(7,4)循环码的编码和译码

合集下载

matlab(7,4)汉明码和(7,4)循环码的编程设计

matlab(7,4)汉明码和(7,4)循环码的编程设计

二、创新实验设计创新实验一:(7,4)汉明码的编码与译码实现1、实验目的实现(7,4)汉明码的编码与译码,通过这次实验不但加深了对汉明码编码和译码原理了解,而且对线性分组码有所了解。

2、实验原理线性分组码的构造方法比较简单、理论较为成熟,应用比较广泛。

汉明码是一种能够纠正一个错码的效率比较高的线性分组码,下面以(7,4)码为例就汉明码的编码与译码分别进行介绍:(1)编码原理一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。

若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求21r n -≥或211rk r -≥++ (1)设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。

若取r=3,则n=k+r=7。

这样就构成了(7,4)码。

用6543210a a a a a a a 来表示这7个码元,用123s s s 的值表示3个监督关系式中的校正子,则123s s s 的值与错误码元位置的对应关系可以规定如表1所列。

表2.1 校正子和错码位置的关系则由表1可得监督关系式:16542s a a a a =⊕⊕⊕()226531s a a a a =⊕⊕⊕()3 36430s a a a a =⊕⊕⊕()4 在发送端编码时,信息位6543a a a a 的值决定于输入信号,因此它们是随机的。

监督位2a 、1a 、a 应根据信息位的取值按监督关系来确定,为使所编的码中无错码,则123,,S S S 等于0,即65426531643000(5)0a a a a a a a a a a a a ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩方程组(5)可等效成如下矩阵形式6543210111010001101010010110010a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(6)式(6)可简化为0T T HA =,H 为监督矩阵,则由式(6)可得到监督矩阵11101001101010=[P I ] (7)1011001r H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为生成矩阵'=[I Q]=[I ]k k G P ,所以由(7)得生成矩阵G 如下:[]k 10001110100110[']00101010001011k G I Q I P ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦然后利用信息位和生成矩阵G 相乘产生整个码组,即有[][]65432106543=(8)A a a a a a a a a a a a G=其中A 为整个码组矩阵,6543a a a a 是信息位。

《实用编解码技术》实验指导书 (1)

《实用编解码技术》实验指导书 (1)

实用编解码技术实验指导书肖军编写大连东软信息学院循环码码的编码和译码一、实验目的1、巩固循环码码的编码和译码的理论知识2、利用matlab仿真实现循环码码的编码和译码过程3、利用C语言来实现线循环码码的编码和译码过程二、参考资料和基础知识1、理论知识:教材第四章内容2、matlab基础知识:第一次试验内容和教材109-119页三、循环码的原理循环码除了具有线性码的一般性质外,还具有循环性。

循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)以后,仍为该码中的一个码组。

在表1中给出一种(7,3)循环码的全部码组。

由此表可以直观看出这种码的循环型。

例如,表中的第2码组向右移一位即得到第5码组;第6码组向右移一位即得到第7码组。

一般说来,若(0121aaaann )是循环码的一个码组,则循环移位后的码组,也是该编码组中的码组。

由于循环码具有码的代数结构清晰、性能较好、编译码简单和易于实现的特点,因此在目前的计算机纠错系统中所使用的线性分组码几乎都是循环码。

它不但可以纠正独立的随机错误,也可用于检测突发错误并且非常有效。

),(kn 循环码能够检测长为kn 或更短的任何突发错误;其中n 为码长,k 为信息位数。

循环码多项式表示在代数编码理论中,为了便于计算,把这样的码组中各码元当作是一个多项式的系数,即把一个长度为n 的码组表示成:例如,表1中第7个码组可以表示为:在循环码中,一个),(k n 码有2k 个不同的码组。

若用)(x g 表示其中前)1(-k 位皆为“0”的码组,则)(,),(),(),(12x g x x g x x xg x g k -⋯都是码组,而且这k 个码组是线性无关的。

