人教A版选修2-3 第二章2.1.1离散型随机变量 学案
人教新课标版数学高二人教A版选修2-3离散型随机变量的分布列 导学案

2.1.2离散型随机变量的分布列一、【学习目标】知识目标1.理解取有限个值的离散型随机变量及其分布列的概念。
2.掌握离散型随机变量的分布列的表示方法和基本性质。
能力目标1.在具体问题中能写出随机变量的取值,能列出概率分布列;2.培养学生独立思考问题的能力.情感、态度与价值观1加强师生情感交流,营造和谐课堂。
2在教学过程中让学生体会数学在生活的应用。
3充分发挥非智力因素在教学中的作用,增强学生对数学学习的兴趣二、【重点难点】重点:1.离散型随机变量概率分布列的概念。
2. 离散型随机变量分布列的表示方法和性质;难点:1.确定离散型随机变量的取值、随机变量所对应的概率2. 随机变量在某个范围内取值的概率的计算考点:1离散型随机变量及其分布列的概念2离散型随机变量的分布列的表示方法和基本性质3具体问题中能写出随机变量的取值,能列出概率分布列三、【知识链接】.1.随机变量的概念:如果____________________可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母__________________等表示2. 离散型随机变量的概念:对于随机变量可能取的值,可以按__________________,这样的随机变量叫做离散型随机变量3.对立事件定义.:其中必有一个发生的两个______叫做对立事件是,一种特殊的互斥事件4.互斥事件事件定义:A与事件B在任何一次试验中__________________四、【合作探究】引入对于一个随机试验,仅仅知道试验结果的取值是不够的,还要把握每一个结果发生概率的大小。
还要研究这些结果取值的平均数,这些结果取值的波动状态等等。
实例引入:在随机试验掷一枚骰子中,我们可以定义一个随机变量X , X 的值分别对应试验所得的点数.X能取那些值,X 取每个值的概率分别是多少?解:X的取值有1、2、3、4、5、6则列成表格形式X 1 2 3 4 5 6P归纳小结:该表不仅列出了随机变量X的所有取值.而且列出了X的每一个取值的概率.这样,我们就从概率的角度指出了随机变量在随机试验中取值的分布状况,为进一步研究随机现象奠定了基础,这就是今天我们要学习的内容——离散型随机变量的分布列离散型随机变量的分布列定义:一般地,设离散型随机变量X可能取的不同值为:,X取每一个x(i=1,2,……)的概率,P(X=xi)=Pi.,以表格的形式表示如下:X …………P P P……P……此表称为离散型随机变量X的概率分布列,简称X 的分布列也可用P(X=xi)=P i=1,2,3 …n表示X的分布列合作探究1分布列的构成:⑴列出随机变量ξ的所有取值;⑵给出ξ的每一个取值的概率注:在具体问题中关键是要搞清楚什么是随机变量,随机变量能取哪些值,随机变量取值的概率是什么2分布列的性质:(1)请同学们思考随机变量概率的取值有什么特点呢(2) 请同学们思考P1+P2+…+Pn=?为什么(3)随机变量在某个范围内取值的概率等于随机变量在这个范围内取各个值得概率的和。
高中数学人教A版选修2-3教学案2.1.1 离散型随机变量 Word版含解析

..离散型随机变量预习课本~,思考并完成以下问题.随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?.随机变量与函数的关系?.随机变量试验结果()定义:在一个对应关系下,随着变化而变化的变量称为随机变量.()表示:随机变量常用字母,,ξ,η等表示..离散型随机变量一一列举出来如果随机变量的所有可能的取值都能,则称为离散型随机变量..随机变量和函数的关系随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数,函数把实数映射为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域..判断下列命题是否正确.(正确的打“√”,错误的打“×”)()随机变量的取值可以是有限个,也可以是无限个.( )()手机电池的使用寿命是离数型随机变量.( )答案:()√()×.下列变量中,是离散型随机变量的是( ).到年月日止,我国被确诊的爱滋病人数.一只刚出生的大熊猫,一年以后的身高.某人在车站等出租车的时间.某人投篮次,可能投中的次数答案:.袋中有大小相同的红球个,白球个,从袋中无放回的条件下每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量,则的可能取值为( ).,…,.,…,.,….,…,答案:.在考试中,需回答三个问题,考试规则规定:每题回答正确得分,回答不正确得-分,则这名同学回答这三个问题的总得分ξ的所有可能取值是.答案:, , -, -[典例] ()抛掷一枚均匀硬币一次,随机变量为( ).抛掷硬币的次数.出现正面的次数.出现正面或反面的次数.出现正面和反面的次数之和()件产品中有件次品,件正品,从中任取件,则可以作为随机变量的是( ).取到的产品个数.取到的正品个数.取到正品的概率.取到次品的概率[解]()抛掷一枚硬币一次,可能出现的结果是正面向上或反面向上.以某一个为标准,如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是,故选.而项中抛掷次数就是,不是随机变量;项中标准不明;项中,出现正面和反面的次数之和为必然事件,试验前便知是必然出现的结果,也不是随机变量.()由随机变量的定义知,随机变量是随机试验的结果,排除、项,又取到的产品个数是一个确定值,排除项.故选项.[答案]() ()判断一个试验是否是随机试验,依据是这个试验是否满足随机试验的三个条件,即()试验在相同条件下是否可重复进行;()试验的所有可能的结果是否是明确的,并且试验的结果不止一个;()每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.[活学活用]指出下列哪些是随机变量,哪些不是随机变量,并说明理由:()某人射击一次命中的环数;()掷一枚质地均匀的骰子,出现的点数;()某个人的属相随年龄的变化.。
