人工智能之遗传算法求解01背包问题实验报告
背包问题实验报告

背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。
在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。
1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。
在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。
2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。
下面将对每种算法的具体步骤进行介绍。
2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。
在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。
2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。
在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。
2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。
在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。
3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。
下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。
【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
算法分析与设计实验报告之01背包问题

算法分析与设计实验报告[0/1背包问题]0/1背包问题的不同算法解决方案组员02黄希龙 09455321张育强05周麒目录一.问题描述 (1)二.算法分析 (2)1.穷举法: (2)2.递归法: (4)3.贪心法: (5)4.动态规划法分析: (6)5.回溯法分析: (7)6.分支限界法: (9)三.时空效率分析 (10)1.穷举法: (10)2.递归法: (11)3.动态规划法: (11)4.回溯法: (11)5分支限界法: (11)四.运行结果 (12)1.穷举法输出结果: (12)2.递归法输出结果: (13)3.动态规划法输出结果: (14)4.回溯法输出结果: (15)5.分支限界法输出结果: (16)五.分析输出结果 (17)六.总结与反思 (18)一.问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二.算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。
物品i的重量是wi,其价值为vi。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。
(2)基因:染色体的每一个比特。
(3)种群:解的集合。
(4)适应度:衡量个体优劣的函数值。
2、控制参数(1)种群规模:解的个数。
(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。
(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。
3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。
三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。
种群:用二维数组表示,每一行表示一个染色体。
算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。
物品i 的重量是iw ,其价值为i v,背包容量为C 。
问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。
因此0/1背包问题是一个特殊的整数规划问题。
0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。
由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。
算法背包实验报告

一、实验背景背包问题(Knapsack problem)是组合优化领域中的一个经典问题,它来源于日常生活中物品选择与装载的问题。
0-1背包问题是指给定一组物品,每个物品都有一定的重量和价值,选择一部分物品装入背包,使得背包总重量不超过给定限制,且物品总价值最大。
本实验旨在通过实现动态规划算法解决0-1背包问题,并分析其时间复杂度和空间复杂度。
二、实验目的1. 理解动态规划算法的基本思想和解决问题的步骤。
2. 掌握动态规划算法在解决0-1背包问题中的应用。
3. 分析0-1背包问题的数学模型,并建立求解最优值的递归关系式。
4. 对比不同背包问题的求解方法,分析其优缺点。
三、实验原理0-1背包问题的数学模型如下:设背包容量为C,物品集合为I,第i个物品的重量为w(i),价值为v(i),则0-1背包问题的目标函数为:Maximize Σ(v(i) x(i)),其中x(i) ∈ {0, 1}。
约束条件为:Σ(w(i) x(i)) ≤ C。
动态规划算法通过将问题分解为子问题,并存储子问题的解,以避免重复计算。
对于0-1背包问题,其状态可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w(i)] + v(i)),其中i表示物品编号,j表示剩余容量。
当i=0或j-w(i)<0时,dp[i][j] = 0。
四、实验过程1. 设计数据结构:定义物品类,包含物品编号、重量和价值属性。
2. 生成测试数据:随机生成一定数量的物品,并设置背包容量。
3. 实现动态规划算法:根据上述原理,实现0-1背包问题的动态规划算法。
4. 测试算法:使用测试数据验证算法的正确性。
5. 分析算法性能:分析算法的时间复杂度和空间复杂度。
五、实验结果与分析1. 算法正确性:通过测试数据验证,算法能够正确求解0-1背包问题。
2. 时间复杂度:动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。
0 1背包实验报告