对于(n,k )循环码中的生成多项式g (x ),它是(n,k)循环码码集中唯一的,幂次为n-k 的码多项式,则()k x g x 是一个幂次为n 的码多项式。

按模(1n x +) 运算,此时:1)()(1)(++=+n n k x x R x Q x x g x ,R (x )余数多项式 (2-2) 即 ()()k x g x R x ≡,且因()k x g x 也是n 阶幂,故Q(x)=1.由于它是循环码,故()k x g x 按模(1n x +)运算后的“余式”也是循环码的一个码字,它必能被g(x)整除,即:)()()(x F x G x R = (2-3) 由以上两式可以得到:)()()1()()1)(()(x G x F x x R x x Q x g x n n k ++=++= (2-4)和 ()()()1n k x x F x G x +=+ (2-5)从上式中可以看出,生成多项式g(x)应该是1n x +的一个因式,即循环码多项式应该是1n x +的一个n-k 次因式。

基于51单片机的(7,4)循环码编程

基于51单片机的(7,4)循环码编程

基于51单片机的(7,4)循环码编译码的设计电子信息科学与技术专业学生王东菊指导老师王心水摘要: 通信系统中最重要的是通信质量问题,而衡量通信系统质量的主要性能指标就是有效性和可靠性。

所谓有效性是指要求系统高效率地传输信息,在数字通信系统中信源编码旨在解决有效问题;所谓可靠性,是指要求系统可靠地传输消息,而信道编码旨在解决可靠性问题。

以往循环码编译电路大多用移位寄存器和模2构成的线性时序网络来完成。

基本电路简单,容易实现。

但在体积和功能扩展上受到了限制而不能发挥更大的作用。

采用(7,4)循环码,充分运用单片机的软件功能进行编码及译码纠错,可有效的克服来自通讯信道的干扰,保证数据通讯的可靠及系统的稳定,使误码率大幅度的降低。

而且,只要改变软件算法,即可适用于不同微机、不同字长的需要。

总之,本设计使用软件编程方法实现编译码过程既有简化电路、可靠性高、运算速度快、体积小等优点,又可以扩展电路其他功能,而且可以根据需要任意修改,这是其它硬件电路所无法相比的,是抛开传统模式的一种新尝试。

关键词: 单片机通信循环码编码译码纠错抗干扰The design of Encoding and Decoding of (7,4) Cyclic CodeBased on the 51 SCMStudent majoring in Electronic information science and technology Wang DongjuTutor Wang XinshuiAbstract:The most important problem in communication system is communication quality, and the most important measures of the quality of communication system is effectiveness and reliability. So-called effectiveness refers to the system efficiently transmit information in digital communication system .So-called reliability, refers to the system, and reliable transmission channel encoding aims at solving problems. Reliability, Previous cycle code compiler circuit with the shift register and mostly composed of two linear temporal network to accomplish. The basic circuit is simple and easy to implement. But in volume and function expansion by restrictions and cannot play a bigger role. Using (7,4) codes, make full use of the MCU software functions encoded and decoding correction, which can effectively overcome the interference from communication channel, ensure the reliability of data communication systems, the stability and the ber greatly reduced. And, just change the software algorithm, and can be used in different microcomputer, different words long need. Anyhow, this design using the software programming method (both simplified decoding process, high reliability, operation circuit faster, smaller, and may expand advantages and other functions, circuit according to need any modification, this is compared to other hardware circuit cannot abandon traditional pattern, is a new attempt.Key words: Microcontroller;Communication;Cyclic code;Encode;Decode;Correcting code;Anti-intreferance引言在数据通信中,误码率是项重要指标。

