动液面的计算与识别
动液面的计算与识别

动液面的计算与识别动液面计算与识别是指通过传感技术和算法,对液体表面的位置进行测量和确认的过程。
这种技术在工业、医疗、农业等领域具有重要应用价值。
本文将从传感技术、计算方法和应用领域等方面对动液面的计算与识别进行详细介绍。
一、传感技术动液面计算与识别的首要任务是获取动液面的位置信息,而传感技术则起到了关键作用。
以下是常用的动液面传感技术:1.光电传感器:利用光电原理,通过光电开关或激光传感器来测量光的传播时间或反射情况,从而判断液体表面的位置。
2.声波传感器:利用超声波技术,通过发射超声波并接收其回波的时间差来计算液体表面的位置。
3.比重传感器:根据液体的比重和导电性质,通过测量液位液体的电阻来判断液体表面的高度。
4.电容传感器:利用电容原理,测量液体表面与电容传感器之间的电容变化来确认液位位置。
以上传感技术各有优劣,选择合适的技术取决于具体应用场景和需求。
二、计算方法获得液体表面位置信息后,需要通过计算方法来准确计算液位。
以下是常用的计算方法:1.阈值法:根据传感器输出的信号强度与事先设定的阈值进行比较,从而判断液体表面的高低状态。
2.插值法:利用多个传感器或测量点的数据进行插值计算,消除测量误差,提高测量精度。
3.滤波法:通过滑动平均、中值滤波、卡尔曼滤波等方法,对传感器输出的原始数据进行处理,消除噪声干扰,并提高信号的稳定性。
4.数据拟合法:使用数学模型对传感器输出的数据进行拟合,从而得到液面位置的准确数值。
以上计算方法通常需要结合实际应用场景的特点进行选择和优化。
三、应用领域动液面计算与识别技术在各个领域都有广泛的应用。
以下是一些典型的应用场景:1.工业领域:用于液体储罐的液位监测、流量计量器的精度控制、化学反应过程的控制等。
2.医疗领域:用于医用注射器或药液输送系统的液位监测和控制。
3.农业领域:用于农田排水系统的水位控制、温室灌溉系统的液位监测等。
4.环境监测:用于地下水位监测、河流水位监测、气象站的降雨监测等。
二、机械采油(功图、液面)

3、液面曲线的识别
典型液面曲线记录图如下图所示:
Ls Le
Ls表示电磁笔从井口波到音标反射波在记录纸带上所走的距 离,单位mm。 Le表示电磁笔从井口波到液面反射波在记录纸带上所走的距 离, 单位mm。
3、液面曲线的识别
(2)
波形A为井口波,波形B,C分别为回音标、液面 反射波形。b、c、d…为油管接箍波形。
冲程损失在图上的长度B'B=DD'=126/30=4.2(mm)
P 4.2 λ
B’
S活
B
9.4
A 19.8 D λ 4.2
C
D’
o
S活
S
50
抽油杆在空气和不同相对密度原油中的重量
公称直径 in
直径 mm
截面积 cm2
抽油杆密度,kg/m
在空气中 在相对密度 在相对密度 0.86的原油 0.8的原油 中 中 在相对密 度0.9的 原油中
例题二
某井的动液面测试资料如下图所示,查该井作业 油管记录如表1,计算液面深度。
表1 某井作业油管数据
油管序号
油管长度,m
1~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81
95.41 96.45 96.06 96.49 95.65 96.35 96.42 96.02 9.64
L N L
式中: N ——油管接箍数
L ——平均油管长度,m
2、利用油管接箍数计算液面深度
油管接箍波峰在液面曲线上只反映一部分。
现场上,由于井筒条件、仪器、操作水平等多方面因素影 响,井筒中液面以上的接箍并不明显地全部反映在曲线上,如 图所示,针对此情况可在曲线上选出不少于10个分辨明显、连 续均匀的接箍波进行计算。
利用功图法测算动液面2011

