成本最小化
16第十六讲 成本最小化

2018/1/4
三、显示的成本最小化 1.显示成本最小化弱公理(产量固定) 假定观察到两组要素价格 w ,w 和 w ,w ,与此相应的 厂商的选择分别为 x ,x 和 x ,x 。如果每一种选择按相应 的价格都是成本最小化的选择,那么一定有:
t 1 t 2
s 1 s 2
一、成本最小化 1.成本最小化数理形式 成本最小化的问题就是在生产既定产量y的条件下 的最优投入选择。最优化问题的数学形式为:
min w1 x1 w2 x2
s.t. f x1 , x2 y
x1 , x2
数理方法可得成本最小化条件:
w1 MP 1 x w2 MP2 x
2.沉没成本 沉没成本也称为沉淀成本,是指已经发生而无法收 回的支出。 沉没成本通常是可见的,但一旦发生以后,在做出 经济决策之时经常被人们忽视。由于它是无法收回的, 因而不会影响企业的决策。
1 2 1 2
p2 数理方法解得: x1 4w12
(2)既定产量水平的最小成本选择的数学表达式为:
min w1 x1 w2 x2
x , x2 1
s.t. x1 x2 y
求解可得:
x1
x , w w 此即为条件要素需求函数,表示既定产量水平的最 小成本选择。
w
1 w2
x1 x1 y
x2 x2 y
长期成本函数也可以记为:
c y cs y, x2 y
该方程表示,在所有要素都可自由变动时的最小成 本,恰好就是要素2固定在使长期成本最小化的水平上 时的最小成本。
六、成本概念 1.不变成本和准不变成本 不变成本是指与不变要素(固定要素)相关的成本 ,即不论企业生产与否都必须支付的成本。 准不变成本是指与产量无关的成本,只要企业生产 一定单位的产量,它就必须支付这种成本。 长期不存在不变成本,但却可能有准不变成本。
成本最小化公式

成本最小化公式摘要:一、引言二、成本最小化公式的概念与意义三、成本最小化公式的推导与计算四、成本最小化公式在实际应用中的案例分析五、结论正文:一、引言成本最小化是企业在生产、经营过程中追求的目标之一。
为了降低成本、提高效益,企业需要对各项成本进行分析和控制。
成本最小化公式作为一种理论工具,为企业实现成本最小化提供了依据。
本文将围绕成本最小化公式展开讨论,分析其概念、意义、推导方法以及在实际应用中的价值。
二、成本最小化公式的概念与意义成本最小化公式是一种数学模型,用于描述在一定条件下实现成本最小化的方法。
它可以帮助企业在生产、经营过程中,通过对各项成本进行量化、比较和优化,找出成本最低的生产要素组合,从而实现成本最小化。
成本最小化公式具有重要的实践意义,它为企业降低成本、提高效益提供了理论指导。
三、成本最小化公式的推导与计算成本最小化公式可以根据不同的成本类型和生产要素进行推导。
以下是成本最小化公式的一般推导过程:1.设定成本函数:C(x1, x2, ..., xn) = a1x1 + a2x2 + ...+ anxn,其中x1、x2、...、xn 为生产要素的数量,a1、a2、...、an 为生产要素的单位成本。
2.求导数:dC/dx1 = a1, dC/dx2 = a2, ..., dC/dxn = an3.令导数等于零,求得临界点:dC/dx1 = a1 = 0, dC/dx2 = a2 = 0, ..., dC/dxn = an = 04.计算最优生产要素组合:x1* = x1 临界点,x2* = x2 临界点,..., xn* = xn 临界点5.代入成本函数,求得最优成本:C 最小= C(x1* x2* ...xn*)四、成本最小化公式在实际应用中的案例分析以一家制造企业为例,该企业生产一种产品,需要投入劳动力、原材料和设备等生产要素。
企业可以通过成本最小化公式,找出实现成本最小化的最优生产要素组合。
成本最小化公式