基于FPGA的(7,4)循环码编码和译码的实现

基于FPGA的(7,4)循环码编码和译码的实现

基于FPGA的(7,4)循环码编码和译码的实现摘要:循环码在实际通信中被广泛使用,因为它可以提高信息传输的可靠性和有效性。

随着FPGA芯片的普及,其在各个领域的已广泛使用。

本文在简单的理论分析上,描述了在FPGA中实现(7,4)循环码的编码与译码的实现方案。

关键词:(7,4)循环码FPGA 编码译码1.引言现场可编程逻辑门阵列(FPGA),是一个含有可编辑元件的半导体设备,可供使用者现场程式化的逻辑门阵列元件。

目前以硬件描述语言(Verilog 或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA 上进行测试,是现代IC 设计验证的技术主流。

为了使信号具有较好的抗干扰能力,就要对信号加以改造,使信号内部结构具有更强的规律性和相互关联性,以致在噪声破坏了信号的结构时,仍能根据信号原有的内在规律性和相互关联性来发现错误,甚至改正错误,恢复原有的信息。

其一般方法是:按照某种规律,对原来的码组添加一些新的码元——监督码元,而原码组中的码元则称为信息码元。

监督码元的作用是监督该码组在传输过程中是否发生了错误,甚至指出是哪位或哪些码元发生了错误,以便纠正,添加监督码元的方法(规律或规则)不同,就形成不同的编码方法。

2.(7,4)循环码在通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术,某(7,4)循环码的生产多项式是:,则其生成矩阵是,具体结果见表其中:,,,并根据生成矩阵与监督矩阵的关系G·H=0从而得到:(2)根据公式(2)可得到:(3)3.编码与译码“公式(3)”表达了根据信息码元值得到各个监督码元值的运算公式,根据这些公式,我们可以得到信息元值与监督元值的具体关系。

在FPGA中进行(7,4)循环码的编码时,可以根据“公式(3)”编写算法由信息码元值来计算监督码元值,也可以采用查表法由信息码元来计算监督码元。

后面一种方法不适用于信息码元位数及监督码元位数较多的循环码,因为这时列出情况较多,其编程较前种方法较复杂。

循环码的编译码软件设计讲解

循环码的编译码软件设计讲解

******************实践教学*******************兰州理工大学计算机与通信学院2012年春季学期《计算机通信》课程设计循环码是线性分组码的一种,它具有线性分组码的一般性质,当然它还具有循环性。

循环码的编码和解码设备都不太复杂,且检(纠)错能力较强。

本说明书介绍了(7,4)循环码的编码与译码原理,用C语言编程实现其编码与译码功能。

通过C语言平台运行所编写的程序,输入任意的数字信息序列,得出了编码结果。

另外还分别在无差错和部分差错的情况下进行了译码。

关键词:循环码;编码与译码;C语言随着时代的变迁,信息潮流的冲击,通信越来越被人们重视。

伴随信息时代的到来,计算机通信技术也在不断地发展。

目前,计算机通信技术已广泛应用于办公自动化、企业管理与生产过程控制、金融与商业电子化、军事、科研、教育信息服务、医疗卫生等领域。

Internet技术发展迅速,全球性信息高速公路建设的浪潮正在兴起。

人们已经意识到:计算机网络正在改变着人们的工作方式与生活方式,网络与通信技术已成为影响一个国家与地区经济、科学与文化发展的重要因素之一。

现代社会发展越来越快,这要求通信系统功能越来越强,可靠性越来越高,因此通信系统的构成就越来越复杂。

在计算机通信信息码中循环码是线性分组码的一个重要子集,它的循环码的编码和译码电路比较简单,纠错能力也较强,是目前研究得最成熟的一类码。

因此本文运用C语言对(7,4)循环码的编码与译码进行编程及运行仿真。

C语言是一种结构化语言。

它层次清晰,便于按模块化方式组织程序,易于调试和维护。

C语言的表现能力和处理能力极强。

它不仅具有丰富的运算符和数据类型,便于实现各类复杂的数据结构。

它还可以直接访问内存的物理地址,进行位(bit)一级的操作。

由于C语言实现了对硬件的编程操作,因此C语言集高级语言和低级语言的功能于一体。

既可用于系统软件的开发,也适合于应用软件的开发。

此外,C语言还具有效率高,可移植性强等特点。

循环码(7,4)

