循环码的编码方法研究
[物理]第7讲 信道编码:循环码生成多项式和生成矩阵、交织
![[物理]第7讲 信道编码:循环码生成多项式和生成矩阵、交织](https://img.taocdn.com/s3/m/baf3a3e528ea81c758f578a2.png)
其则一xn+般1=形g(式x)[为xk +:u(gx)(]x=) h=(xx)rg+(x)gr-1 xr-1 + …… + g1 x1 + 1 g即(x证)具明有g(x以)为下xn性+1的质一:个因子 因1此),g这(x一)的性0质次也项就是指出1;了g(x)的求解方法,即对多项式xn+1进行分解:
x2 1 x7 1 x9 x7 x6
x9
x2
x7 x6 x2
[
x3c(
x)] mod
x7
1
x6
x2
1
x7
1
x6 x2 1
其对应码组为:1000101,它是( 7, 4 )循环码中的第4个码组c4
循环码生成多项式
因为g(x)是n-k次的多项式,故xkg(x)为一个n次多项式
(u2x2 u1x u0 )g(x) u(x)g(x)
码多项式的模运算
正整数的模运算 若一正整数M除以正整数N,所得到的商为Q,余数为R,可表示为
M N QRN 0RN
其中Q为整数,则在模N运算下,上式的结果为:
M R (模N, 记为mod N)
多项式的模运算与正整数的模运算相同,一般利用长除法计算商式和余式 有两个多项式a(x)和p(x),一定存在有唯一的多项式Q(x)和r(x),使得:
0 = [c(x)]mod g(x) = [xn-k u(x) + r(x)]mod g(x) = [xn-k u(x)]mod g(x) + r(x) r(x) = [xn-k u(x)]mod g(x)
例如:有一( 15, 11 )循环码,其生成多项式g(x) = x4 + x +1,若信息 码为:
循环码(7,4)

循环码(7,4)8.4 循环码时间:2012年09⽉01⽇信息来源:《通信原理》精品课程⽹站点击:2452次我要评论(0) 【字体:⼤中⼩】循环码是线性分组码重要的⼀个⼦类,现有的重要线性分组码都是循环码或与循环码密切相关。
与其他⼤多数码相⽐,循环码的编码及译码易于⽤简单的具有反馈连接的移位寄存器来实现,这是它的优势所在。
另外,对它的研究是建⽴在⽐较严密的数学⽅法基础之上,因此⽐较容易获得有效的译码⽅案。
循环码在实际中应⽤很⼴。
8.4.1 循环码基本概念⼀个线性()分组码,如果它的任⼀码字经过循环移位后(左移或右移),仍然是该码的⼀个码字,则称该码为循环码。
上⼀节中表8-3所⽰的(7,3)分组码就是⼀个循环码。
为了便于观察,将(7,3)码重新排列如表8-9所⽰。
表8-9 循环码的循环移位(8.4-1)来描述⼀个码字。
表8-9中的任⼀码组可以表⽰为(8.4-2)这种多项式中,仅是码元位置的标记,因此我们并不关⼼x的取值,这种多项式称为码多项式。
例如,码字(0100111)可以表⽰为(8.4-3)左移⼀位后为(1001110),其码字多项式为(8.4-4)需要注意的是,码字多项式和⼀般实数域或复数域的多项式有所不同,码字多项式的运算是基于模⼆运算的。
(1)码多项式相加,是同幂次的系数模⼆加,不难理解,两个相同的多项式相加,结果系数全为0。
例如(8.4-5)(2)码多项式相乘,对相乘结果多项式作模⼆加运算。
例如(8.4-6)(3)码多项式相除,除法过程中多项式相减按模⼆加⽅法进⾏。
当被除式的幂次⾼于等于除式的幂次,就可以表⽰为⼀个商式和⼀个分式之和,即(8.4-7)其中余式的幂次低于的幂次。
把称作对取模的运算结果,并表⽰为(8.4-8)有了这个运算规则,就可以很⽅便地表⽰⼀个移位后码字多项式。
可以证明,字长为的码字多项式和经过次左移位后的码字多项式的关系为(8.4-9)例如,(7,3)循环码的码字(1001110),其多项式为,移位3次后的多项式可求得如下:(8.4-10)即,它对应的码字为11101008.4.2 循环码⽣成多项式由表8-9可知,(7,3)循环码的⾮0码字多项式是由⼀个多项式分别乘以得到的。
BCH循环码的编码与译码

中南大学物理与电子学院信息论与编码理论实验报告实验名称:BCH循环码的编码与译码专业班级:电子信息科学与技术1104姓名:学号:实验6 BCH循环码的编码与译码一、实验内容用VC或Matlab软件编写循环BCH码的编码与译码程序。
利用程序对教科书的例题做一个测试。