人教版选修2-3 2.1.1 离散型随机变量导学案

2.1.1《离散型随机变量》导学案制作王敬审核高二数学组2016-05-27【学习目标】1.通过实例了解随机变量的概念,理解离散型随机变量的概念.2.能写出离散型随机变量的可能取值,并能解释其意义.【重点难点】重点:离散型随机变量的概念.难点:离散型随机变量的意义.【预习导航】1.一个试验如果满足下列条件:(1)试验可以在相同的情形下__________进行;(2)试验的所有可能结果是__________的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的__________,但在一次试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随着__________变化而变化的变量称为随机变量,随机变量常用字母X、Y、ξ、η等表示.3.______________________的随机变量,称为离散型随机变量.【问题整合】【问题1】一个正四面体玩具,四个面分别涂有红、黄、绿、黑,投掷一次观察落地一面的颜色,有多少种可能的结果?这些结果可以用数字表示吗?【问题2】在一块地里种了6棵树苗,设成活的树苗棵数为X,则X可取哪些数字?【探究活动一】随机变量及其取值的意义例1写出下列各随机变量可能的取值,并说明随机变量的值所表示的随机试验的结果.(1)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ;(2)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(3)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min).方法规律总结跟踪训练1100件产品中,含有5件次品,任意抽取4件产品,其中含有的次品数为ξ,抽取产品的件数为η,ξ、η是随机变量吗?【探究活动二】离散型随机变量例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④【方法规律总结】【方法规律总结】跟踪训练3盒中有9个正品和3个次品共12个零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为X.(1)写出X的所有可能取值.(2)写出X=2所表示的事件.(3)求X=2的概率.跟踪训练2下列随机变量中不是离散型随机变量的是()A.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XB.小明回答20道选择题,答对的题数XC.某人早晨在车站等出租车的时间XD.某人投篮10次投中的次数X【探究三】离散型随机变量的取值及其概率写出下列各随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷甲、乙两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.【总结概括】本节课的收获:【课后作业】必做题:课本习题2.1A组1,2题选做题:同步练习册知能提升。
2.1.1离散型随机变量(学生学案)

2.1.1离散型随机变量(学生学案)例1 判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由。
(1)昨天我校办公室接到的电话的个数.(2)标准大气压下,水沸腾的温度.(3)在一次比赛中,设一二三等奖,你的作品获得的奖次.(4)体积64立方米的正方体的棱长.(5)抛掷两次骰子,两次结果的和.(6)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数.函数与随机变量的异同点:例2:下列变量中是离散型随机变量的________.(1)下期《星光大道》节目中冠军的人数;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(3)在泉州至福州的高速铁路线上,每隔50 m有一电线铁塔,从泉州至福州的高速铁路线上将电线铁塔进行编号,其中某一电线铁塔的编号;(4)福州市闽江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位.课堂练习1:(课本P45练习NO:1)课堂练习2:1、袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为ξ,则ξ所有可能值的个数是____ 个;{ }表示.2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1) {ξ>4}表示的试验结果是什么? (2) P (ξ>4)=?3、写出下列各随机变量可能的取值.(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数ξ.(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球数ξ.(3)抛掷两个骰子,所得点数之和ξ.(4)接连不断地射击,首次命中目标需要的射击次数ξ.4、写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;5、(1)某座大桥一天经过的中华轿车的辆数为ξ;(2)某网站中歌曲《爱我中华》一天内被点击的次数为ξ;(3)一天内的温度为ξ;(4)射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分。
高二数学选修2_3第二章随机变量和分布

一、教学目标
1.复习古典概型、几何概型有关知识。
2. 理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量
.