循环码(7,4)

8.4 循环码时间:2012年09月01日信息来源:《通信原理》精品课程网站点击:2452次我要评论(0) 【字体:大中小】循环码是线性分组码重要的一个子类,现有的重要线性分组码都是循环码或与循环码密切相关。

与其他大多数码相比,循环码的编码及译码易于用简单的具有反馈连接的移位寄存器来实现,这是它的优势所在。

另外,对它的研究是建立在比较严密的数学方法基础之上,因此比较容易获得有效的译码方案。

循环码在实际中应用很广。

8.4.1 循环码基本概念一个线性()分组码,如果它的任一码字经过循环移位后(左移或右移),仍然是该码的一个码字,则称该码为循环码。

上一节中表8-3所示的(7,3)分组码就是一个循环码。

为了便于观察,将(7,3)码重新排列如表8-9所示。

表8-9 循环码的循环移位在代数编码理论中,常用多项式(8.4-1)来描述一个码字。

表8-9中的任一码组可以表示为(8.4-2)这种多项式中,仅是码元位置的标记,因此我们并不关心x的取值,这种多项式称为码多项式。

例如,码字(0100111)可以表示为(8.4-3)左移一位后为(1001110),其码字多项式为(8.4-4)需要注意的是,码字多项式和一般实数域或复数域的多项式有所不同,码字多项式的运算是基于模二运算的。

(1)码多项式相加,是同幂次的系数模二加,不难理解,两个相同的多项式相加,结果系数全为0。

例如(8.4-5)(2)码多项式相乘,对相乘结果多项式作模二加运算。

例如(8.4-6)(3)码多项式相除,除法过程中多项式相减按模二加方法进行。

当被除式的幂次高于等于除式的幂次,就可以表示为一个商式和一个分式之和,即(8.4-7)其中余式的幂次低于的幂次。

把称作对取模的运算结果,并表示为(8.4-8)有了这个运算规则,就可以很方便地表示一个移位后码字多项式。

可以证明,字长为的码字多项式和经过次左移位后的码字多项式的关系为(8.4-9)例如,(7,3)循环码的码字(1001110),其多项式为,移位3次后的多项式可求得如下:(8.4-10)即,它对应的码字为11101008.4.2 循环码生成多项式由表8-9可知,(7,3)循环码的非0码字多项式是由一个多项式分别乘以得到的。

(完整word版)matlab(7,4)汉明码和(7,4)循环码的编程设计

(完整word版)matlab(7,4)汉明码和(7,4)循环码的编程设计

二、创新实验设计创新实验一:(7,4)汉明码的编码与译码实现1、实验目的实现(7,4)汉明码的编码与译码,通过这次实验不但加深了对汉明码编码和译码原理了解,而且对线性分组码有所了解。

2、实验原理线性分组码的构造方法比较简单、理论较为成熟,应用比较广泛。

汉明码是一种能够纠正一个错码的效率比较高的线性分组码,下面以(7,4)码为例就汉明码的编码与译码分别进行介绍:(1)编码原理一般来说,若汉明码长为n ,信息位数为k ,则监督位数r=n-k 。

若希望用r 个监督位构造出r 个监督关系式来指示一位错码的n 种可能位置,则要求21r n -≥或211rk r -≥++ (1)设汉明码(n,k )中k=4,为了纠正一位错码,由式(1)可知,要求监督位数r ≥3。

若取r=3,则n=k+r=7。

这样就构成了(7,4)码。

用6543210a a a a a a a 来表示这7个码元,用123s s s 的值表示3个监督关系式中的校正子,则123s s s 的值与错误码元位置的对应关系可以规定如表1所列。

