<b.data[j].c) //a元素的列号小于b元素的列号{c.data[k].r=a.data[i].r;//将a元素添加到c中c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else if (a.data[i].c>b.data[j].c)//a元素的列号大于b 元素的列号{c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}else //a元素的列号等于b元素的列号{v=a.data[i].d+b.data[j].d;if (v!=0) //只将不为0的结果添加到c中{c.data[k].r=a.data[i].r;c.data[k].c=a.data[i].c;c.data[k].d=v;k++;}i++;j++;}}else if (a.data[i].r<b.data[j].r) //a元素的行号小于b元素的行号{c.data[k].r=a.data[i].r; //将a元素添加到c中c.data[k].c=a.data[i].c;c.data[k].d=a.data[i].d;k++;i++;}else //a元素的行号大于b元素的行号{c.data[k].r=b.data[j].r; //将b元素添加到c中c.data[k].c=b.data[j].c;c.data[k].d=b.data[j].d;k++;j++;}c.nums=k;}return true;}int getvalue(TSMatrix c,int i,int j){int k=0;while (k<c.nums && (c.data[k].r!=i || c.data[k].c!=j)) k++;if (k<c.nums)return(c.data[k].d);elsereturn(0);}bool MatMul(TSMatrix a,TSMatrix b,TSMatrix &c){int i,j,k,p=0;ElemType s;if (a.cols!=b.rows) //a的列数不等于b的行数时不能进行相乘运算return false;for (i=0;i<a.rows;i++)for (j=0;j<b.cols;j++){s=0;for (k=0;k<a.cols;k++)s=s+getvalue(a,i,k)*getvalue(b,k,j);if (s!=0) //产生一个三元组元素{c.data[p].r=i;c.data[p].c=j;c.data[p].d=s;p++;}}c.rows=a.rows;c.cols=b.cols;c.nums=p;return true;}int main(){ElemType a1[N][N]={ {1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};ElemType b1[N][N]={ {3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};TSMatrix a,b,c;CreatMat(a,a1); CreatMat(b,b1);printf("a的三元组:\n");DispMat(a);printf("b的三元组:\n");DispMat(b);printf("a转置为c\n");TranMat(a,c);printf("c的三元组:\n");DispMat(c);printf("c=a+b\n");MatAdd(a,b,c);printf("c的三元组:\n");DispMat(c);printf("c=a×b\n");MatMul(a,b,c);printf("c的三元组:\n");DispMat(c);return 0;}四实验结果。