二、实验环境1.计算机2.Windows 2000 或以上3.Microsoft Visual C++ 6.0 或以上4.Matlab 6.0或以上三、实验目的1.通过BCH循环码的编码与译码程序的编写,彻底了解并掌握循环BCH的编码与译码原理2.通过循环BCH码的编码与译码程序的编写,提高编程能力。
四、实验要求1.提前预习实验,认真阅读实验原理以及相应的参考书。
2.对不同信道的进行误码率分析。
特别是对称信道,画出误码性能图。
即信道误码率与循环汉明码之间的关系。
3.认真填写实验报告。
五、实验原理1.循环BCH的编码与译码原理(略)2.循环BCH的程序实现。
六、实验步骤232t)()2(,其系数在GFα,...,α,α,α是GF2上的一个本原,t是整数,含有2t 个跟αm1.基本概念:设1-2m=为循环码生成多项式,并称为而原本预案BCH码。
参数如下:码长:n)x(上,并且最低次多项式gmt≤k-n=校验位数:r1+2t=d0≥最小码距:dmin纠错能力:t。
)(2是任意整数<3)和纠错能力ttt≥1其中m(m-m2.计算方法:,产生GF2扩域。
m)x(1算出m,遭到一个m次的本原多项式p-2=m(1)有n)()(的根,分别计2t个连续米次根)x(m(2)在GF2上找到一个本原a,一般情况下是利用本原多项式p)x(,...,m2t)x(,m2)x(域上的最小多项式m1)2(2t所对应的GFα3,...,α2,α,α⎦⎤)x(,...,m2t)x(,m3)x(m1⎣⎡LCM=)x((3)计算2t个连续奇次幂之根所对应的最小多项式的公倍式,得到生成多项式g求得BCH码字)x(g)x(m=)x((4)由关系式C3.程序实现:对于BCH(15,5),有matlab实现程序如下:①BCH编码 enbch155.mfunction coded = bch155(msg_seq) %定义函数bch编码 % 输入为msg_seq信息位 % 输出为编码后的码元codedg=[1 0 1 0 0 1 1 0 1 1 1]; %生成多项式系数n=15;k=5; %默认为BCH(15,5) %% 从输入msg_seq中提取信息位msg display('信息位:')if nargin<1 %判断输入信息 ,若未输入,系统自动产生5组信息码,并显示出信息位 nmsg=5;msg=randi([0,1],[nmsg,k]) elselmsg = length(msg_seq); nmsg = ceil(lmsg/k);msg = [msg_seq(:);zeros(nmsg*k-lmsg,1)];msg = reshape(msg,k,nmsg).' endxx = [msg zeros(nmsg,n-k)]; %将输入信息码msg拓展为矩阵形式的xx %% 进行编码,将xx编码为coded coded =zeros(nmsg,n); fori=1:nmsg[q,r]=deconv(xx(i,:),g); %产生余式 r=abs(rem(r,2)); coded(i,:)=r; end coded = coded + xx; %产生信息码 end②BCH解码debch155.m M=4;code = gf(code,M); [m , n]=size(code); decode=[]; code1=[]; T2=6; N=15; mat=gf(2,M,code.prim_poly).^([N-1:-1:0]'*([1:T2]));第2/5页Tx = [0 1 zeros(1,T2-1)]; fori=1:m ;code1=code(i,:); M=code1.m;T2=6;N=15; S = code1* ((gf(2,M,code1.prim_poly)).^([N-1:-1:0]'*([1:T2]))); LambdaX = gf([1 zeros(1,T2)],M,code1.prim_poly); Tx = [0 1 zeros(1,T2-1)]; L=0; for k = 1:T2;LambdaXTemp = LambdaX;Delta = S(k) - LambdaXTemp(1+[1:L])*(S(k-[1:L]))'; ifDelta.x;LambdaX = LambdaXTemp - Delta*Tx; if 2*L < k;L = k-L; Tx = LambdaXTemp/Delta; end; end;Tx = [0 Tx(1:T2)]; end;LambdaXValue = LambdaX.x;LambdaX = gf(LambdaXValue(1:max(find(LambdaXValue))), M, code1.prim_poly); errLoc_int = roots(LambdaX);errLoc = log(errLoc_int); fori =1:length(errLoc); errorMag = 1;code1(N-errLoc(i)) = code1(N-errLoc(i)) - errorMag; end;decode=[decode;code1]; end;ccode = double(decode.x); decode = ccode(:,1:5); end③测试文件 bch_en_decode.m function bch_en_decode(msg) %编码 ifnargin<1 code=enbch155();else code=enbch155(msg); %编码 end第3/5页code=code+randerr(5,15,1:3); %模拟信道产生错误,每行有1-3个随机错误display('信道传输中干扰后,接收到的信息');coder=rem(code,2) %对2取余,使范围是0、1 display('解码后');decode=debch155(coder) end4.进行测试不输入信息位,让系统自动产生信息位,在matlab中输入下面一行代码,得到结果>>bch_en_decode() 信息位: msg =0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 编码后码元: coded =0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 信道传输中干扰后,接收到的信息 coder =0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 11 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 解码后 decode =0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0第4/5页输入信息位在matalb中输入下面两行代码,得到结果如下>>msg=[1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1]; >>bch_en_decode(msg) 信息位: msg =1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 编码后码元: coded =1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 信道传输中干扰后,接收到的信息 coder =1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 解码后 decode =1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 11 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1。
循环码编码原理

循环码编码原理
循环码编码是一种在通信和数据存储领域中广泛应用的编码原理,它通过一定的算法对数据进行编码,以提高数据传输的可靠性
和纠错能力。
循环码编码原理的核心是利用多项式运算和循环移位
操作来实现对数据的编码和解码,下面我们将详细介绍循环码编码
原理及其应用。
循环码编码原理的基本概念是利用生成多项式对输入数据进行
编码,生成多项式可以看作是一种特定的多项式除法,它将输入数
据与一个固定的多项式进行运算,生成编码后的数据。
在解码端,
利用同样的生成多项式进行计算,可以对接收到的编码数据进行解码,从而实现纠错和恢复原始数据的功能。
循环码编码原理的关键在于循环移位操作,它通过将数据进行
循环移位并与生成多项式进行异或运算,实现了对数据的编码和解码。
在编码端,输入数据经过循环移位和异或运算后生成编码数据;在解码端,接收到的编码数据也通过循环移位和异或运算,最终可
以得到原始数据。
循环码编码原理的优点是能够在传输过程中对数据进行纠错,
提高了数据传输的可靠性。
它在数字通信、数据存储、无线通信等领域都有着广泛的应用,例如在蓝牙、Wi-Fi、LTE等无线通信标准中都采用了循环码编码原理来提高通信质量。