表2.1 校正子和错码位置的关系则由表1可得监督关系式:16542s a a a a =⊕⊕⊕()226531s a a a a =⊕⊕⊕()3 36430s a a a a =⊕⊕⊕()4 在发送端编码时,信息位6543a a a a 的值决定于输入信号,因此它们是随机的。

监督位2a 、1a 、a 应根据信息位的取值按监督关系来确定,为使所编的码中无错码,则123,,S S S 等于0,即65426531643000(5)0a a a a a a a a a a a a ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩方程组(5)可等效成如下矩阵形式6543210111010001101010010110010a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦(6)式(6)可简化为0T T HA =,H 为监督矩阵,则由式(6)可得到监督矩阵11101001101010=[P I ] (7)1011001r H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为生成矩阵'=[I Q]=[I ]k k G P ,所以由(7)得生成矩阵G 如下:[]k 10001110100110[']00101010001011k G I Q I P ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦然后利用信息位和生成矩阵G 相乘产生整个码组,即有[][]65432106543=(8)A a a a a a a a a a a a G=其中A 为整个码组矩阵,6543a a a a 是信息位。

(完整)循环码的编码与译码

(完整)循环码的编码与译码

循环码是线性分组码中一个重要的子类,具有检错纠错能力强,实现方便等特点.它具有严密的代数学理论,封闭性与循环性.(n,k)循环码表示信息位为k位,监督位为(n-k)位.本次设计实验首先分析了(7,4)循环码的编码与译码原理,然后,用C语言实现其编码与译码功能。

通过C语言平台运行所编写的程序,观察了在输入信息码情况下输出对应的编码结果以及相反的译码功能。

通过多组的对比验证了该(7,4)循环码的编译码程序的正确性。

最后,在程序运行的过程中进一步分析循环码的编译码原理,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。

关键词:循环码,编码与译码,C程序。

现代通信的发展趋势为数字化,随着现代通信技术的不断开发,差错控制技术已日趋成熟,在各个领域都得到了广泛的应用和认同。

本文就(7,4)循环码的编码与译码原理进行C语言的编程及运行仿真。

现代社会发展要求通信系统功能越来越强,可靠性越来越高,构成也越来越复杂;这就要借助于功能强大的计算机辅助分析设计技术和工具才能实现。

现代计算机科学技术快速发展,已经研发出了新一代的可视化的仿真软件。

这些功能强大的仿真软件,使得通信系统仿真的设计和分析过程变得相对直观和便捷,由此也使得通信系统仿真技术得到了更快的发展。

本文使用的是功能强大的C语言软件。

C语言是一种使用简便的、特别适用于科学研究和工程计算的高级语言,与其他计算机语言相比,它的特点是简洁和智能化,具有极高的编程和调试效率.通过使用C工具箱函数对数字调制进行仿真,更能直观彻底的掌握循环码的编码与译码原理。

有助于我们的学习和研究,加深对知识的理解和运用. C的便利性还体现在它的仿真结果还可以存放到的工作空间里做事后处理。

方便我们修改参数对不同情况下的输出结果进行对比。

目录第1章概述 (1)第2章计算机通信与纠错码 (2)2。

1 计算机通信技术 (2)2.1.1 通信的概念 (2)2。

1。

2 通信的发展史简介 (2)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7,4)循环码的编码译码编码的实验原理: 根据循环码的代数性质建立系统编码的过程,可以把消息矢量用如下多项式表示:要编码成系统循环码形式,把消息比特移入码字寄存器的最右边k 位,而把监督比特加在最左边的n-k 个中,则要用kn x-乘以m(x)得到k n x - m(x)= k n x - m(x)= q(x) g(x)+ p(x),其中p(x)可以表示为p(x)= ,则p(x)+ kn x - m(x)= + 另U(x)= p(x)+ kn x - m(x),则U=(0p ,1p ,2p ,·,1--k n p ,0m ,1m ,·,1-k m )。

