第三章 热水供暖系统 第一节

第三章 热水供暖系统 第一节
第三章 热水供暖系统 第一节

济南铁道职业技术学院

教师授课教案

20____/20____学年第____学期课程供热工程

目的要求:

1、掌握重力循环热水供暖系统的工作原理及其作用压力;

2、掌握重力循环热水供暖单、双管系统的作用压力的计算;

3、重力循环热水供暖例题。

旧知复习:作用压力的确定。

重点难点:

重点:重力循环热水供暖单、双管系统的作用压力的计算。

难点:重力循环热水供暖单、双管系统的作用压力的计算。

教学过程:(包括主要教学环节、时间分配)

一、复习(5分钟)

二、新课

1、重力循环热水供暖系统的工作原理及其作用压力(10分钟)

2、重力循环热水供暖单管、双管系统的作用压力的计算(35分钟)

3、例题(35分钟)

三、小结及作业(5分钟)

课后作业:

简述重力循环热水供暖单、双管系统的作用压力的区别。

教学后记:

此处相对较枯燥,注意通过单、双管的比较,加强学生理解。

任课教师教研室主任:

济南铁道职业技术学院授课教案附页 第 页

任课教师 郑枫 教研室主任 张风琴 年 月 日 第三章 热水供暖系统

以热水作为热媒的供暖系统,称为热水供暖系统。从卫生条件和节能等考虑,民用建筑应采用热水作为热媒。

热水供暖系统,可按下述方法分类:

1.按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。

2.按供、回水方式的不同,可分为单管系统和双管系统。

3.按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。 在我国,习惯认为:水温低于或高于100℃的热水,称为低温水,水温超过100℃的热水,称为高温水。

室内热水供暖系统,大多采用低温水作为热媒。

设计供、回水温度多采用95℃/70℃(也有采用85℃/60℃)。

高温水供暖系统一般宜在生产厂房中应用。设计供、回水温度大多采用120~130℃/70℃~80℃。

第一节 重力(自然)循环热水供暖系统

一、重力循环热水供暖的工作原理及其作用压力

图3—1是重力循环热水供暖系统的工作原理图。

重力循环热水供暖系统的循环作用压力的大小,

取决于水温(水的密度)在循环环路的变化状况。

先不考虑水在沿管路流动时因管壁散热而使水不

断冷却的因素。

设P1和P2分别表示A-A 断面右侧和左侧的

水柱压力,则:

(g h h h h h g P ρρρ101++= Pa )

(g g h h h h g P ρρρ102++= Pa 断面A-A 两侧之差值,即系统的循环作用压力为:

(g h gh P P P ρρ-=-=?21 Pa 起循环作用的只有散热器中心和锅炉中心之间这段高度内的水柱密度差。

二、重力循环热水供暖系统的主要型式

重力循环热水供暖系统主要分双管和单管两种型式。

左右

上供下回式重力循环热水供暖系统管道布置的一个主要特点是:系统的供水干管必须有向膨胀水箱方向上升的流向。其反向的坡度为0.5%~1.0%;散热器支管的坡度一般取1%。这是为了使系统内的空气能顺利地排除,因系统中若积存空气,就会形成气塞,影响水的正常循环。在重力循环系统中,水的流速较低,水平干管中流速小于0.2m /s ;而干管中空气气泡的浮升速度为0.1一0.2m /s ,而在立管中约为0.25m /s 。因此,在上供下回重力循环热水供暖系统充水和运行时,空气能逆着水流方向,经过供水干管聚集到系统的最高处,通过膨胀水箱排除。

三、重力循环热水供暖双管系统作用压力的计算

1)双管系统中,由于供水同时在上、下两层散热器内冷却,形成了两个并联环路和两个冷却中心。它们的作用压力分别为:

(g h gh P ρρ-=?11Pa (3-2) )

())((g h g h gh P h h g P ρρρρ-+?=-+=?21212 (3-3) 式中 1P ?——通过底层散热器aS 1b 环路的作用压力,Pa ;

2P ?——通过上层散热器aS 2b 环路的作用压力,Pa.。

由式(3—3)可见,通过上层散热器环路的作用压力比通过底层散热器的大,其差值为)

(g h gh ρρ-2Pa 。因而在计算上层环路时,必须考虑这个差值。 由此可见,在双管系统中,由于各层散热器与锅炉的高差不同,虽然进入和流出各层散热器的供、回水温度相同(不考虑管路沿途冷却的影响),也将形成上层作用压力大、下层作用压力小的现象。如选用不同管径仍不能使各层阻力损失达到平衡,由于流量分配不均,必然要出现上热下冷的现象。

在供暖建筑物内,同一竖向的各层房间的室温不符合设计要求的温度,而出现上、下层冷热不匀的现象,通常称作系统垂直失调。由此可见,双管系统的垂直失调,是由于通过各层的循环作用压力不同而出现的;而且楼层数越多,上下层的作用压力差值越大,垂直失调就会越严重。

三、重力循环热水供暖单管系统的作用压力的计算

在图3—4所示的上供下回单管式系统中,

散热器S 2和S 1串联。由图3-4分析可

见,引起重力循环作用压力的高差是(h 1+h 2)m ,

冷却后水的密度分别为2ρ和h ρ,其循环作用

压力值为 )

()(h h gh gh P ρρρρ-+-=?2221 Pa (3—4) 式(3—4)也可改写为:

图3-5计算单管系统中层立管水温示意图

()()())((212221221ρρρρρρρρ-+-=-+-+=?h g h g gH gH gh h h g P Pa 同理,如图3—5所示,若循环环路中有N 组串联的冷却中心(散热器)时,其循环作用压力可用下面一个通式表示:

∑∑==+-=-=?N i N

i i i i g i i gH gh P 111)

()(ρρρρ Pa 2)设供、回水温度分别为t g 、t h 。建筑物为八层(N=8),每层散热器的散热量分别为Q1,Q2···Q8,即立管的热负荷为:

821Q Q Q Q +??++=∑ W (3-6)

通过立管的流量,按其所担负的全部热负荷计算,可用下式确定:

)

(86.0)(187.46.3)(h g h g h g L t t Q t t Q t t C Q A G -∑=-∑=-∑= kg/h (3-7) 式中 Q ∑——立管的总负荷,W ;

g t 、h t ——立管的供、回水温度,℃;

C ——水的热容量,C=4.187 kJ /kg .℃;

A ——单位换算系数(1W =1J/s=3600/1000kJ /h=3.6kJ /h)。

流出某一层(如第二层)散热器的水温t 2,根据上述热平衡方式,同理,可按下式计算:

)() (2832

86.0t t Q Q Q G g L -+??++=kg /h (3-8)

式(3—8)与式(3—7)相等,由此,可求出流出第二层散热器的水温t 2为: )( h g g t t Q

Q Q Q t t -∑+??++-=8322 ℃ (3-9) 根据上述计算方法,串联N 组散热器的系统,流出第i 组散热器的水温t i (令沿水流动方向最后一组散热器为i=1),可按下式计算:

)(h g N i i

g i t t Q Q t t -∑-=∑ ℃ (3-10)

式中 i t —— 流出第I 组散热器的水温,℃;

∑N i i Q

—— 沿水流动方向,在第I 组(包括第I 组)散热器前的全部

散热器的散热量,W ;

在单管系统运行期间,由于立管的供水温度或流量不符合设计要求,也会出现垂直失调现象。但在单管系统中,影响垂直失调的原因,不是如双管系统那样,由于各层作用压力不同造成的.而是由于各层散热器的传热系数K 随各层散热器平均计算温度差的变化程度不同而引起的。

总的重力循环作用压力,可用下式表示:

f zh P P P ?+?=? Pa (3-11)

式中 △P ——重力循环系统中,水在散热器内冷却所产生的作用压力,Pa ;

△P f ——水在循环环路中冷却的附加作用压力,Pa 。

[例题3—1]

【解】 1.求双管系统的重力循环作用压力

系统的供、回水温度,t g =95℃,t h =70℃。查附录3-1得ρg =961.92kg/m 3,ρh =977.81 kg/m 3。

通过各层散热器循环环路的作用压力,分别为:

第一层:)

(g h gh P ρρ-=?11=9.81×3.2(977.81—961.92)=498.8 Pa 第二层:))((g h h h g P ρρ-+=?212=9.81×(3.2十3.0)×(977.81—961.92)=966.5 Pa ; 第三层:))((g h h h h g P ρρ-++=?3213=9.8l ×(3.2十3.0十3.0)×(977.8l —961.92)

=1434.1 Pa

第三层与底层循环环路的作用压力差值为:

△P=△P 3-△P 1=1434.1-498.8=935.3Pa

由此可见,楼层数越多,底层与最顶层循环环路的作用压力差越大。

2.求单管系统各层立管的水温

)(h g N i i

g i t t Q Q t t -∑-=∑ ℃

由此可求出流出第三层散热器管路上的水温。

)(h g g t t Q

Q t t -∑-=33=95-800/2100(95-70)=85.5 ℃ 相应水的密度:ρ3=968.32 kg/m 3

流出第二层散热器管路上的水温t 2为:

)()()(70952100

60080095232-+-=-∑+-=h g g t t Q Q Q t t =78.3℃ 相应水的密度 :ρ2=972.88kg/m 3

3.求单管系统的作用压力

∑∑==+-=-=?N i N

i i i i g i i gH gh P 1

11)

()(ρρρρ Pa 则 []

∑=-+-+-=-=?N i g g g h g i i h h h g gh P 133221)

()()()(ρρρρρρρρ =9.8l[3.2(977.81—972.88)+6.2(972.88—968.32)十9.2(968.32

—961.92)]=1009.7Pa

重力循环热水供暖系统是最早采用的一种热水供暖方式,已有约200年的历史,至今仍在应用。它装置简单,运行时无噪音和不消耗电能。但由于其作用压力小,管径大,作用范围受到限制。重力循环热水供暖系统通常只能在单幢建筑物中应用,其作用半径不宜超过50m 。

小结:重力循环热水供暖系统的主要型式。

第三章 热水供暖系统

第三章 热水供暖系统 本章重点 掌握重力、机械循环供热系统的原理 掌握机械循环供热系统不同形式的特点 了解室内热水供暖系统的管路布置和主要设备及附件 本章难点 膨胀水箱的安装 重力、机械循环供热系统管道的敷设 以热水作为热媒的供暖系统,称为热水供暖系统。从卫生条件和节能等考虑,民用建筑应采用热水作为热媒。 热水供暖系统,可按下述方法分类: 1.按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。靠水的密度差进行循环的系统,称为重力循环系统;靠机械(水泵)力进行循环的系统,称为机械循环系统。 2.按供、回水方式的不同,可分为单管系统和双管系统。热水经立管或水平供水管顺序流过多组散热器,并顺序地在各散热器中冷却的系统,称为单管系统。热水经供水立管或水平供水管平行地分配给多组散热器,冷却后的回水自每个散热器直接沿回水立管或水平回水管流回热源的系统,称为双管系 统。 4.按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。 在各个国家,对于高温水与低温水的界限,都有自己的规定,并不统一。 在我国,习惯认为:水温低于或高于100℃的热水,称为低温水,水温超过100℃的热水,称为高温水。 室内热水供暖系统,大多采用低温水作为热媒。设计供、回水温度多采用95℃/70℃(也有采用85℃/60℃)。高温水供暖系统一般宜在生产厂房中应用。设计供、回水温度大多采用120~130℃/70℃~80℃。 第一节 重力(自然)循环热水供暖系统 一、重力循环热水供暖的工作原理及其作用压力 图3—1是重力循环热水供暖系统的工作原理图。在图中假设整个系统只有一个放热中心1(散热器)和一个加热中心2(锅炉),用供水管3和回水管4把锅炉与散热器相连接,在系统的最高处连接一个膨胀水箱5,用它容纳水在受热后膨胀而增加的体积。 在系统工作之前,先将系统中充满冷水。当水在锅炉内被加热后,密度减小,同时受着从散热器流回来密度较大的回水的驱动,使热水沿供水干管上升,流人散热器。在散热器内水被冷却,再沿回水干管流回锅炉。这样形成如图3—1箭头所示的方向循环流动。 由此可见,重力循环热水供暖系统的循环作用压力的大小,取决于水温(水的密度)在循环环路的变化状况。为了简化分析,先不考虑水在沿管路流动时因管壁散热而使水不断冷却的因素,认为在图3—1的循环环路内,水温只在锅炉(加热中心)和散热器(冷却中心)两处发生变化,以此来计算循环作用压力的大小。 如假设图3—1的循环环路最低点的断面A-A 处有一个假想阀门。若突然将阀门关闭,则在断面A-A 两侧受到不同的水柱压力。这两方所受到的水柱压力差就是驱使水在系统内进行循环流动的作用压力。 设P1和P2分别表示A-A 断面右侧和左侧的水柱压力,则: ) (g h h h h h g P ρρρ101++= Pa

自然循环热水快速降温设备

《自然循环热水快速降温设备》 学院:土木建筑学院 班级:工管0903班 成员:刘涛、吴耀威、文根 学号: 200948150304 200948150303 200948150305