成本最小化公式(最新版)目录1.成本最小化公式的定义与意义2.成本最小化公式的计算方法3.成本最小化公式的应用实例4.成本最小化公式在实际生活中的作用正文【1.成本最小化公式的定义与意义】成本最小化公式是一种经济学中的基本概念,用于描述在特定条件下,如何使总成本最小化的方法。
在生产、经营和其他领域中,成本最小化公式具有重要的实际意义。
它可以帮助企业降低成本、提高效益,从而在竞争激烈的市场中获得优势。
【2.成本最小化公式的计算方法】成本最小化公式的计算方法通常分为以下几个步骤:(1)确定目标函数:首先要明确企业要实现的目标,例如利润最大化、成本最小化等。
在此基础上,确定目标函数。
(2)确定约束条件:根据生产、经营过程中的实际情况,确定影响成本的各项因素,并设置相应的约束条件。
例如,生产过程中可能受到原材料、人工、设备等资源的限制,这些限制可以作为约束条件。
(3)确定变量和参数:确定影响成本的各项变量和参数,例如生产数量、原材料价格等。
(4)构建线性规划模型:根据目标函数、约束条件和变量参数,构建线性规划模型。
(5)求解最优解:通过求解线性规划模型,得到使成本最小化的最优解。
【3.成本最小化公式的应用实例】以一家生产电子产品的企业为例,假设该企业的目标是在保证产品质量的前提下,使生产成本最小化。
那么,该企业可以运用成本最小化公式进行计算。
首先,确定目标函数为“总成本最小化”;其次,确定约束条件,如生产数量、原材料价格、人工成本等;然后,确定变量,如生产数量、原材料价格等;接着,构建线性规划模型;最后,通过求解模型,得到最优的生产数量和原材料价格,从而实现成本最小化。
【4.成本最小化公式在实际生活中的作用】成本最小化公式在实际生活中的作用主要体现在以下几个方面:(1)帮助企业降低成本:通过运用成本最小化公式,企业可以找到最优的生产方案,从而降低生产成本。
(2)提高企业竞争力:在市场竞争激烈的环境下,降低成本是提高企业竞争力的有效途径。
20、生产者_成本最小化

CH 20 成本最小化一、成本最小化CMP1、代数:成本最小化CMP min ω1x 1+ω2x 2 —— 长期成本s.t y = f(x 1,x 2) —— 等产量线L = ω1x 1+ω2x 2+λ[y-f(x 1,x 2)]① 对x 1、x 2、λ,求偏导=0,② 利用MP 1/MP 2 = ω1/ω2(MP 1/ω1 = MP 2 /ω2);y = f(x 1,x 2) ③ 得:c=ω1x 1+ω2x 2 =c (ω1,ω2,y )——成本函数 x 1(ω1,ω2,y )、x 2(ω1,ω2,y )——条件要素需求函数2、几何:成本最小化等成本线: x 2 = c /ω2- x 1ω1/ω2,较高的等成本线具有较高的成本。
等产量线: y = f(x 1,x 2) —— 在生产者问题中,等产量线是技术约束;成本最小化:等产量线与等成本线的切点:斜率=斜率 —— 技术替代率=要素的价格比率, - MP 1/MP 2=TRS= -ω1/ω2,3、例子:特定技术下的成本最小化(1)要素完全替代,生产函数:y =f (x 1,x 2) =a x 1+ bx 2厂商用价格低的要素 →c (ω1,ω2,y )= min (ω1 x 1,ω2 x 2) 若ω1/ω2<a/b 即ω1/ω2<MP 1/MP 2成本函数 →厂商只用x 1,则:x 1=y/a ,c=ω1 y/a(2)要素完全互补,生产函数:y = f (x 1,x 2) = min (x 1,x 2) 产量= y→ x 1=x 2= y成本函数 →c (ω1,ω2,y )=ω1 x 1+ω2 x 2=(ω1+ω2)y (3)柯布—道格拉斯技术,生产函数:y= f (x 1,x 2) =1ax ×2bx ,→利用MP 1/MP 2 = ω1/ω2 → 11121212a ba b ax x bx x ωω--= =a x 2 / b x 1→ x 2 =b /a ×ω1/ω2 ×x 1→代入y= 1a x ×2bx ,→ x 1 = f (ω1,ω2,y )=121ba ba ba yb ωω++⎛⎫⎪⎝⎭x 2 = f (ω1,ω2,y )=112a a ba bb ya ωω++⎛⎫⎪⎝⎭∴ 成本函数:c (ω1,ω2,y )=ω1 x 1+ω2 x 2=112b aa b a b a b a b a b a b a b y b a ωω+++++⎡⎤⎛⎫⎛⎫⎢⎥+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦厂商在s 期、t 期的选择必满足:①②↓① -② ⊿ω1 ⊿x 1+⊿ω2 ⊿x 2≤ 0—— 对企业行为的限制:当要素价格改变、产品价格不变时,企业应该……1、短期成本函数:存在不变生产要素时,生产一定产量的最小成本。
高级微观经济学 第四章 成本最小化