重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量
.
难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究
5. 袋中装有 8 只红球 , 2 只黑球 ,每次从中任取一球 , 不放回地连续取两次 , 求下列事件的 概率 .(1)取出的两只球都是红球 ; (2)取出的两只球都是黑球 ; (3)取出的两只球一只是红球 ,一 只是黑球 ; (4)第二次取出的是红球 .
6. 某射击小组共有 20 名射手 ,其中一级射手 4 人 , 二级射手 8 人, 三级射手 7 人 , 四级射手
例 1. 甲、乙二射击运动员分别对一目标射击 1次,甲射中的概率为 0.8 ,乙射中的概率为 0.9 , 求:( 1) 2 人都射中目标的概率; ( 2) 2 人中恰有 1人射中目标的概率; (3) 2 人至少有 1人射 中目标的概率; (4) 2 人至多有 1人射中目标的概率?
n)的概率为 p1, p2 ,…, pn,则称表
X
…
…
P
…
…
为离散型随机变量 X 的概率分布,或称为离散型随机变量 X 的分布列
2. 离散型随机变量的分布列的两个性质:
⑴
;
⑵
.
3. 如果随机变量 X 的分布列为:
X
P
其中 0<p<1,q=1-p, 则称离散型随机变量 X服从参数为 p 的二点分布。
三、 典例解析: 例 1 变式训练 从装有 6 只白球和 4 只红球的口袋中任取一只球, 用 X 表示“取到的白球个数” ,
人教版A版高中数学选修2-3:2.1.1 离散型随机变量(3)

4.二项分布的均值: 若X~B(n,p),则EX=np
例3.一次单元测验由20个选择题构成,每个选择题有4个选 项,其中有且仅有一个选项是正确答案,每题选择正确答 案得5分,不作出选择或选错不得分,满分100分.学生甲 选对任一题的概率为0.9,学生乙则在测验中对每题都从4个 选项中随机地选择一个.求学生甲和学生乙在这次英语单 元测验中的成绩的均值.
xi
…
P
p1
p2
…
pi
…
则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望.
2.离散型随机变量的均值的性质: E(aX+b)=aEX+b
3.两点分布的均值: 若X服从两点分布,则EX=p
4.二项分布的均值: 若X~B(n,p),则EX=np
六、布置作业
方法二:先求解解答一个选择题的得分的均值,再 乘以20即可.
思考7:甲同学一定能得90分吗?
90分代表什么呢?
四、针对性训练
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4 .
(2)若η=2ξ+1,则Eη= 5.8.
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
Eξ=7.5,则a= 0.1 b= 0.4.
3、 一个袋子里装有大小相同的3 个红 球和2个黄球,从中有放回地取每次一个, 共取5次,则取到红球次数的期望 是 3.
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算: 1.离散型随机变量的均值 一般地,若离散型随机变量X的分布列为
X
x1
x2
高二数学选修2-3:2.1.1-2.1.2离散型随机变量及其分布列学案

§2.1.1§2.1.2离散型随机变量及其分布列学习目标:1.理解随机变量的定义;2.掌握离散型随机变量的定义;3.理解离散型随机变量的分布列的定义.学习重点:随机变量、离散型随机变量的意义;理解离散型随机变量的分布列。
学习难点:对随机变量意义的理解与应用学习方法:尝试、变式、互动 一、新知探究新知1:随机变量的定义:随着试验结果变化而变化的变量称为 ,常用字母 、 、 、 …表示.新知2:随机变量与函数的关系:随机变量与函数都是一种 ,试验结果的范围相当于函数的 ,随机变量的范围相当于函数的 .新知3:所有取值可以 的随机变量,称为离散型随机变量.新知4:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i.则①分布列表示:②等式表示:新知5:离散型随机变量的分布列具有的性质:(1) ;(2)新知6:两点分布列:称X 服从 ;二、例题配置例1 在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个 ,其值域是 .随机变量0X =表示 ;4X =表示 ;3X <表示 ;“抽出3件以上次品”可用随机变量 表示.例2①电灯泡的寿命X 是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y 是一个离散型随机变量吗?例3编号1,2,3的三位学生随意入座编号1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生人数是X.求随机变量X 的概率分布列;。
高中数学选修2-3人教A:全册精品教案导学案 2.1.1离散型随机变量

2. 1.1离散型随机变量【教学目标】1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.【教学重难点】教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义【教学过程】一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达.如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例:例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .4n =;C .10n =;D .不能确定3.抛掷两次骰子,两个点的和不等于8的概率为( )A .1112;B .3136;C .536;D .1124.