小学数学应用题之最值问题
最值问题(4年级培优)教师版

(1)如果两个正整数的和一定,那么这两个正整数的差越小,它们的乘积越大;两个正整数的差越大,它们的乘积越小。
(2)如果两个正整数的乘积一定,那么这两个正整数的差越小,那么它们的和也越小;两个正整数的差越大,那么它们的和也越大。
(3)把一个正整数分拆成若干个正整数之和,如果要使这若干个正整数的乘积最大,这些正整数应该都是2或3,且2最多不要超过两个。
(4)遇到一些其他类似的问题,求最大或最小还要根据实际的条件解决问题。
a 、b 是1,2,3,…,99,100中两个不同的数,求)-()(b a b a ÷+的最大值。
(四年级培优底稿) 分析:要使ba b a -+的值最大,必须让分母最小,分子最大。
可以判断出b a -的最小值应是1,即a 、b 是两个连续自然数;b a +的最大值是199,即100=a ,99=b 。
解:当100=a ,99=b 时,b a b a -+有最大值1999910099100=-+。
(题中a 、b 是两个变量,通过对它们的控制,使得分数的分子最大,分母最小,从而确保分数的值最大。
考察了极端情形的方法)难度系数:Aa 、b 是5,7,9,…,195,197,199中两个不同的数,求(b a +)-(b a -)的最大值。
(底稿) 分析:要使(b a +)-(b a -)的值最大,必须让被减数最大,减数最小。
可以知道b a +的最大值是197+199=396,b a -的最小值是2。
即199=a ,197=b 。
解:当199=a ,197=b 时,(b a +)-(b a -)有最大值 ()()394197199197199=--+ 难度系数:A“12345678910111213……484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(先后顺序不变)组成一个多位数,问这个多位数最大是多少?(三年级竞赛底稿)解析:首先注意观察这个多位数,它是由1至50的连续自然数排列而成的,共有数字1×9+2×41=91(个),划去80个数字,剩下的将是一个11位数。
小学数学典型应用题《最值问题》专项练习

小学数学典型应用题专项练习《最值问题》【含义】科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。
这类应用题叫做最值问题。
【数量关系】一般是求最大值或最小值。
【解题思路和方法】按照题目的要求,求出最大值或最小值。
【经典例题讲解】1、在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?解:先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。
再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。
这样做,用的时间最少,为9分钟。
答:最少需要9分钟。
2、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。
现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?解:我们采用尝试比较的方法来解答。
集中到1号场总费用为1×200×10+1×400×40=18000(元)集中到2号场总费用为1×100×10+1×400×30=13000(元)集中到3号场总费用为1×100×20+1×200×10+1×400×10=12000(元)集中到4号场总费用为1×100×30+1×200×20+1×400×10=11000(元)集中到5号场总费用为1×100×40+1×200×30=10000(元)经过比较,显然,集中到5号煤场费用最少。
答:集中到5号煤场费用最少。
3、北京和上海同时制成计算机若干台,北京可调运外地10台,上海可调运外地4台。
二次函数的应用题 利润问题、面积问题、最值问题 知识点+例题+练习 (非常好 分类全面)

三.二次函数应用题题型一.(10分)(2015•南充一模)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?2.(12分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?3.(12分)某企业信息部进行市场调查发现:信息一、如果单独投资A种产品,所投资利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)12 2.535y A(万元)0.40.81 1.22信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)从所学过的函数中猜想y A与x之间的关系,并求出y A与x的函数关系式;(2)求出y B与x的函数关系式,并求想利润y B为3(万元)应投资金额;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?例2、如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x米.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?2.小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?例3、拱桥的形状是抛物线,其函数关系式为y=213x ,当水面离桥顶的高度为253m 时,水面的宽度为多少米?2、有一座抛物线型拱桥,其水面宽AB 为18米,拱顶O 离水面AB 的距离OM 为8米,货船在水面上的部分的横断面是矩形CDEF ,如图建立平面直角坐标系.(1)求此抛物线的解析式;(2)如果限定矩形的长CD 为9米,那么矩形的高DE 不能超过多少米,才能使船通过拱桥?(3)若设EF=a ,请将矩形CDEF 的面积S 用含a 的代数式表示,并指出a 的取值范围.x例4.如图所示,在ABC 中,∠B=90,AB=22cm ,BC=20cm ,点P 从点A 开始沿AB 向点B 以2cm/s 的速度运动,点Q 从点B 开始向点C 以1cm/s 的速度运动,如果P ,Q 分别从A ,B 同时出发。
第2章 2.4 最大值与最小值问题,优化的数学模型