一、创意名称:自然循环热水快速降温设备 二、创意原理: 1. 自然循环热水采暖系统:这个系统是不设有外力作用而能利用热水的温度进行自然循环,即依靠锅炉房的加热和主要依靠散热器的散热冷却造成供、回水温度差而形成的水的密度差,来维持系统系统中水的循环。而我们这个系统则是参照其自然循环的原理,依靠热水产生的热气压差来维持系统设备的原动力,该方法在正文中有详细讲解。 2. 空调冷却原理:我们将之简化为,利用机械能来压缩固定空气的空气,物理学告诉我们当气体被压缩时,即外力对之做功,则气体温度升高,但气壁良好的导热性会将部分温度送出,然后再将压缩过的气体送到与室内气体相接触的地方,气体膨胀吸热,进而达到降温的效果。而我们便是以此为参考依据来作为设计的原理之一。 3.其他物理学原理 三、作品简介: 自然循环热水快速降温设备是一种专门对热水进行降温处理的简易设备装置,该装置利用自然循环热水采暖系统原理来使用热水散发的热量作为设备的原动力,再将热压差造成的动能用到该装置的另一部分,即利用空调冷却原理而针对送过来的热空气进行机械改造,以便使处理过的这部分空气用来降低原热水的温度,在这样双重的降

温措施下,加速热水的降温,快速的满足同学们在夏天对低温水的需求! 一、正文: 这是我们在饱受夏天炎热的摧残之后而突发奇想的一种给热水降温的简易装置,我们称之为“自然循环热水快速降温设备”。 众所周知学校里都有锅炉房,这些个锅炉房在冬天的时候给学生带来了不小的方便,但是到了酷热难耐的夏天,我们将很难再直接使用锅炉房送来的水。水龙头里的自来水富含漂白剂,喝了拉肚子,去商店买水,一日复一日,又伤钱!怎么办?好吧,现在给你推荐一款将热水快速降温的装置,就是我们绝对自创原版的“自然循环热水快速降温设备”! 你问:这是一个什么样的装置?答:其实很简单。在大学课本《建筑设备》中,有一种自然循环热水采暖系统,这个系统是不设有外力 作用而 能利用 热水的 温度进 行自然 循环,即 依靠锅 炉房的 加热和

热水采暖系统

本文由along74贡献 doc文档 0、引言设置系统定压装置的目的在于供暖系统能在稳压状态下运行,保证系统内不倒空、不汽化。目前供热系统定压方式主要有膨胀水箱定压,即静水柱定压,补水泵定压,补水泵变频调速定压,气体定压罐定压等。以下对几种定压方式进行分析 1、膨胀水箱定压因其必须设在整个系统的最高点距离锅炉房较远,管理不方便,使高位水箱的应用受到了限制。 2、补水泵定压补水泵连续补水定压的供热系统,其定压装置是由补水箱、补水泵及调节器组成,在系统正常运行时,通过压力调节器作用,使补水泵连续补给的水量与系统泄漏量相适应,从而维持系统动水压曲线的位置,但这种定压方式,一般需连续运行,耗电大。而采用补水泵配稳压罐的方式定压,又使设备变得复杂,且增大了锅炉房的占地面积。 3、稳压罐定压经调查分析,国内生产的稳压罐主要有以下几个问题:①设计方法仍沿用冷水罐的设计方法,大多数的定压罐是冷水罐的变形。②罐与系统的连接只是简单地照搬高位水箱的连接方法,罐及泵系统缺少必要的安全措施。③罐及附属设备的性能检验手段及检测方法不完善,罐体气密性差,一次性充气的罐体根本保证不了一个采暖期静压线不降低。 4、补水泵变频调速定压综合上述几种定压方式的不合理处,采用补水泵变频调速定压,其基本原理是根据供热系统的压力变化,改变电源频率,平滑无级地调整补水泵转速,并与在旁通管上增设电磁阀,进而及时调节补水量,实现系统恒压点压力的恒定。该定压方式的关键设备是变频器,其工作原理是把 50HZ 的交流电转为直流电,再经过变频器把直流电变换为另一种频率的交流电。由于电流频率的改变,从而达到补水泵调速的目的。频率与转速的关系为 n=60f(1-Sn)/P 式中 n 一异步电动机即水泵转速; f 一电源频率,Hz;
Sn 一电机额定转数,即电机定子旋转磁场转速之差,一般为 5%左右; P 一电机的极对数。由上式可看出, P、一定时,当 Sn 电机即水泵转速与输入电流的频率成正比。频率愈高,转速愈快,频率愈低,转速愈慢。由水泵特性可知,水泵流量与频率也成正比,调节频率即调节转速,则可直接调节补水泵。一般变频器的频率,调节范围为 0.5~400Hz 之间,因此转速的变化为 14~11 200r/min 之间。本图给出了补水泵变频调速变压的调节框图,在旁通管增加电磁阀。此时压力给定,由压力传感测出循环泵旁通管上的被调压力值,将其压力信号反馈与给定压力比较,若不等由调节器计算出变频器的输入电流,变频根据输入电源,自动将频率调至其相应值。变频器将频率输出信号传给补水泵进而改变补水泵转速。调节补水量使恒压点压力维持在给定值,当系统压力值低于下限时,补水泵启动进行补水,当压力值超过上限值,电磁阀自动启动泄至补水箱。 5、结束语补水泵变频调速定压的节能效果是明显的,与补水泵连续运行定压相比较,节省补水泵系统上调节阀的节流损耗。对于间歇运行的补水泵定压,因补水泵启动频繁,不但影响补水泵寿命,而且多耗费了电能。水泵在启动时,由于电机的定子、转子的转差大,通常电机的启动电流约为额定电流的 6~7 倍,进而其启动功率约比额定功率大 30%左右。由于变频器可以使补水泵在额定电流下启动,且启动频率不频繁,因此变频调速定压比起间歇运行定压来,省电效果也是明显的。与气体定压罐比较,特别是供热规模较大,定压罐容积较大时,补水泵变频调速定压方式即使在经济上也是占优势的。