本实验根据以上原理,用matlab 实现书上例6.8系统形式的循环码,生成多项式为g(x)=(7,4)循环码的编码的程序如下:clear; clc; a=[1 0 1 1];%高次项系数在前的生成多项式 Gx=[1 0 1 1];%将数组a 的高位依次放在数组Data 的低位 Data=zeros(1,7); Data(1)=a(4); Data(2)=a(3); Data(3)=a(2); Data(4)=a(1);%Data 除以Gx 得到余数Rx [Qx,Rx]=deconv(Data,Gx);12211...)(m x m x m x m x m k k k k ++++=----kn k n n k n k x m x m x m x m-+-----++++0112211 (011)1...p x p xp k n k n +++----0111...p x p x p k n k n +++----k n k n n k n k x m x m x m x m -+-----++++0112211 (3)1x x ++b=Rx+Data;%将数组b的高位放在后面c=b(1);b(1)=b(7);b(7)=c;c=b(2);b(2)=b(6);b(6)=c;c=b(3);b(3)=b(5);b(5)=c;%将数组b校正for i=1:7if rem(abs(b(i)),2)==0b(i)=0;endendfor i=1:7if rem(abs(b(i)),2)==1b(i)=1;endenddisp('输入序列:');adisp('编码输出序列:'); b程序运行结果为:输入序列:a = 1 1 0 0编码输出序列:b =1 0 1 1 1 0 0 改变输入序列a=[1 0 1 1],运行结果:输入序列:a = 1 0 1 1 编码输出序列:b =1 0 0 1 0 1 1 运行结果的编码如下:译码的实验原理 g(x)= ,在(n ,k )循环码中,由于g(x)能除尽,因此1+nx 可分解成g(x)和其他因式的乘积,记为)()(1x h x g x n =+即可写成31x x ++)(1)(x g x x h n+=即h (x) = 则 )(*x h =,其中)(*x h 式h(x)的逆多项式。