2011-06-11 08:01:52 2楼油井的动液面参数直接反映了地层的供液情况及井下供排关系, 是进行采油工艺适应性评价和优化的关键数据之一[ 1- 3] 。
动液面测试传统的方法是利用声波进行测试, 但是, 这种方法有两方面的缺点, 一是回声的技术受井筒的情况制约产生误差; 二是不能实时在线测量。
文献[ 3- 4] 通过地面功图推算动液面, 但是由于悬点载荷的确定比较复杂和繁琐, 而且在计算过程中忽略了一些阻力因素, 也存在误差。
有杆泵主要由泵简、柱塞、游动阀( T V) 、固定阀( SV) 等组成。
把地面示功图或悬点载荷与时间的关系用计算机进行数学处理之后, 由于消除了抽油杆柱的变形、杆柱的粘滞阻力、振动和惯性等的影响, 将会得到形状简单而又能真实反映泵工作状况的井下泵示功图[ 8- 9] 。
井下泵相对于悬点受力简单、动载荷的影响小。
泵工作工程中, 泵筒内压力p ( t ) 随柱塞运动方向的改变, 由吸入压力p i 升至排出压力p o 或由p o 降至p i , 柱塞完成卸载或加载: 当SV 开启后, 液体经SV 孔吸入泵腔, 此时p ( t ) = p i , 柱塞加载完成, 泵载保持不变; 当TV 开启后, 液体经T V 孔排出泵腔, 此时p ( t ) = p o , 柱塞卸载完成, 泵载保持不变,当SV、T V 均处于关闭状态时, p i< p ( t ) < p o 。
如果忽略柱塞与液体的惯性力, 则作用于柱塞上的平衡方程应是: Fp ( t) = p p ( f p - f r ) - p ( t ) f p + Wp f ( 1)其中, Fp ( t ) ! ! ! 泵的载荷, N; p p ! ! ! 游动阀上部的压力, Pa; p ( t ) ! ! ! 泵筒内压力, Pa; Wp ! ! ! 柱塞重量, N; f ! ! ! 柱塞与泵筒间的摩擦阻力, N ; f p、f r ! ! ! 柱塞、抽油杆的截面积, m2。
煤层气井动液面计算方法的研究---常亮

别大,人为导致的不确定行增大,拉长曲线看液面变化,液
面变化不规律,不易反应出液面下降幅度和规律。
液面深度
音速
HUABEI oilfield CBM branch company
华北油田煤层气分公司
四、下步设想
1、后续工作:目前只摸索到了1#大井组目前井况下的合适音 速值,后续对本工区其他各井做优化音速工作。
2、存在难度:未启压或套压基本稳定的井相对较容易选出
适合的音速,但启压、升压、最后归于稳定阶段这个过程的
接箍法 具体操作3:接箍位置同“操作2”,但平均管长改为9.5m,缩 短0.1m。
参数变化
计算结果3:液面深度1143.76m、音速418.04m/s
HUABEI oilfield CBM branch company
华北油田煤层气分公司
二、动液面计算方法的选择
音标法 具体操作1:确定液面波位置后,定位音标位置,输入该井 音标下深。
华北油田煤层气分公司
一、动液面位置的确定
1、新投产井典型波形(动液面较浅<200m,液面波重复出现)
动液面深度≈红线深度-蓝线深度
HUABEI oilfield CBM branch company
华北油田煤层气分公司
一、动液面位置的确定
2、排水降压阶段井动液面典型波形
2倍液面波位置明显
HUABEI oilfield CBM branch company
HUABEI oilfield CBM branch company
动液面的计算与识别

可编辑ppt
1
提纲
一、油井测液面的目的和意义 二、液面曲线的识别与计算 三、液面测试中的影响因素及对策
可编辑ppt
2
一、油井测液面的目的和意义
动液面:
抽油井正常生产过程中测得的油套管环形空间中的液面深度。
静液面:
抽油井关井后,油套管环形空间液面逐渐上升,当上升到一定 位置并稳定下来时测得的液面深度。
Le=300mm
可编辑ppt
20
解:
L
Le Ls
L音
300400500m 240
沉没度 hs L泵-L
1000500
500m
答:沉没度为500米。
可编辑ppt
21
(2)利用油管接箍数计算液面深度
油管接箍波自井口到液面波之间反射明显,能分辩每 个油管接箍波峰。如下图所示:
a、以井口波峰为起点,至液面波峰起始点为终点,用专 用卡规测量出油管根数,查阅作业记录,计算出液面深度。
7
二、液面的识别与计算
静液面与动液面的位置
静液面(Ls或Hs):对应于油藏压力。
动液面(Lf或Hf):对应于井底压 力流压。
沉没度hs:根据气油比和原油进泵 压力损失而定。
生产压差Pf:与静液面和动液面之 差相对应的压力差。
可编辑ppt
8
1.液面曲线的识别
可编辑ppt
9
1.液面曲线的识别
波形A是在井口记录下来的声波脉冲发生器发出的脉冲信号。
≤0.5MPa) 3000(井口套压≥0.5MPa);
(6)可测井口套压范围(MPa):0~10(精度±1.5%F.S);
(7)仪器外形尺寸(mm)、重量(kg):一次仪表61×61×260、3kg
油井音标深度与动液面计算