0 1背包实验报告0-1背包实验报告引言:0-1背包问题是在计算机科学中经典的组合优化问题之一。
该问题的目标是在给定一组物品和一个固定容量的背包下,选择一些物品放入背包中,使得放入的物品总价值最大化,同时不能超过背包的容量限制。
本实验旨在通过实际操作和数据分析,深入理解0-1背包问题的求解方法和优化策略。
实验设计:本实验采用Python编程语言进行0-1背包问题的求解。
首先,我们设计了一个物品类(Item),每个物品具有重量(weight)和价值(value)两个属性。
然后,我们生成了一组具有不同重量和价值的物品,这些物品将作为输入数据用于求解0-1背包问题。
接下来,我们实现了两种常见的求解方法:动态规划和贪心算法,并对它们的性能进行了对比分析。
实验过程:1. 生成输入数据:我们使用随机数生成器生成了一组具有不同重量和价值的物品。
为了方便观察和分析,我们限定了物品的数量为10个,重量范围为1到10,价值范围为1到100。
2. 动态规划求解:动态规划是解决0-1背包问题的经典方法之一。
我们设计了一个动态规划函数,通过填充一个二维数组来求解最优解。
具体步骤如下:- 初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中选择总重量不超过j的物品的最大总价值。
- 通过递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])求解dp数组。
- 根据dp数组的最后一行最后一列的值,反推出背包中放入的物品。
3. 贪心算法求解:贪心算法是另一种常见的求解0-1背包问题的方法。
它的基本思想是每次选择具有最大单位价值的物品放入背包中,直到背包无法再放入任何物品为止。
具体步骤如下:- 计算每个物品的单位价值(value/weight)。
- 按照单位价值从大到小的顺序对物品进行排序。
- 依次选择单位价值最大的物品放入背包中,直到背包无法再放入任何物品。
背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能之遗传算法求解0/1背包问题实验报告
Pb03000982 王皓棉
一、问题描述:
背包问题是著名的NP完备类困难问题, 在网络资源分配中有着广泛的应用,已经有很多人运用了各种不同的传统优化算法来解决这一问题,这些方法在求解较大规模的背包问题时,都存在着计算量大,迭代时间长的弱点。
而将遗传算法应用到背包问题的求解,则克服了传统优化方法的缺点,遗传算法是借助了大自然的演化过程,是多线索而非单线索的全局优化方法,采用的是种群和随机搜索机制。
遗传算法(GA)是一类借鉴生物界自然选择和自然遗传机制的随机化的搜索算法,由美国J.Holland教授提出,其主要特点是群体搜索策略、群体中个体之间的信息交换和搜索不依赖于梯度信息。
因此它尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛应用于组合优化,机器学习,自适应控制,规划设计和人工生命领域。
GA是一种群体型操作,该操作以群体中的所有个体为对象。
选择,交叉和变异是遗传算法的三个主要算子,他们构成了遗传算法的主要操作,使遗传算法具有了其它传统方法所没有的特性。
遗传算法中包含了如下五个基本要素:1 .参数编码,2.初始群体的设置,3.适应度函数的设计, 4.遗传操作设计,5.控制参数设定,这个五个要素构成可遗传算法的核心内容。
遗传算法的搜索能力是由选择算子和交叉算子决定,变异算子则保证了算法能够搜索到问题空间的每一个点,从而使其具有搜索全局最优的能力.而遗传算法的高效性和强壮性可由Holland提出的模式定理和隐式并行性得以解释。
二、实验目的:
通过本实验,可以深入理解遗传算法,以及遗传算法对解决NP问题的作用。
三、算法设计:
1、确定种群规模M、惩罚系数 、杂交概率c p、变异概率m P、染色体长度n及最大
max.
进化代数gen
x=1表
2、采用二进制n维解矢量X作为解空间参数的遗传编码,串T的长度等于n,
i
x=0表示不装入背包。
例如X={0,1,0,1,0,0,1}表示第2,4,7示该物件装入背包,
i
这三个物件被选入包中。
3、适应度函数
适应度函数的建立是解决背包问题的关键,按照利用惩罚函数处理约束条件的方法,可以构造背包问题的适应度函数如下:
000
11,()(),n
n i i i i i i n n n i i i i i i i i i T w T w c f T T w T w c T w c α=====⎧≤⎪⎪=⎨⎪-->⎪⎩∑∑∑∑∑ 其中0
n
i i
i T w =∑是背包问题的目标函数值,α是惩罚系数。
4、交叉操作
判断染色体是否为活的染色体,若为活的染色体,则将染色体进行交叉,一般采用一点交叉方式,交叉概率为C P ,具体操作是在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。
5、变异操作
染色体变异采用位点变异的方式。
变异概率为m P ,使其变异后的适应度至少大于或等于其原适应度,否则重新选择变异位进行变异,如此重复三次,若适应度值没有提高,则变异失败。
四、实验数据
设w={253,245,243,239,239,239,238,238,237,232,231,231,230,229,
228,227,224,217,213,207,203,201,195,194,191,187,187,177,175,171,169,168,166,164,161,160,158,150,149,147,141,140,139,136,135,132,128,126,122,120,119,116,116,114,111,110,
105,105,105,104,103,93,92,90,79,78,77,76,76,75,73,62,
62,61,60,60,59,57,56,53,53,51,50,44,44,42,42,38,36,34,28,27,24,22,18,12,10,7,4,4,1,1};
C=6666;
取惩罚系数10.1=α,交叉概率88.0=c P ,变异概率:0088.0=m P ,群体规模为PopSize=100
五、实验结果:。