太阳能热水器集中供热系统设计实例

太阳能热水器集中供热系统设计实例 作者:陈伟日期:2002-4-18 0 前言目前我国大力提倡环境保护和能源节约,使得太阳能技术得到长足的发展。家用太阳能热水器走进了千家万户。据资料显示:太阳能热水器具有节约常规能源、不会造成环境污染、使用方便、经济效益明显等优点。浙江省年平均日照量在2000h 以上,太阳能的利用具有很大的潜力。但是太阳能热水系统尚未纳入建筑给排水设计,造成住户在购买商品房后各自安装太阳能热水器,因没有统一的规划,使得布置上零零落落;且现在新建住宅取消屋顶生活水箱,采用变频泵供水,住户只好用塑料管沿外墙把冷水接至太阳能热水器,再沿外墙把热水引下,在外墙凿洞进入室内。由于所采用的塑料管颜色不一、管径各异,未采取可靠的固定措施,一遇大风随风摆动,极易造成事故;且水管如蜘蛛网般布在外墙面,墙面上千疮百孔,遇漏水,墙上水渍斑斑,严重影响市容市貌。针对上述情况,笔者考虑在住宅给排水设计时应把太阳能热水系统作为设计内容之一,以避免上述情况的出现。本文是太阳能热水器集中供热系统在住宅小区的设计应用情况,不足处敬请同行指正。 1 工程概况该住宅小区位于浙江省衡州市城东,分四期开发。前三期未考虑太阳能热水系统,住房出售后住户反映强烈,因安装热水器而引起的邻里纠纷不断。四期建筑面积万m2,都为6层带跃层住宅一梯两户,为坡屋顶。供水方式为小区消防生活水池-变频泵-用户,取消屋顶生活水箱。水池集中设置在小区绿化带内。结合前三期的经验,改变以往先建设后配套造成的重复施工、重复破坏,并相互抢占屋面、安装混乱的不合理做法。决定四期工程太阳能热水系统与主体同步设计、施工,并同步交付使用。设计中优化太阳能屋面热水器设置及循环水系统,有效利用屋面空间、科学选择热水器朝向、合理配管、充分发挥设备功效。 2 太阳能热水器的选型浙江省市场上太阳能热水器品牌繁多,所以选型是整个设计的关键。设计人员协同开发商本着如下原则选型:①生产厂家应具有多年的生产经验、技术力量雄厚,有完善的售后服务体制。②太阳能热水器贮水箱耐腐蚀、无毒、保温性能好、外形美观。③要求产品热效高、强度大、质地轻、设备运行可靠、故障少。④价格合理,以减少开发商的投资。经多方比较后,确定选用带卧式副水箱全自动型产品(坡屋顶式)。该型号适用于坡屋顶,克服了现有技术各种太阳能热水器重心高,在坡屋顶上安装困难等缺点,安全可靠、外形平整,成片安装整齐美观。安装贮水箱位置由建筑专业做相应处理。表1为该产品与浙江省家用太阳能热水器地方标准的比较情况,表2为该产品性能参数。表1 选定产品与省标比较表2 性能参数从表2中可以看出该产品具有以下优点: (1)集热效率高。外表面采用选择性Al一N/Al 吸收涂层,该涂层对太阳能吸收率高达以上,发射率<内外管间真空度< 5×10-3Pa,空晒温度可达250℃左右;夏季水温可达90℃,冬季也能产生45℃以上热水。(2)保温性能好。该水箱保温层由高效保温材料聚苯乙烯与聚胶脂发泡而成,保温性能是普通聚苯乙烯泡沫板的3倍,能保温48h以上。(3)使用寿命长。产品外壳采用进口双涂彩板和不锈钢,防腐抗老化性能好。真空集热管采用特硬高砌硅玻璃制造,能承受压力和2.5cm冰雹,理论寿命为15年。

热水采暖系统实验(学生)

热水采暖系统实验 实验说明书 土木工程系暖通实验室 编制人:王春慧

一、概述 热水采暖系统是由热水锅炉、供热管道、散热设备三个基本部分组成。其工作过程为:先用锅炉将水加热,然后用水泵加压,热水通过加热管道供给在室内均匀安装的散热器,在通过散热器对室内空气进行加温。整个系统为循环系统,冷却后的水重新回到锅炉进行加热,进入下一次循环。 二、实验目的 1、了解常见的采暖系统形式,掌握系统中各部件的作用及其连接方式,巩固课堂学习的知识。 2、认识和了解热水在系统中及散热器内的流动情况和规律。 3、认识和了解空气在系统中存在的情况,认识排除空气的重要性及其排气措施。 三、实验原理 重力自然循环热水供暖系统工作原理如图1所示,系统循环作用压力为: ()g h gh P P P ρρ-=-=?21 机械循环热水采暖系统的作用压头为水泵的压头和自然作用压头的共同作用,如图2所示。 图1 重力自然循环热水供暖系统工作原理 图2 机械循环热水供暖系统工作原理 四、实验装置 B C 2 43 35ⅠⅡ ⅢⅣ Ⅴ 图3 热水采暖系统观测实验装置示意图 1—水箱;2—循环水泵;3—集气罐;4—散热器;5—膨胀水箱 Ⅰ—水平式顺流式系统;Ⅱ—水平式跨越式系统;Ⅲ—垂直式单管跨越式系统; Ⅳ—垂直式单管顺流式系统;Ⅴ—双管系统

五、实验内容和步骤 1、实验前准备工作: 1)、掌握热水采暖系统的分类方法: A、按系统循环动力分 B、按供回水方式不同分 C、按系统管道敷设方式分 D、按热媒水温度分 2)、机械循环热水供暖系统的主要型式及其特点: A、按供、回水干管布置位置不同分:a、上供下回式b、下供下回式c、中供式d、下供上回式(倒流式)e、混合式 B、按供回水方式不同分为:双管和单管系统。 C、按管道敷设方式不同分为:垂直式和水平式。 D、按供回水通过各立管的循环环路的总长度是否相等分为:同程式和异程式。 2、系统的充水与排气 系统工作前,先将水充满给水箱1,然后打开阀门B和C,同时启动水泵2,向系统充水。充水时,不断的开闭集气罐放气阀,让系统中的空气从集气罐3和膨胀水箱5中排出。待充水到一定程度,当集气罐溢管有水流出时,关闭集气罐溢流阀门,水位继续上升,当自来水从膨胀水箱溢流管流出时,停止充水。若水位下降,就再次充水,直到水位在溢流管处为止。 当水位有所下降时,应分析其原因: A、系统内可能仍有空气存在; B、系统、设备、管道及阀门是否有漏水现象。 演示中,应观察: A、在充水过程中,对于下供上回式系统是怎样排气的? B、如不排除系统中存在的空气,对系统的正常运行有何影响? 3、机械循环演示 系统充满水后,启动锅炉,加热系统中的水,打开阀门B,C,热水在水泵的作用下,沿供水干道进入散热器。并通过散热器将热量散放到采暖房间。温度降低了的水从散热器流出,沿回水干道进入水泵加压,流回锅炉再加热。 演示中,应注意观察: A、带跨越管的单管立管中,热水流量的分配情况如何? 4、停止演示运行 A、先拉开电加热器的电闸。 B、再拉开水泵的电闸。 C、打开泄水阀门,使水从系统中排掉。 六、实验报告的编写 实验报告的内容包括实验目的、实验原理、实验步骤并回答下列思考题: 1、膨胀水箱的底为什么比排气设备的底要高? 2、膨胀水箱有几根连接管,各起什么作用?每根连接管上是否可以安装阀门? 3、本演示实验系统中,室内热水采暖系统有几种连接方式,画出各种连接方式的原理图并简述其特点。