返回首页
下一页
(1)求a关于h的函数解析式; (2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值. (求解本题时,不计容器的厚度)
上一页
返回首页
下一页
【解】 (1)设h′为正四棱锥的斜高,
由已知a2+4·12h′a=2, h2+14a2=h′2,
解得a=
1 h2+1(h>0).
cn.它们使得ax+by+cz=δ,
且ω=
al+
bm+ δ
cn2,所以ω的最小值为
al+
bm+ δ
cn2 .
上一页
返回首页
下一页
利用柯西不等式求最值时,必须验证等号成立的条件是否满足.
上一页
返回首页
下一页
[再练一题]
2.设x,y,z∈R,且
x-12 16
+
y+22 5
+
z-32 4
=1.求x+y+z的最大值和最
A.13
B.12
C.14
D.23
【解析】 ∵0<x<1, ∴x(1-x)≤x+12-x2=14, 当且仅当x=12时取等号. 【答案】 B
上一页
返回首页
下一页
2.已知t>0,则函数y=t2-4tt+1的最小值为________. 【解析】 ∵t>0,∴y=t2-4tt+1 =t+1t -4≥2-4=-2. 【答案】 -2
上一页
返回首页
下一页
【精彩点拨】 分别求出开发前、后该项目10年利润的最大值,比较大小 即可.
上一页
返回首页
下一页
【自主解答】 若按原来投资环境不变,由题设知,每年只需从60万元中
拿出40万元投资,可获最大利润10万元.这样10年总利润最大值为W=10×10=
小学数学典型应用题(29)最值问题

关键点
1 最值问题:
在一定范围内求最大值和最小值的问题。
2 最值原理:
两个数的和一定,这两个数越接近, 它们的积越大。
两个数的积一定,这两个数越接近, 它们的和越小。
例6、外宾由甲地经乙地、丙地去丁地参观。甲、乙、丙、丁四地 和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。为了保证 安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警 (包括原有的民警)之间的距离都相等。现知甲乙相距5000米,乙 丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。
学而时习之不亦说乎
读万卷书,行万里路
21、方阵问题 22、商品利润问题 23、存款利率问题 24、溶液浓度问题 25、构图布数问题 26、幻方问题 27、抽屉原则问题 28、公约公倍问题 29、最值问题 30、列方程问题
最值问题
【含义】 科学的发展观认为,国民经济的发展既要讲求效 率,又要节约能源,要少花钱多办事,办好事,以最小的代 价取得最大的效益。这类应用题叫做最值问题。
【数量关系】 一般是求最大值或最小值。 【解题思路和方法】 按照题目的要求,求出最大值或最小值。
例题一:和是10的两个自然数,这两个数的乘积最大是多少?
关键点提问: 和是10的两个数的乘积是哪些?
例题二:用30米长的栅栏围成一个长方形(长和宽都是整米数) 的花园,要使花园的面积最大,花园的长和宽分别是多少米? 花园的最大面积是多少平方米?
徐老师课堂
跟着徐老师学数学
小学数学30种
典型应用题
二十Байду номын сангаас 最值问题
1、归一问题 11、行船问题 2、归总问题 12、列车问题 3、和差问题 13、时钟问题 4、和倍问题 14、盈亏问题 5、差倍问题 15、工程问题 6、倍比问题 16、正反比例问题 7、相遇问题 17、按比例分配 8、追及问题 18、百分数问题 9、植树问题 19、牛吃草问题 10、年龄问题 20、鸡兔同笼问题
小学数学典型应用题23:最值问题(含解析)