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念 随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量六、课后作业:2.1.1离散型随机变量课前预习学案一、预习目标通过预习了解什么是随机变量,什么是离散型随机变量二、预习内容1、随机变量2、随机变量的表示方法3、随机变量的取值4、离散型随机变量三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.二、学习重难点:教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、学习过程(一)随机变量、离散型随机变量问题1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2::随机变量和函数有类似的地方吗?问题3:(电灯的寿命X是离散型随机变量吗?(二)归纳小结:(三)典型例题例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?(五)当堂检测1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是连续型随机变量的是( )A .①;B .②;C .③;D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( )A .3n =;B .n D .不能确定取所有可能值的概率之和为1;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D课后练习与提高1.10件产品中有4件次品,从中任取2件,可为随机变量的是( )A .取到产品的件数 B.取到次品的件数C.取到正品的概率D.取到次品的概率2.有5把钥匙串成一串,其中有一把是有用的,若依次尝试开锁,若打不开就扔掉,直到打开为止则试验次数ξ的最大取值为( )A.5B.2C.3D.43.将一颗骰子掷2次,不是随机变量为( )A.第一次出现的点数B.第二次出现的点数C.两次出现的点数之和D.两次出现相同的点数的种数4离散型随机变量是_________________.5.一次掷2枚骰子,则点数之和ξ的取值为_______________.答案:1.B 2.A 3.D 4. 所有取值可以一一列出的随机变5.2,3,4,4,5,6,7,8,9,10,11,12.2. 1.2离散型随机变量的分布列【教学目标】1. 知道概率分布列的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1 离散型随机变量知识点随机变量(1)定义:在随机试验中,确定了一个对应关系,使得每一个试验结果都用一个□01确定的数字表示.在这个对应关系下,□02数字随着□03试验结果的变化而变化.像这种随着□04试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母□05X,Y,ξ,η表示.知识点随机变量与函数的关系相同点随机变量和函数都是一种映射随机变量是随机试验的结果到□01实数的映射,函数是□02实数到□03实区别数的映射随机试验结果的范围相当于函数的□04定义域,随机变量的取值范围相联系当于函数的□05值域知识点离散型随机变量所有取值可以□01一一列出的随机变量,称为离散型随机变量.随机试验的特点(1)试验的所有结果可以用一个数来表示;(2)每次试验总是恰好出现这些结果中的一个,但在一次试验之前,却不能肯定这次试验会出现哪一个结果.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.1.判一判(正确的打“√”,错误的打“×”)(1)离散型随机变量的取值是任意的实数.( )(2)随机变量的取值可以是有限个,也可以是无限个.( )(3)离散型随机变量是指某一区间内的任意值.( )答案(1)×(2)√(3)×2.做一做(1)甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.(2)同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________.(3)在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________.答案(1)0,1,2,3 (2){0,1,2,3,4,5} (3)共抽取3次,前两次均是正品,第3次是次品解析(1)甲可能3次全击中,也可能一次未中,中1次,2次,所以ξ的取值为0,1,2,3.(2)当硬币全部为正面向上时,ξ=0,硬币反面向上的个数还可能有1个,2个,3个,4个,也可能都反面向上,即5个.(3)由随机试验可知X=3表示抽取3次,前两次均是正品,第3次是次品.探究1 随机变量的概念例1 下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)某机场一年中每天运送乘客的数量.(2)某单位办公室一天中接到电话的次数.(3)明年5月1日到10月1日期间所查酒驾的人数.(4)明年某天济南—青岛的某次列车到达青岛站的时间.[解] (1)某机场一年中每天运送乘客的数量可能为0,1,2,3,…,是随机变化的,因此是随机变量.(2)某单位办公室一天中接到电话的次数可能为0,1,2,3,…,是随机变化的,因此是随机变量.(3)明年5月1日到10月1日期间,所查酒驾的人数可能为0,1,2,3,…,是随机变化的,因此是随机变量.(4)济南—青岛的某次列车到达青岛站的时间每次都是随机的,可能提前,可能准时,亦可能晚点,故是随机变量.拓展提升随机变量的辨析方法(1)随机试验的结果是否具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果的确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[跟踪训练1]指出哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)掷一枚质地均匀的骰子,出现的点数;(4)某个人的属相随年龄的变化.