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

浅谈集中供热水系统

浅谈集中供热水系统 摘要:浅谈集中供热水系统,以及集中供热系统中的能量消耗和热水采暖中常出现的问题。 集中供热水系统是由集中热源所产生的热水通过管网供给一个城市或部分地区生产和生活使用的供热方式,它由热源、热网、热用户三个部分组成。集中供热系统,具有节约能源、减少污染、有利生产、方便生活的综合经济效益、环境效益和社会效益。简单的说一下集中供热系统的特点: 1、有较好的经济效益。因集中供热用的锅炉容量大,热效率高,可以达到90%以上,而分散供热的小型锅炉热效率只有60%左右,或更低。因此城市集中供热代替分散供热综合起来可节约20到30%的能源。 2、有良好的环境效益。城市污染主要来源于煤直接燃烧产生的二氧化碳和烟尘。集中供热的锅炉容量大,有较完善的除尘设备,采用高效率的除尘器,能有效降低城市污染。

一、浅谈集中供热系统的能源消耗 1.供热系统消耗能量的环节 供热系统由热源反热能送达热用户,一般都要经过热制备、转换、输送和用热这几个环节。 我国城市集中供热热制备主要来自燃烧化石燃料(煤、油、气)的区域锅炉房和城市热电厂。我们来谈的是区域锅炉房。区域锅炉房的主要耗能设备是锅炉、燃料输送及灰渣清除机械、鼓风机和引风机、水制备和输配系统的水泵(循环水泵、补水泵和加压泵);它们耗用的能源是燃料、电力、水和热;通常可以用单位供热量的消耗量来评定耗能水平。 热能输送由热网承担,供热管道由钢管、保温层和保护层组成,其结构依敷设而异。管道敷设有架空、管沟和直埋三种方式。它们的能量消耗是沿途散热的热损失和泄漏的水、热损失。一般可用热网热效率来表示其保温效果和保热程度;热网补水率来表示热网水泄漏的程度。在热网管线上有时还设置中间加压泵,以降低和改善系统水力工况(设置在非空载干线上,还能节省输送电耗),它的能量消耗设备是水泵,可用单位供热量的耗电量来评定耗能水平。 能量转换是通过热力站交换器把一级网的热能传递给二级网,并由它输送到热用户。热力站是二级网的热源,主要耗能设备是热交

蒸汽采暖系统与热水采暖系统的优缺点分析

蒸汽采暖系统与热水采暖系统的优缺点分析 蒸汽采暖系统与热水采暖系统的优缺点分析 蒸汽采暖的概念: 它是以蒸汽为热媒进行采暖的一种方式。水在锅炉的锅筒内加热蒸发,在锅筒的上部空间因不断地加热蒸发而变成饱和蒸汽和过热蒸汽。当 锅筒内空间达到一定的压力,将具有一定压力的蒸汽通过管道输送到 散热设备称为蒸汽采暖。 蒸汽采暖系统的优点: (1)热媒温度度,热效率高,又蒸汽在管内允许流速较大,所以可节省 管材和散热器的数量。 (2)由于蒸汽密度比水小用于高层建筑采暖,底层散热器不会出现超压 现象。 (3)因蒸汽是靠自身蒸汽压力输送到系统中去的,凝结水靠其管道坡度 及疏水器余压流至凝结水箱(或池)内。节省了输送介质的动力设备的 投资和运行中电耗的费用,易于管理。 蒸汽采暖系统的缺点: (1)因管道和散热器表面温度高(尤其高压蒸汽),灰尘聚积后易产生升 华现象并产生异味。污染室内空气,容易烫伤人。 (2)蒸汽采暖可使室内空气干燥,热惰性较小。室温随供暖间歇波动较大,骤冷骤热易使管件和散热器连接处泄漏,维修量较大。 (3)因系统的泄漏、锅炉运行时的排污、疏水器漏汽、凝结水回收率低 等因素造成无效热损失较大。 (4)系统停运时,系统充满空气,易造成管内壁腐蚀,缩短使用寿命。 热水采暖系统的优点:

(1)因热媒温度较低,室内卫生条件较好,而系统水容量大。室温波动较小,人有舒适感,不燥热。 (2)系统不易泄漏,无效热损失少,因此燃料消耗量较低。 (3)不管系统运行与否,管内均充满水,空气氧化腐蚀较小,管道使用寿命较长。 (4)可在锅炉房(或换热站)内,根据室外温度变化,集中调节供水温度和循环流量,以满足室温恒定要求,因此供暖的质量较高。 (5)易于维修管理,泄漏少。 热水采暖系统的缺点: (1)系统在停运时,系统静水压力较大。在高层建筑内,底层散热器易发生超压现象。 (2)热水系统是靠水泵来克服系统阻力而循环的,因系统水容量大,因此循环水泵的功率大,耗电量多,增加运行费用。 (3)当采用热水采暖时,管内流速不宜过大,因流速过大会增加摩擦阻力损失而加大循环动力,因此管径选择应满足在规定的流速值之内,管径比蒸汽采暖偏大。 室内蒸汽采暖系统通暖应注意事项: (1)蒸汽采暖通暖时,应逐渐打开蒸汽入口阀门,让蒸汽逐渐进入系统进行暖管。温度较高的蒸汽如流速过大,使管道骤热而伸缩不利。也易使空气来不及排出而出现水击。 (2)蒸汽进入后很快即冷凝成凝结水,此时应打开凝结水干管的疏水器组的旁通阀迅速排除凝结水,然后再逐渐开大蒸汽阀门。旁通管冒汽后,关闭旁通管阀门,疏水器组正常工作。 (3)应逐组打开散热器手动排气阀排除散热器内的空气,打开凝结水或绕门弯处的排气阀进行系统排气。

最新1-1-1-1自然循环热水供暖系统工作原理及系统形式

项目一:室内热水供暖工程施工 模块一:识读、绘制室内热水供暖系统施工图 单元1 热水供暖系统形式 1-1-1-1自然循环热水供暖系统工作原理及系统形式 1.自然循环热水供暖系统的工作原理 图 1-1-1为自然循环热水供暖系统的工作原理图。图中假设系统有一个加热中心(锅炉)和一个冷却中心(散热器),用供、回水管路把散热器和锅炉连接起来。在系统的最高处连接一个膨胀水箱,用来容纳水受热膨胀而增加的体积。 运行前,先将系统内充满水,水在锅炉中被加热后,密度减小,水向上浮升,经供水管道流入散热器。在散热器内热水被冷却,密度增加,水再沿回水管道返回锅炉。 在水的循环流动过程中,供水和回水由于温度差的存在,产生了密度差,系统就是靠供、回水的密度差作为循环动力的。这种系统称为自然(重力)循环热水供暖系统。 图1-1-1 自然循环热水供暖系统工作原理图 1-热水锅炉 2-供水管路 3-膨胀水箱 4-散热器 5-回水管路 2.自然循环热水供暖系统的形式特点 图1-1-2是自然循环热水供暖系统的两种主要形式,左侧立管为双管上供下回式系统;右侧立管为单管上供下回式(顺流式)系统。上供下回式系统的供水干管敷设在所有散热器之上,回水干管敷设在所有散热器之下。