小学数学典型应用题23:最值问题(含解析)最值问题【含义】在日常生活中,人们常常会遇到“路程最近”“费用最省”“面积最大”“损耗最小”等问题。
这些寻求极端结果或讨论怎样实现这些极端情形的问题。
最终都归结为:在一定范围内求最大值或最小值的问题,我们称这些问题为最值问题。
【数量关系】一般是求最大值或最小值。
解题思路和方法枚举法,综合法,分析法,公式法,图表法例1:七个小朋友共折纸花100朵,每个小朋友折的朵数都不相同,其中折的最多的小朋友折了18朵,则折的最少的小朋友至少折了多少朵?解:1、要想最少的尽可能少,那么其他人就要尽可能多。
2、因为求折的最少的小朋友至少折了多少朵,那么其他六位小朋友应折的尽可能多,折的朵数应分别为18、17、16、15、14、13,则折的最少的小朋友至少折了100-18-17-16-15-14-13=7(朵)。
例2:有22根长都是1厘米的小棒,乐乐用这些小棒围成长方形,围成的长方形面积最大是多少平方厘米,最小是多少方厘米?解:1、题目已知的是周长求面积,可以利用列表的方法解决。
2、周长是22厘米,则长与宽的和是22÷2=11(厘米),我们将可能的情况列表呈现出来。
3、所以围成的长方形面积最大是30平方厘米,最小是10平方厘米。
例3:有一个73人的旅游团,其中男47人,女26人,住到一个旅馆里。
旅馆里有可住11人,7人,4人的三种房间。
经过服务员的安排,这个旅游团的男、女分别住在不同的房里,而且每个房间都按原定人数住满了旅游团的成员。
服务员最少用了多少个房间?解:1、要使房间用的少,则尽量先用11人间,但是也要考虑每个房间都要住满和性别差异,所以男女分开计算。
2、因为3×11+7×2=47(人),所以男的住了3个11人的房间,2个7人的房间。
又因为11×2+4=26(人),所以女的住了2个11人的房间,1个4人的房间,则服务员最少用了3+2+2+1=8(个)房间。
最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)

最值问题(讲义)六年级下册小升初数学应用题真题汇编通用版(含解析)小升初数学运用题真题汇编典型运用题—最值问题班级姓名得分1.(湖南湘郡培粹中学小升初招生)五个连续的自然数的和是75,这五个连续的自然数中最大的数是。
2.(河南鹤壁六年级期末)小明、小红、小刚三人的年龄正好是三个连续的偶数,他们的年龄总和是48岁,他们中最大的是多少岁?3.(浙江杭州六年级期末)用3、4、5、7四个数组成两个分数,再进行运算,结果最大是多少?请列式计算。
4.(江苏宿迁小学毕业考试)如右图,一个圆柱形油桶,底面直径是6dm,高是10dm。
(1)要给油桶的表面刷上油漆,刷油漆的面积是多少平方分米?(2)用这样的一整桶汽油为油箱容量是51升的小汽车加油,最多可以加满多少辆?(油桶铁皮的厚度忽略不计)5.(黑龙江齐齐哈尔六年级期末)如图所示,一个棱长为6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,剩下的体积是多少立方厘米?6.(安徽合肥小升初考试)伐木工人准备将一根圆柱形的木材(如图)加工成最大的方木(指横截面的正方形面积最大),这根方木的体积是多少立方厘米?合多少立方米?7.(山东青岛六年级期末)制作一个无盖圆柱形水桶,有四种型号的铁皮可供选择(不考虑损耗)。
(1)要恰好做成水桶,有几种选择方案?(2)算一算哪种方案做成的水桶容积最大?最大是多少?8.(陕西爱知中学入学考试)在一条水渠边,用篱笆围成一块直角梯形菜地(如图)。
已知篱笆总长28米,那么怎样围这块菜地的面积最大?最大地面积是多少平方米?9.(湖南广益中学小升初招生)a和b是小于100的两个非零的不同自然数。
的最大值是。
10.(某工大附中入学考试)一艘货船上卸下了若干台机器,这些机器的总质量是38吨,但每台机器的质量都不超过1吨。
如果用载重3吨的汽车把这些机器运到仓库,那么至少需要几辆这样的汽车才能保证一次运完?11.(湖南雅礼梅溪湖中学小升初招生)从1开始,轮流加3加4,得到下面的一列数:1,4,8,11,15,18,22,…在这列数中,最小的三位数是。
四年级下册数学试题-思维训练专题:最值问题(解析版)全国通用