• 此时减少1单位i,增加单位j,同样能够 保持产出不变,但是可以减少成本。
二、二阶条件
1、两种要素的情况 当投入要素1和2发生微小变动时,运用泰勒 f (x h , x h ) 展开,写成矩阵形式
1 1 2 2
但要求成本不变,即有
w1h1 w2 h2 0
h1 f ( x1 , x2 ) ( f1 , f 2 ) h2 f11 f12 h1 1 ( h1 , h2 ) h f f 2 21 22 2
w1h1 w2 h2 f1h1 f 2 h2 0
• 故二阶条件简化为
f ( x1 h1 , x2 h2 ) f11 1 f ( x1 , x2 ) ( h1 , h2 ) 2 f 21 f12 h1 h f 22 2
a 1 a C Kw w y 1 2
K a a (1 a)a 1
给我们什么启发? 1.此时成本完全是产量的线性函数 2.a越大,则要素1价格变化对成本影响越大
(2)CES技术的成本函数
1
f ( x1 , x2 ) ( x1 x2 )
min w1 x1 w2 x2
则等价的最大化问题为
max ( w1 x1 w2 x2 ) s.t. ( x1 x2 ) y x1 0, x2 0
• 写出拉格朗日函数及一阶条件(松弛条件)
L( x1 , x2 , ) ( w1 x1 w2 x2 ) ( y x1 x2 ) FOCs : x1 : w1 0, x1 0, x1 ( w1 ) 0 x2 : w2 0, x2 0, x2 ( w1 ) 0
成本最小化

条件投入需求
给定w1, w2和y, 最小成本 投入组合是 如何确定的?
总成本函数是如何计算?
等成本曲线
包含相同成本的投入组合的曲线就是等 成本曲线。
例如,给定w1和w2, $100等成本线方 程为
w1x1 w2x2 100.
等成本曲线
一般地,给定w1和w2,等成本线的方程 为
x1 ,x 2 0
s.t. f (x1, x2 ) y.
成本最小化 问题
最小成本投入组合中的x1*(w1,w2,y)和 x1*(w1,w2,y) 是厂商对投入1和2的条件需 求(条件需求)
生产y单位产出的(最小的可能)总成本产 出是
c(w1, w2, y) w1x*1(w1, w2, y) w2x*2(w1, w2, y).
第二十章
成本最小化
成本最小化
一个厂商是成本最小化者(costminimizer),如果对于任意给定产出水 平y 0 ,它总是尽可能使用最小的总成 本。
c(y)代表厂商为制造y单位产出可以达到 的最小的总成本。
c(y)是厂商的总成本函数。
成本最小化
当厂商面临给定的投入价格w = (w1,w2,…,wn) 时,总成本可以写作 c(w1,…,wn,y).
x2 所有能得到y’单位产出的投入组合 中,哪一个最便宜?
f(x1,x2) y’ x1
成本最小化问题
x2 所有能得到y’单位产出的投入组合 中,哪一个最便宜?
f(x1,x2) y’ x1
成本最小化 问题
x2 所有能得到y’单位产出的投入组合 中,哪一个最便宜?
f(x1,x2) y’ x1
(b)等成本线斜率= 等产量线斜率
成本最小化弱公理名词解释

成本最小化弱公理引言在经济学和管理学领域,成本最小化是一个重要的概念。
它指的是在给定的约束条件下,通过合理的决策和资源配置来降低生产和运营过程中的成本。
成本最小化是企业管理和经济决策中的一个重要目标,它能够提高企业的竞争力和盈利能力。
成本最小化弱公理是指在经济学中,对成本最小化这一目标的一种弱化表达。
它是指在一些特定的条件下,成本最小化能够被视为一种理性行为,并且在一定程度上能够推导出其他经济原理。
成本最小化的意义成本是企业生产和经营过程中的重要指标,它直接关系到企业的盈利能力和竞争力。
成本最小化的意义主要体现在以下几个方面:1.提高竞争力:成本最小化能够使企业在市场上以更低的价格提供产品或服务,从而提高企业的竞争力,吸引更多的消费者。
2.提高盈利能力:成本最小化能够降低企业的生产和运营成本,从而增加企业的利润空间,提高盈利能力。
3.优化资源配置:成本最小化意味着对资源的高效利用和合理配置,能够最大限度地满足企业的生产需求,提高资源利用效率。
4.促进经济发展:成本最小化能够提高企业的生产效率和经济效益,从而为社会经济发展做出贡献。
成本最小化的实现方法要实现成本最小化,企业需要采取一系列的措施和策略,包括:1.生产工艺优化:通过改进生产工艺和技术,提高生产效率,降低生产成本。
2.供应链管理:通过合理的供应链管理,优化供应商选择和采购策略,降低原材料成本。
3.资源节约:通过节约能源、水资源等生产要素的使用,减少浪费,降低生产成本。
4.劳动力管理:合理安排员工的工作时间和工作内容,提高劳动生产率,降低人力成本。
5.成本控制:建立科学的成本控制体系,对各项成本进行监控和管理,及时发现和解决成本异常情况。
6.信息技术应用:利用信息技术手段,提高信息的收集、分析和决策能力,优化生产和运营过程,降低管理成本。
成本最小化弱公理的含义成本最小化弱公理是指在一些特定的条件下,成本最小化能够被视为一种理性行为,并且在一定程度上能够推导出其他经济原理。
企业成本最小化问题的一阶条件