图1-1-2 自然循环热水供暖系统 1-回水立管 2-散热器回水支管 3-膨胀水箱连接管 4-供水干管 5-散热器供水支管 6-供水立管 7-回水干管 8-充水管(接上水管) 9-止回阀 10-泄水管(接下水道) 11-总立管 (1)自然循环双管上供下回式系统,其特点是:各层散热器都并联在供、回水立管上,热水直接流经供水干管、立管进入各层散热器,冷却后的回水经回水立管、干管直接流回锅炉,如果不考虑水在管道中的冷却,则进入各层散热器的水温相同。分析该系统循环作用压力时,因假设锅炉是加热中心,散热器是冷却中心,可以忽略水在管路中流动时管壁散热产生的水冷却,认为水温只是在锅炉和散热器处发生变化。 (2)自然循环单管上供下回式系统,其特点是:热水进入立管后,由上向下顺序流过各层散热器,水温逐层降低,各组散热器串联在立管上。每根立管(包括立管上各组散热器)与锅炉、供回水干管形成一个循环环路,各立管环路是并联关系。 3. 热水供暖系统的排空气问题 无论是自然循环还是机械循环热水供暖系统,都应考虑系统充水时,如果未能将空气完全排净,随着水温的升高或水在流动中压力的降低,水中溶解的空气会逐渐析出,空气会在管道的某些高点处形成气塞,阻碍水的循环流动。空气如果积存于散热器中,散热器就会不热。另外,氧气还会加剧管路系统的腐蚀。所以,热水供暖系统应考虑排空气的问题。 4. 自然循环上供下回式热水供暖系统排空气及供回水干管的坡度设置 在自然循环系统中,水的循环作用压力较小,流速较低,水平干管中水的流速小于0.2m /s,而干管中空气气泡的浮升速度为0.1~0.2 m/ s ,立管中约为0.25 m / s ,一般超过了水的流动速度。此外,自然循环上供下回式热水供暖系统的供水干管应设沿水流方向下降的坡度,坡度值为0.5%~1.0%。散热器支管也应沿水流方向设下降坡度,坡度值为1%,因此空气能够逆着水流方向向高处聚集。自然循环上供下回式热水供暖系统可通过设在供水总 立管最上部的膨胀水箱排空气。

第三章 热水供暖系统 第一节

济南铁道职业技术学院 教师授课教案 20____/20____学年第____学期课程供热工程 目的要求: 1、掌握重力循环热水供暖系统的工作原理及其作用压力; 2、掌握重力循环热水供暖单、双管系统的作用压力的计算; 3、重力循环热水供暖例题。 旧知复习:作用压力的确定。 重点难点: 重点:重力循环热水供暖单、双管系统的作用压力的计算。 难点:重力循环热水供暖单、双管系统的作用压力的计算。 教学过程:(包括主要教学环节、时间分配) 一、复习(5分钟) 二、新课 1、重力循环热水供暖系统的工作原理及其作用压力(10分钟) 2、重力循环热水供暖单管、双管系统的作用压力的计算(35分钟) 3、例题(35分钟) 三、小结及作业(5分钟) 课后作业: 简述重力循环热水供暖单、双管系统的作用压力的区别。 教学后记: 此处相对较枯燥,注意通过单、双管的比较,加强学生理解。 任课教师教研室主任:

济南铁道职业技术学院授课教案附页 第 页 任课教师 郑枫 教研室主任 张风琴 年 月 日 第三章 热水供暖系统 以热水作为热媒的供暖系统,称为热水供暖系统。从卫生条件和节能等考虑,民用建筑应采用热水作为热媒。 热水供暖系统,可按下述方法分类: 1.按系统循环动力的不同,可分为重力(自然)循环系统和机械循环系统。 2.按供、回水方式的不同,可分为单管系统和双管系统。 3.按热媒温度的不同,可分为低温水供暖系统和高温水供暖系统。 在我国,习惯认为:水温低于或高于100℃的热水,称为低温水,水温超过100℃的热水,称为高温水。 室内热水供暖系统,大多采用低温水作为热媒。 设计供、回水温度多采用95℃/70℃(也有采用85℃/60℃)。 高温水供暖系统一般宜在生产厂房中应用。设计供、回水温度大多采用120~130℃/70℃~80℃。 第一节 重力(自然)循环热水供暖系统 一、重力循环热水供暖的工作原理及其作用压力 图3—1是重力循环热水供暖系统的工作原理图。 重力循环热水供暖系统的循环作用压力的大小, 取决于水温(水的密度)在循环环路的变化状况。 先不考虑水在沿管路流动时因管壁散热而使水不 断冷却的因素。 设P1和P2分别表示A-A 断面右侧和左侧的 水柱压力,则: ) (g h h h h h g P ρρρ101++= Pa ) (g g h h h h g P ρρρ102++= Pa 断面A-A 两侧之差值,即系统的循环作用压力为: ) (g h gh P P P ρρ-=-=?21 Pa 起循环作用的只有散热器中心和锅炉中心之间这段高度内的水柱密度差。 二、重力循环热水供暖系统的主要型式 重力循环热水供暖系统主要分双管和单管两种型式。 左右

集中供热系统由三大部分组成

1、集中供热系统由三大部分组成:热源、热力网(热网)、和热用户 2、供暖系统热负荷:是指在某一室外温度下,为了达到要求的室内温度,供暖系统在单位 时间内向建筑物供给的热量。它随着建筑物得失热量的变化而变化。 3、供暖系统设计热负荷:是指在设计室外温度下,为了达到要求的室内温度t n,供暖系 统在单位时间内向建筑物供给的热量。 4、热负荷计算包括的内容:(1)、供暖房间失热量: a、围护结构的耗热量 b、加热经门、 窗缝渗入室内的冷空气耗热量,称冷风渗透耗热量。c、加热由门、孔洞及相邻房间侵入的冷空气额耗热量,称冷风侵入耗热量。d、加热由外部运入的冷物料和运输工具等的耗热量。e、通风系统将空气从室内排到室外所带走的热量,称通风耗热量。f、水分蒸发耗热量。 (2)供暖房间得热量:a、最小负荷班的工艺设备散热量。b、热管道及其他热表面的散热量。c、热物料的散热量。 (3)通过其他途径散失或获得的热量。 5、散热器的计算:散热器散热面积按下式计算 F-散热器的散热面积(m2) Q-散热器的散热量(W) K-散热器的传热系数【W/(m2℃)】 Tpj- 散热器内热媒平均温度 tn-供暖室内计算温度 -散热器组装片数修正系数 散热器连接方式修正系数 散热器安装形式修正系数 6、低温热水地板辐射供暖的特点:1、热舒适度高2、节约能源3、不占据室内地面有效空 间4、房间热稳定性好5、便于实现分户热计量6、有利于隔声和降低楼板撞击声 7、重力循环热水供暖系统的基本原理