四年级下册数学试题-思维训练专题:最值问题(解析版)全国通⽤【精品】讲义说明:1、本讲义课内部分为⼩数加减法的应⽤,介绍了⼩数加减运算的巧算⽅法及⼩数加减应⽤题的解题⽅法;课外部分为最值问题,介绍了⼏种解决最值问题的⽅法(从极端情形考虑,构造分析,最不利情况及“动脑筋”中的枚举法)。
2、教学重点:⼩数加减巧算及⼩数加减应⽤题,最值问题的解题⽅法。
难点:最值问题的解题思路。
加法运算定律:a b b a +=+(交换律) ()c b a c b a ++=++(结合律)减法运算性质:()c b a c b a --=+- ()c b a c b a +-=--※以上运算定律与运算性质在⼩数运算中同样适⽤。
※⼩数加减应⽤题的解题策略:审题→找关键句→确⽴数量关系→列式计算。
1、⽐ 96.3多4.0的数是;⽐92.4少5.2的数是;解:4.36;2.42。
2、⼩于1的最⼤的三位⼩数减去最⼩的四位⼩数差是。
解:0.99893、甲数是1.46,⽐⼄数少0.44,⼄数是。
解:1.94、在横线⾥填上合适的数:14元4⾓6分= 元 4⾓6分+7元4分= 元57厘⽶= ⽶ 7⽶80厘⽶+1⽶48厘⽶= ⽶954克= 千克 8吨80千克-3吨800千克=吨解:14.46、7.5;0.57;9.28;0.954;4.28。
5、在○⾥填上运算符号,⾥填上适当的数。
()+=++58.1579.1264.358.1579.12+(86.1214.223.677.486.12=+++)(+)23.6 ()=+-17.175.2317.975.23 (-=--91.1837.163.591.18)解:()79.1264.358.1579.1264.358.15++=++ 加法运算性质()()23.677.414.286.1214.223.677.486.12+++=+++ 加法交换律、结合律 ()5.2317.1717.9717.175.2317.97--=+- 减法运算性质()37.163.591.1837.163.591.18+-=-- 减法运算性质(1)52.467.648.3++ (2)()()45.1728.355.472.6+++ ()67.1467.6867.652.448.3=+=++= ()()32221045.1755.428.372.645.1728.355.472.6=+=+++=+++= (3)()85.126.579.385.24+-+ (4)09.591.36.20--19.106.579.3126.579.385.1285.2485.126.579.385.24=-+=-+-=--+= ()6.1196.2009.591.36.20=-=+-=⼩美参加学校的舞蹈⼤赛,6位评委给⼩美打出的得分分别为:9.7分,9.2分,8.9分,8.8分,9.3分,9.1分,⼩美得到的总分是多少分?解:1.93.98.89.82.97.9+++++()()()()分551818199.81.98.82.93.97.9=++=+++++=答:⼩美得到的总分是55分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学应用题之最值问题
【含义】
在日常生活中,人们常常会遇到“路程最近”“费用最省”“面积最大”“损耗最小”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都归结为:在一定范围内求最大值或最小值的问题,我们称这些问题为最值问题。
【数量关系】
一般是求最大值或最小值。
【解题思路和方法】
枚举法,综合法,分析法,公式法,图表法
例1:
七个小朋友共折纸花100朵,每个小朋友折的朵数都不相同,其中折的最多的小朋友折了18朵,则折的最少的小朋友至少折了多少朵?
解:
1、要想最少的尽可能少,那么其他人就要尽可能多。
2、因为求折的最少的小朋友至少折了多少朵,那么其他六位小朋友应折的尽可能多,折的朵数应分别为18、17、16、
15、14、13,则折的最少的小朋友至少折了100-18-17-16-15-14-13=7(朵)。
例2:
有22根长都是1厘米的小棒,乐乐用这些小棒围成长方形,围成的长方形面积最大是多少平方厘米,最小是多少方厘米?
解:
1、题目已知的是周长求面积,可以利用列表的方法解决。
2、周长是22厘米,则长与宽的和是22÷2=11(厘米),我们将可能的情况列表呈现出来。
3、所以围成的长方形面积最大是30平方厘米,最小是10平方厘米。
例3:
有一个73人的旅游团,其中男47人,女26人,住到一个旅馆里。
旅馆里有可住11人,7人,4人的三种房间,经过服务员的安排,这个旅游团的男、女分别住在不同的房间里,而且每个房间都按原定人数住满了旅游团的成员。
服务员最少用了多少个房间?
解:
1、要使房间用的少,则尽量先用11人间,但是也要考虑每个房间都要住满和性别差异,所以男女分开计算。
2、因为3×11+7×2=47(人),所以男的住了3个11人的房间,2个7人的房间。
又因为11×2+4=26(人),所以女的住了2个11人的房间,1个4人的房间,则服务员最少用了3+2+2+1=8(个)房间。