企业成本最小化问题的一阶条件对于一个企业来说,成本最小化问题通常涉及到生产要素的最优组合,以达到某一产量目标。
以两种生产要素x1和x2为例,其价格分别为w1和w2,厂商的产量为y,f(x1,x2)为其生产函数。
成本最小化问题的一阶条件可以由拉格朗日乘数法得出。
构建函数L=w1x1+w2x2−λ(f(x1,x2)−y),可以得到一阶条件:1. λ∂f(x1,x2)∂x1=w12. λ∂f(x1,x2)∂x2=w23. f(x1,x2)=y通过一阶条件,我们可以得到w1w2=∂f(x1,x2)/∂x1∂f(x1,x2)/∂x2=TRS(x1,x2),即技术替代率必定等于要素价格比率。
同时,也可以得到条件要素需求函数x1(w1,w2,y)和x2(w1,w2,y),表示厂商在给定产量y的情况下要素需求量与要素价格之间的关系。
如果考虑柯布-道格拉斯生产函数的成本最小化问题,可以得到:minx1,x2w1x1+=y。
由拉格朗日乘数法得到的三个一阶条件为:w1=λax1a−1x2bw2=λbx1ax2b−1y=x1ax2bw1x1=λax1ax2b=λayw2x2=λbx1ax2b=λbyy=abx1ax2b最后可以解出x1(w1,w2,y)=(ab)ba+bw1−ba+bw2ba+by1a+bx2(w1,w2,y)=(ba)aa+b w1aa+bw2−aa+by1a+bc(w1,w2,y)=Kw1aa+bw2ba+by1a+b 其中K=[(ab)ba+b+(ba)aa+b]。
当a+b=1时,成本会随着产量线性增加,规模报酬不变;当a+b>1时,规模报酬递减;当a+b<1时,规模报酬递增。
在实际应用中,一阶条件有助于确定企业在给定产量下实现最小成本的最优要素组合原则。
但请注意,这只是成本最小化问题的一种方法,实际操作中可能还需要考虑其他因素。
如需更多信息,建议咨询专业人士或查阅相关书籍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成本最小化
在本章中我们把企业的利润最大化行为分为两部分,其一是企业如何在即定的产量下最小化其成本,第二部分是企业如何确定一个最优的产量。
1 成本最小化实际上是在产量既定的约束条件下,最小化企业的投入成本,企业成本是成
本最小化的结果,企业的成本函数为
y
x
f t s
wx
y
w
c
=
=
)
(
..
min
)
,
(
,
)
,
(y
w
c叫做最小成本函数,wx是
成本计算方程,前者括号中自变量为环境约束变量
y w,,
数得一阶条件为:
y
x
f
x
x
f
w
i
i
=
=
∂
∂
-
)
(
*)
(
*
λ
,对i和j的一阶条件相除得j
j
x∂
,等号
前的部分叫做economic rate of substitution等号后的部分叫做technical rate of substitution,成本最小化点为等成本线与等产量线的切点,并且在该点等产量线要在等成本线上方。
在该规划中要素投入量x i为控制变量,企业的无论是成本最小化还是利润最大化的优化行为的实质是确定各种要素的投入量,也就是合理的分配在各种要素上投入的费用。
2 范围经济是与联合生产有关联的,当一个企业以同一种资源生产一种以上的产出品时,由于生产活动维度的增加即生产范围在横向上的扩展所带来的效益增进,叫范围经济。
第二十章:成本曲线
1边际成本MC线经过AC和A VC线的最低点,MC的积分为总变动成本,由于一个要素投入组合是生产某一产量的最有效的规模,所以该产量位于短期平均成本线的最低点,而长期平均成本线是生产各个产量的最优的要素组合,所以该短期平均成本线的最低点必位于长期平均成本线上。
2边际成本线是先降低后升高的,在产量为0的时候,边际成本与平均变动成本时是相同的。