8、 重力循环系统作用压力的计算 9、 单管系统各层水温计算 10、 膨胀水箱的作用是用来贮存热水供暖系统加热后的膨胀水量。水箱上连有膨胀管、 溢流管、信号管、排水管及循环管路等管路。膨胀管与供暖系统的连接点,在机械循环系统中,一般接至循环水泵吸入口处。 11、热负荷延续时间图、 绘制方法1、确定热水网路水压图的基准面及坐标轴。 2、选定静水压曲线的位置 3、选定回水管的动水压曲线的位置 4、选定供水管动水压曲线的位置 12、供暖热用户与热水外网的连接方式:直接连接和间接连接 直接连接:无混合装置的直接连接、 装水喷射器的直接连接:这种系统不需要其他能源,而是靠外网与用户 系统连接处供、回水压差工作的。 装混合水泵的直接连接 13、热水网路压力状况的基本技术要求:不超压、不汽化、不倒空、保证热用户有足够的资用压力、热水网路回水管内任何一点的压力,都应比大气压力至少高出50kp ,以免吸入空气。 14、选择循环水泵时,应注意: 1、循环水泵的流量-扬程特性曲线,在水泵工作点附近应比较平缓,以便当网路水力工况发生变化时,循环水泵的扬程变化较小。 2、循环水泵的承压、耐温能力应与热网的设计参数相适应。 3、循环水泵的工作点应在水泵高效工作范围 4、循环水泵的台数选择,与热水供热系统所采用的供热调节方式有关。不得少于两台 5、当多台水泵并联运行时,应绘制水泵和热网水力特性曲线,确定其工作点,进行水泵选择。 15、热水网路补水装置的选择:1.流量 主要取决于整个系统的渗漏水量。闭式热水管网补水装置的补水量,不应小于供热系统循环流量的2%;事故补水量不应小于供热系统循环流量的4%;对开式热水供热系统,开式热水网路补水装置的补水量,不应小于生活热水最大设计流量和供热系统泄漏量之和。 2,压力 补水压力不应小于补水点管道压力再加30~50Pa 。当补水泵同时用于维持管网静态压力时,其压力应满足静态压力的要求 H ——热水网路补给水泵的扬程,Pa ; H b ——热水网路补水点的压力值,Pa ; H xs ——补给水泵吸水管路的压力损失,Pa ; H ys ——补给水泵压出管路的压力损失,Pa ; h ——补给水箱最低水位高出补水点的高度,m 。 3,补给水泵台数 闭式热水供热系统的补给水泵台数,不应少于两台,可不设备用泵,正常时一台工h H H H H ys xs b -++=

热水采暖系统常见故障的排除

热水采暖系统常见故障的排除 摘要:热水采暖系统常见故障的排除,局部散热器不热 ,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。 关键词:热水采暖系统常见故障排除东北地区局部散热器热力失效回水温度故障排除 东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显着优越性得到广大用户的青睐。 目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。 一、局部散热器不热 局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。 管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。 采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。 室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道改正过来。 二、热力失效 采用双管上分式采暖系统时,多层建筑上层散热器过热,下层散热器过冷。产生这种垂直热力失调的原因有两种可能。 其一,通过上下层散热器的热媒流量相差较大。排除这种故障的方法是关小上层散热器支管上的阀门,以减少其热媒流量。 其二,支管下端管段被氧化铁皮、水垢等堵塞,增加了该循环系统的阻力,破坏了系统各环路压力损失的平衡。对于这种情况及时清除管段中的污物或更换支立管,减少阻力损失,恢复系统各

谈热水锅炉与热水采暖系统

谈热水锅炉与热水采暖系统 标签:热水锅炉热水系统安全、经济运行 热水采暖由系统内热损失小,节省燃料,采暖温度稳定,维护费用低廉等优点,正在得到大力发展。而且有取代蒸汽采暖的趋势。热水采暖与蒸汽采暖相比,虽然安全系数大、采暖效率高,但同样有不可忽视的安全问题和节能问题。 一、要尽可能按连续运行方式选择锅炉 在热水采暖设计中,建筑物采用多大的热负荷,即每平方米建筑面积按多少供热量考虑,决定了锅炉容量的大小。正确合理地选择锅炉的容量,对锅炉房的造价、锅炉设备的安全经济运行具有重要的意义。决定建筑物采暖热负荷大小的重要因素之一是热水锅炉的运行方式。热水锅炉的运行方式分为连续供热和间歇供热两种。所谓连续供热方式是指在最冷的一些日子里,锅炉应该全天不停地连续按设计时规定的热媒温度(例如:低温热水规定95C)供热,才能保定室内温度,满足设计要求(例如20C)而间歇运行方式是指在最冷的日子里,锅炉也间断运行,来满足设计要求。据调查,大部分热水采暖的用户都采用间歇供热方式。既在最冷的日子里,每天供热3~5次,每次2~3小时。有些同志认为,这样做可以节省燃料,减少司能炉工人的劳动强度。其实这是一种误解。根据能量守恒原理,同一所房屋在一天之内的总供热量不论采用什么供热方式都是相同的。供热时间越长,单位时间供应的热量就越少;供热时间越短,单位时间供应的热量就越多。例如:若维持一个房间温度为20C,连续供热时如果需要1000W,而每天只供热8小时,则在供热时间内就要求供热强度为3000W才行,可见,热水采暖系统和热水锅炉就要增大三倍,造成散热器、管道和锅炉设备的很大浪费。那么,到底采用多大设计热负荷为好,根据市区内的实际调查结果,以住宅为例,认为采用50~60W/M是恰当的。如选用0.7MW的热水锅炉,可满足11000~13000M的取暖需要(在保温条件具备的情况下)。为什么现在都希望把采暖热负荷选得较高这是由于多年来采用不合理的间歇运行方式所造成的假象。此外,目前热水锅炉管理水平低,系统热力、水力工况失调(如近处热、远处冷等),热水锅炉的实际出力不足等都使人们习惯于把采暖热负荷选得高一些。这种习惯势力,即造成了锅炉房设备和热网的很大浪费,又产生了许多不良后果。 第三、热负荷选得较高,就不可避免地出现长时间的压火现象。在压火期间,倘若水泵停转,水流停止,炉火中析出的气泡就会附在管壁上,造成锅炉受热面的腐蚀。影响锅炉强度,缩短锅炉寿命。倘若水泵继续运行,增加电耗,浪费能源。 综上所述,采用热水采暖时,在可能的条件下,应尽量推广连续运行方式。只要能满足取暖需要,尽可能把采暖热负荷选得低一些。这样,既节省了建设初投资,又提高了锅炉热效率,提高了锅炉运行的安全可靠性和减轻司 炉工人的劳动强度。