解(1)某人射击一次,可能命中的所有环数是0,1,…,10,而且出现哪一个结果是随机的,因此命中的环数是随机变量.(2)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,因此出现正面向上的次数是随机变量.(3)掷一枚骰子,出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪一个结果是随机的,因此出现的点数是随机变量.(4)一个人的属相在他出生时就确定了,不随年龄的变化而变化,因此属相不是随机变量.探究2 离散型随机变量的判定例2 指出下列随机变量是否是离散型随机变量,并说明理由.(1)某超市5月份每天的销售额;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位监测站所测水位ξ.[解] (1)某超市5月份每天的销售额可以一一列出,故为离散型随机变量.(2)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(3)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.拓展提升判断一个随机变量X 是否为离散型随机变量的关键是判断随机变量X 的所有取值是否可以一一列出,其具体方法如下:(1)明确随机试验的所有可能结果;(2)将随机试验的试验结果数量化;(3)确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.[跟踪训练2] 某市公交公司规定:身高不超过120 cm 的学生免费乘车,凡身高超过120 cm 的学生,每次乘车0.5元,若学生每次乘车应交的车费为η(单位:元),学生的身高用ξ(单位:cm)表示,那么ξ和η是不是离散型随机变量?若是,请写出相应的取值情况.解 由于每个学生对应唯一的一个身高,并且可以一一列举出来,因此ξ是一个离散型随机变量,其取值为本市所有学生的身高.η=⎩⎨⎧ 0ξ≤120,0.5ξ>120,因此η也是一个离散型随机变量,其取值为0,0.5.探究3 随机变量的应用例3 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,每次取到的红球不放回,直到取出的球是白球为止所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解] (1)设所需的取球次数为X ,则X =1,2,3,4,...,10,11, X =i 表示前(i -1)次取到红球,第i 次取到白球,这里i =1,2, (11)(2)设所取卡片上的数字之和为ξ,则ξ可取3,4,…,11,其中:{ξ=3}表示取出标有1,2的两张卡片;{ξ=4}表示取出标有1,3的两张卡片;{ξ=5}表示取出标有1,4或2,3的两张卡片;{ξ=6}表示取出标有1,5或2,4的两张卡片;{ξ=7}表示取出标有1,6或2,5或3,4的两张卡片;{ξ=8}表示取出标有2,6或3,5的两张卡片;{ξ=9}表示取出标有3,6或4,5的两张卡片;{ξ=10}表示取出标有4,6的两张卡片;{ξ=11}表示取出标有5,6的两张卡片.拓展提升解此类题主要是运用离散型随机变量的定义,随机变量X 满足三个特征:①可以用数来表示;②试验前可以判断其可能出现的所有值;③在试验前不能确定取何值.[跟踪训练3]写出下列随机变量ξ的所有可能取值,并说明随机变量ξ=4所表示的随机试验的结果.(1)从10张已编号的卡片(编号从1号到10号)中任取2张(一次性取出),被取出的卡片的较大编号为ξ;(2)某足球队在点球大战中5次点球射进的球数为ξ.解(1)ξ的所有可能取值为2,3,4,…,10.其中“ξ=4”表示的试验结果为“取出的两张卡片中的较大号码为4”.基本事件有如下三种:取出的两张卡片编号分别为1和4,2和4或3和4.(2)ξ的所有可能取值为0,1,2,3,4,5.其中“ξ=4”表示的试验结果为“5次点球射进4个球”.1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.离散型随机变量的特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值;(4)试验结果能一一列出.1.下列变量中,不是随机变量的是( )A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数答案 B解析标准状态下,水沸腾时的温度是一个确定值,而不是随机变量.故选B.2.若用随机变量X表示从一个装有1个白球、3个黑球、2个黄球的袋中取出的4个球中不是黑球的个数,则X的取值不可能为 ( )A.0 B.1 C.2 D.3答案 A解析由于白球和黄球的个数和为3,所以4个球不是黑球的个数分别可能是1,2,3,X不可能取0.故选A.3.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分X的所有可能取值是________.答案300,100,-100,-300解析可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.4.连续不断地射击某一目标,首次击中目标需要的射击次数X是一个随机变量,则X=4表示的试验结果是________.答案前3次未击中目标,第4次击中目标解析由于随机变量X表示首次击中目标需要的射击次数,所以当X=k时,表示前k-1次均未击中目标,第k次击中目标,故X=4表示的试验结果为前3次未击中目标,第4次击中目标.5.同时掷两枚质地均匀的硬币.(1)用X表示掷出正面的个数,要表示试验的全部可能结果,X应取哪些值?(2)X<2和X>0各表示什么?解(1)掷两枚硬币时,掷出正面的个数可能是0,1,2中的一个,但事先不能确定,结果是随机产生的.用X表示掷出正面的个数,X的值应随机地取0,1,2中的某个.(2)X<2表示事件“正面个数小于2”,即事件“正面个数为0或1”;X>0表示事件“正面个数大于0”,即事件“正面个数为1或2”.。