监督矩阵多项式可表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)()()()(***2x h x xh x h x x H ,相对应的译码和纠错(一位)程序如下: clear; clc;r=[1 0 0 1 1 1 1];h=[1,0,0;1,1,0;1,1,1;0,1,1;1,0,1;0,1,0;0,0,1]; b=flipud(h); s=r*b; for i=1:3if rem(abs(s(i)),2)==0 s(i)=0;end end for i=1:3if rem(abs(s(i)),2)==1 s(i)=1;end124+++xx x 134+++x x xif s==[0 0 0]e=[0 0 0 0 0 0 0 ] elseif s==[1 0 0]e=[0 0 0 0 0 0 1] elseif s==[1 1 0]e=[0 0 0 0 0 1 0] elseif s==[1 1 1]e=[0 0 0 0 1 0 0] elseif s==[0 1 1]e=[0 0 0 1 0 0 0] elseif s==[1 0 1]e=[0 0 1 0 0 0 0] elseif s==[0 1 0]e=[0 1 0 0 0 0 0] else s==[0 0 1]e=[1 0 0 0 0 0 0] endu=r+e;for i=1:7if rem(abs(u(i)),2)==0u(i)=0;endfor i=1:7if rem(abs(u(i)),2)==1u(i)=1;endendData=zeros(1,4);Data(1)=u(4);Data(2)=u(5);Data(3)=u(6);Data(4)=u(7);if e==[0 0 0 0 0 0 0]disp('第几位错误:')k=0,elsedisp('第几位错误:')k=find(e);enddisp('接受码字')rdisp('编码输出序列:')Data运行程序结果如下:e = 0 0 0 0 1 0 0第几位错误:k = 5接受码r = 1 0 0 1 1 1 1编码输出序列:Data =1 0 1 1以上编码有个缺点,就是它只能对一个消息矢量(4位)进行编码,我又在这个基础上编写了一个可以同时对位数是4的倍数的消息矢量进行编码,多位循环码的编码程序如下:clear;clc;a=[1 1 0 0 1 0 1 1];[X,N]=size(a);%将信息码分为M帧,1帧4个信息码M=ceil(N/4);d=zeros(1,4);b=zeros(1,7*M);Data=zeros(1,7);for k=1:Mfor j=1:4d(j)=a(j+(k-1)*4);end%生成多项式Gx=[1 0 1 1];Data(1)=d(4);Data(2)=d(3);Data(3)=d(2);Data(4)=d(1);%Data除以Gx得到余数Rx[Qx,Rx]=deconv(Data,Gx);e=Rx+Data;b(7*k-6:7*k)=e(1:7);c=b(1+(k-1)*7);b(1+(k-1)*7)=b(7+(k-1)*7);b(7+(k-1)*7)=c;c=b(2+(k-1)*7);b(2+(k-1)*7)=b(6+(k-1)*7);b(6+(k-1)*7)=c;c=b(3+(k-1)*7);b(3+(k-1)*7)=b(5+(k-1)*7);b(5+(k-1)*7)=c;endfor i=1:M*7if rem(abs(b(i)),2)==0b(i)=0;end,. endfor i=1:M*7if rem(abs(b(i)),2)==1b(i)=1;endenddisp('输入序列:');adisp('编码输出序列:');b程序运行结果如下:输入序列:a =1 1 0 0 1 0 1 1编码输出序列:b =Columns 1 through 131 0 1 1 1 0 0 1 0 0 1 0 1Column 141相应的多位译码纠错程序如下:clear;clc;,. r=[1 0 0 1 1 0 0 1 0 0 1 0 0 1 ];[X,N]=size(r);%将接收到的码分为M帧,1帧7个信息位M=ceil(N/7);h=[1,0,0;1,1,0;1,1,1;0,1,1;1,0,1;0,1,0;0,0,1];b=flipud(h);d=zeros(1,7);U=zeros(1,4*M);Data=zeros(1,7*M);for i=1:Mfor j=1:7d(j)=r(j+(i-1)*7);ends=d*b;for k=1:3if rem(abs(s(k)),2)==0s(k)=0;endendfor k=1:3if rem(abs(s(k)),2)==1s(k)=1;endif s==[0 0 0]e=[0 0 0 0 0 0 0 ] elseif s==[1 0 0]e=[0 0 0 0 0 0 1] elseif s==[1 1 0]e=[0 0 0 0 0 1 0] elseif s==[1 1 1]e=[0 0 0 0 1 0 0] elseif s==[0 1 1]e=[0 0 0 1 0 0 0] elseif s==[1 0 1]e=[0 0 1 0 0 0 0] elseif s==[0 1 0]e=[0 1 0 0 0 0 0] else s==[0 0 1]e=[1 0 0 0 0 0 0] endu=d+e;for k=1:7if rem(abs(u(k)),2)==0 u(k)=0;endfor k=1:7if rem(abs(u(k)),2)==1 u(k)=1;endendData(1+7*(i-1))=e(1);Data(2+7*(i-1))=e(2); Data(3+7*(i-1))=e(3); Data(4+7*(i-1))=e(4); Data(5+7*(i-1))=e(5); Data(6+7*(i-1))=e(6); Data(7+7*(i-1))=e(7);U(1+(i-1)*4)=u(4);U(2+(i-1)*4)=u(5);U(3+(i-1)*4)=u(6);U(4+(i-1)*4)=u(7);endif Data==zeros(1,7*M);m=0,else[j,m]=find(Data);enddisp('第几位错误:');mdisp('接收到的码字:');rdisp('编码输出序列:');U运行结果如下:e = 0 0 1 0 0 0 0 e =0 0 0 0 0 1 0第几位错误:m =3 13接收到的码字:r =Columns 1 through 131 0 0 1 1 0 0 1 0 0 1 0 0Column 141编码输出序列:U = 1 1 0 0 1 0 1 1分析:这两组实验基本上完成了循环码的编码和译码,但是该实验的缺点就是不能同时对7位信息码进行两位的纠错,即只能完成一位信息码的纠错。

相关文档
最新文档