第三章、供暖工程

第三章、供暖工程课程 名称建筑设备 授课 对象 建筑工程技术、工程造价、工程监 理专业学生 授课章节 第三章、供暖工程授课学时数10学时 基本教材或主要参考书教材:中国建筑工业出版社《建筑设备》 贾永康主编 参考书:《实用供热空调设计手册》中国建筑工业出版社陆耀庆《供热工程》第三版建筑工业出版社 教学目的与 要求通过一个综合项目的实施,使学生能达到预定的学习目标,包括 知识目标、能力目标和素质目标。 教学内容与时间安排第三章、供暖工程 第一次课:引入项目,介绍供暖基本知识(2) 第二次课:子项目一、散热器的类型及片数确定(2) 第三次课:子项目二、锅炉的选择(2) 第四次课:子项目三、管道的选择;子项目四、管路的布置与敷设(2)第五次课:项目中未涉及的知识(2) 教学重点与难点 掌握热水采暖系统的工作原理及采暖系统的形式;采暖系统的布置和敷设;建筑采暖施工图的识读方法

考核方式闭卷考试+实践 第三章、供暖工程 项目教学法: 在供暖整个教学过程中,为把理论和实践有机的结合起来,挖掘我们同学的创造潜能,提高综合运用知识的能力和解决实际问题的能力,我们采用项目教学法,即师生通过共同实施一个完整的项目而进行的教学活动,要求同学们运用自己所学过的知识来处理一个相对独立的项目。 项目:给济南市槐荫区营市东街42号楼3单元303室安装一套自然循环热水采暖系统(即土暖气) 提供:资金、安装过程中用到的设备(如管道连接用设备和墙壁打洞用设备)。

要求:同学们自己去购买设备、管材为用户安装一套自然循环热水采暖系统(土暖气)并调试运行。 讨论: (1)同学们考虑接到项目后要按什么步骤实施该项目? (2)同学们考虑在项目的实施过程中有可能碰到哪些方面的问题? 通过这个项目的实施我们的学习目标是: 职业培养目标 知识目标:掌握供暖工程中各系统的组成及工作原理,并了解系统中各设备的具体组成和工作原理;掌握管道布置和敷设的基本要求。 能力目标:通过学习使学生能基本达到可在无老师指导的情况下看懂供暖的施工图;具备认识供暖系统中各种实物的能力;能运用所学知识进行供暖系统的安装施工;具备协调各专业之间关系、保护建筑本体和供暖设备的能力。 素质目标:通过本课程的学习使学生具备自我学习的能力,使用工具的能力,并养成有计划性、细心、全面考虑问题的职业素质,培养细致到位、合作、高效的工作习惯。 我们通过分析发现,一个供暖系统由三个部分组成,即热源、供热管道、及散热设备,具体到我们这个项目就是由管子、炉子、散热器(暖气片)组成。所以我们在工作过程中可能碰到的无外乎以下四个方面的问题: 炉子怎么选? 暖气片怎么选? 管子怎么选? 怎样把它们布置安装在一起? 要想完成该综合项目必须先完成以下四个子项目: 子项目一:散热器的类型及片数的确定

热水集中供暖系统常见问题及解决方法

热水集中供暖系统常见问题及解决方法 根据近年的技改和运行管理经验,就我国目前供暖系统普遍存在的共性问题,如水力失调、系统积气、系统失水以及系统压力不稳定等做了简要分析,提出了解决方案,并列举了我单位某供暖系统技改的实例。 标签:集中供暖;冷热不均;二次管网;失水 引言 新中国成立以来,随着国民经济建设的发展和人民生活水平的不断提高,我国供暖事业得到了迅速的发展。热水集中供暖系统因其热能利用率高、卫生条件好、输送距离远、供热半径大、供热工况稳定及可有效利用热电厂汽轮机的低压蒸汽、经济效益高等优点而被广泛使用在各类建筑中。 1、热水集中供暖系统常见的问题 1.1冷热不均 热用户间冷热不均现象在热水集中供暖系统中非常常见,其主要是由热用户之间水力失调引起的。热水供暖系统中,各热用户的实际流量与要求的流量之间的不一致性,称为该热用户的水力失调。水力失调在热水集中供暖系统中十分常见,其具体表现为垂直失调和水平失调两种形式。 1.1.1垂直失调 在供暖建筑物内,同一竖向的各层房间的室温不符合设计要求的温度,而出现上、下层冷热不均的现象,称为系统垂直失调。随着科学技术的发展及城市土地资源的日趋紧缺,我国的住宅等建筑逐步向高层、超高层方向发展。而在建筑高度增加的同时,热水集中供暖系统垂直失调问题也日趋严重,经常出现供暖系统上、下层部分房间温度过高、散热器散热能力得到抑制,部分房間温度又达不到设计要求的现象,严重影响了房间的舒适度。 1.1.2水平失调 供暖系统中,在远近立管处出现流量失调而引起在水平方向上冷热不均的现象,称为系统的水平失调。常见的水平失调现象就是供暖系统“近热远冷”,其供热品质极为恶劣。为满足远端用户的需求,供热企业经常采用“大流量、小温差”的运行方式,这种运行方式在一定程度上提高了远端用户的室温,但是冷热不均现象仍然存在,且供暖系统能耗大大增加,严重违背了“绿色、低碳、节能、环保”的发展要求。 1.2二次管网失水严重

热水采暖系统的分类与特点

热水采暖系统的分类与特点 一、重力循环与机械循环1.重力循环膨胀水箱作用1)吸纳系统水温升高时热胀而多出的水量;2)补充系统水温降低和泄漏时短缺的水量;3)排除水在加热过程中所释放出来的空气;4)稳定系统的压力。2.重力循环:水平供水干管标高应沿水流方向下降,气水逆向流动。3.优缺点:不需要外来动力,运行时无噪声,调节方便,管理简单;由于作用压头小,所需管径大,只宜用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。4.机械循环:膨胀水箱不能排气,供水干管末端集气罐,干管向集气罐抬起。二、按供水温度分类1.高温水采暖系统:供水温度高于100℃的系统;2.低温水采暖系统:供水温度低于100℃的系统;高温水采暖系统优缺点:散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,但可节省散热器用量,供回水温差较大,可减小管道系统管径,降低输送热媒所消耗的电能,节省运行费用。3.用于对卫生要求不高的工业建筑及其辅助建筑中。4.低温水采暖系统是民用及公用建筑的主要采暖系统型式。三、按供回水的方式分类1.上供下回式:布置管道方便,排气顺畅, 用得最多。 2.上供上回:采暖干管不与

地面设备及其它管道发生占地矛盾,但立管消耗管材量增加,立管下面均要设放水阀,主要用于设备和工艺管道较多的、沿地面布置干管发生困难的工厂车间。 3.下供上回:称为倒流式系统,无效热损失小,底层散热器平均温度升高,从而减少底层散热器面积,有利于解决一层散热器面积过大,难于布置的问题。立管中水流方向与空气浮升方向一致,有利于排气,当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。 4.下供下回:供水干管无效热损失小、可减轻竖向失调,有利于水力平衡。天棚下无干管比较美观,可以分层施工,分

相关文档
最新文档