油井音标深度与动液面计算油井音标深度与动液面计算是石油工程中的重要计算方法,它可以帮助工程师确定油井中各种参数的准确值,从而进行油井的优化和生产策略的制定。
本文将详细介绍油井音标深度与动液面计算的原理、方法和应用。
一、油井音标深度计算的原理与方法油井音标深度是指根据地震资料或测井资料中的声波时差法计算出来的井深。
油井声波时差法是利用地震波在地下岩石中传播速度较快和较慢的不同特点,通过接收到的地震波和发射的地震波之间的时间差来计算出地层的深度。
具体计算方法如下:1.首先,需要准备地震测井资料或地震勘探资料。
地震测井是通过地震资料获取地下地层信息的一种方法,主要是通过钻井设备在井口部位发射地震波,并通过地震检波器接收地下的地震波,通过分析检波器接收到的地震波信号和发射地震波之间的时间差来计算井深。
2.其次,需要进行数据处理。
数据处理是指对地震测井资料或地震勘探资料进行处理和分析,以计算出井深。
数据处理可以使用地震数据处理软件,对接收到的地震波信号进行滤波、反演等处理,通过计算出地震波和地震检波器接收到的地震波的时间差来计算出井深。
3.最后,需要进行计算与校正。
计算与校正包括根据地震波速度模型对计算出的井深进行校正,并进行相应的井深转换,以便与其他地质或地质资料进行对比和分析。
二、动液面计算的原理与方法动液面是指油井中液体(石油、水、气体等)与其上方气体之间的分界面。
动液面是确定油井储量、生产能力和开发方案的重要指标之一。
动液面的计算方法如下:1.首先,需要准备测井资料。
测井是通过钻井设备在井中测量与地下岩石、井筒构造以及井筒周围的岩层物性相关的物理量,以获取地下地层信息的一种方法。
其中,测量井身内各层流体分布的测井曲线是动液面计算的主要依据。
2.其次,需要进行曲线解释。
曲线解释是指根据测井资料中的测井曲线(如自然伽马测井曲线、电阻率测井曲线等),对井内不同流体分布层进行判识和解释。
通过分析测井曲线可以确定井筒内不同层位的流体类型(油、水、气体等)。
泵效、动液面、流静压、断脱点分析

3)在计算泵效时,油井的实际产液量和理论排量单位必须统一。
4)在计算重量排量时,如题中没给出原油密度,一般情况下均按 0.86计算 。 5)通过泵效的高低还可以判断油层的供液能力;判断油井参数选择是否合理 ;判断深井泵的工作状况。
目
录
深井泵效率计算
动液面计算
其他相关计算
Page
13
1、相关名词
动液面:油井正常生产时,所测油套环形空间内的液面深度。 静液面:油井关井后,油套环形空间内液面恢复到静止(与地层压力相平 衡)后所测得的液面深度。 套压:它表示油套管环形空间内油和气在井口的 压力。 流压:油井正常生产时所测得的油层中部压力。 静压:油井生产到某一阶段关井后,待压力恢复到稳定时所测得的油层中 部的压力。 剩余压力又叫压缩气体
在油田开发过程中,如油井不能自喷,则必须借 助机械的能量进行采油。机械采油是指人为地通过各 种机械从地面向油井内补充能量举油出井的生产方式 。目前使用的机械采油分为有杆泵采油和无杆泵采油 两种方法。在有杆泵采油中,抽油机井采油是咱们油田 乃至中石油目前应用最广泛的一种机械采油方式。
抽油机井相关计算(一)
为了加速对理论排量的计算,将上式简化为:
Q理= K×S光×n ×ρ混
排量系数K 。它是一个和泵径有关的系数。 K= 1440×πD2/4
不同泵径截面积和日排量系数
泵径(mm) 柱塞截面积(cm2) 系数 32 8.04 1.16 38 11.34 1.63 44 15.21 2.19 56 24.63 3.54 70 38.43 5.54 83 54.08 7.79 95 70.85 10.2
作。我们用“泵效”来表示
泵的工作效率。
Page 5
xpd织5井流压、动液面的计算公式xnq

织5井排采参数计算公式
压力计显示屏显示的压力——流压:即为压力计深度所测试的压力。
当压力计在煤层中部时,所测压力即为流压;当压力计深度大于煤层中部深度时,流压=显示压力-(D-H)/100;当压力计深度小于煤层中部深度时,流压=显示压力+(D-H)/100。
D-压力计深度;H-煤层中部深度。
织5井煤层深度355.2-426.4m,厚度71.2m,中部深度390.8m。
压力计深度429.11m。
流压计算:
井底流压=显示压力-(429.11-390.8)/100=显示压力-0.3831
或:流压=压力计沉没度/100+套压-0.3831
动液面计算:
当套压为0时,
动液面=压力计深度-压力计显示压力×100=压力计深度-井下液位
当套压>0时,
动液面=压力计深度-压力计显示压力×100+套压×100=压力计深度-井下液位+套压×100
泵效计算:
泵效=实际产液/理论产液*100%=实际产液/(3.14*0.019*0.019*1.1*冲次*时间)*100%=实际产液/(0.001247*冲次*时间) *100% (要量好冲程,才能计算泵效)
液量单位:方;冲次:次/分钟时间:分钟
完成生产参数如下:丝堵井深463.92m,气锚顶深438.74m,压力计深429.11m,泵深428.06m,光杆留头1.60m,悬绳距1.10m,防冲距1.50m。
冲程1.45m。