总的来说,循环码编码原理是一种重要的编码技术,它通过多项式运算和循环移位操作实现了对数据的编码和解码,提高了数据传输的可靠性和纠错能力。
在实际应用中,循环码编码原理发挥着重要作用,为数字通信和数据存储领域的发展做出了重要贡献。
通信原理二--循环码

实验报告学科:通信原理(二)题目:数字信号基带传输系统仿真实验设备:安有matlab仿真软件的计算机学院:光电信息与通信工程学院系别:通信工程学号:姓名:指导教师:一、实验目的与要求1. 学习并理解信道编码的根本目的、技术要求与基本目标等基本概念;2. 掌握循环码、miller码的物理涵义、数学基础及检纠错原理;3. 掌握循环码、miller码的码型特点、检纠错能力、编译码方法及基本技术;4. 学会使用MATLAB 实现循环码及miller码的编译码及检纠错模拟与分析。
二、实验仪器与设备1. 安装了matlab程序的计算机 1 台三、实验原理(一)循环码循环码是线性分组码的一个重要子集,是目前研究得最成熟的一类码,它有许多特殊的代数性质,例如,循环码中任一许用码组经过循环移位后,所得到的码组仍然是许用码。
循环码A= a n−1+a n−2+…+a 1+a 0可以表示为如下的码多项式:1.生成多项式g (x)定义:若一个循环码的所有码字多项式都是一个次数最低的、非零的、首一多项式g (x)的倍式,则称g (x)为生成该码,并称g (x) 为该码的生成元或生成多项式。
可以证明生成多项式g (x)具有以下特性:(1)g (x) 是一个常数项为1 的r=n −k 次多项式;(2)g (x) 是x n+1 的一个因式;(3)该循环码中其它码多项式都是g (x)的倍式。
为了保证构成的生成矩阵G的各行线性不相关,通常用g (x) 来构造生成矩阵。
因此,一旦生成多项式g (x) 确定以后,该循环码的生成矩阵就可以确定。
设则有:2.监督多项式h(x)定义:若g (x) 是(n,k) 循环码的生成多项式,则有x n+1= g (x )h (x) 。
其中,h(x) 是k 次多项式,称为监督多项式。
也称校验多项式。
监督矩阵可表示为:其中:3.伴随式发送码C(x) 通过含噪信道时,会因各种扰而产生误码。
例如发送码为:00000000001111111111接收码为:01101001001111001001产生错误序列:01101001000000110110可见,发生了两个长度分别为7和5的突发差错,其错误图样分别为1101001 和11011。
浅析BCH码的编码方法

浅析BCH 码的编码方法0 引言数字信号在传输系统中传输时,不免会受到各种因素的干扰,使到达接收端的数字信号中混有噪声,从而引发错误判决。
为了抗击传输过程中的干扰,必然要利用纠错码的差错控制技术。
BCH 码是纠错码中最重要的子类,其具有纠错能力强,构造方便,编码简单,译码也较易实现一系列优点,在实际应用中被工程人员广泛应用。
1 BCH 码BCH 码是1959年由霍昆格姆(Hocquenghem), 1960年由博斯(Bose)和查德胡里(Chandhari)各自提出的纠多个随机错误的循环码,这是迄今为止发现的最好的线性分组码之一,它有严格的代数结构,它的纠错能力很强,特别是在短和中等码长下,其性能接近理论值,并且构造方便编码简单,特别是它具有严格的代数结构,因此它在编码理论中起着重要的作用。
BCH 码是迄今为止研究的最为详尽,分析得最为透彻,取得成果也最多的码类之一。
该码的生成多项式与最小距离d 之间有密切关系,根据d 的要求可以很容易地构造出码,利用该码的代数结构产生了多种译码方法。
BCH 码可以采用查表编码方法,这是一种利用BCH 码作为线性分组码和循环码的性质和结构特点来编写编码表,然后通过查表来编码的一种方法,也可以采用编码器进行编码,还可以应用代数算法,在本文将分别介绍这些算法。
2 BCH 码的k n -级编码器()k n , BCH 码是一类循环码,它的编码方法和传统的循环码完全相同,根据循环码的生成多项式()x g 或校验多项式()x h ,可推出BCH 码的编码电路是一个k n -级或k 级移存器电路,在k>n-k 时,一般采用k n -级编码电路。
用于产生系统码k n -级编码器的原理这样的:将信息多项式()x m 乘以kn x-成为()x m x k n -,然后用()x g 除()x m x k n -得到余式()x r , ()x r 的系数就是校验位,因此这可以根据生成多项式()x g 反馈连接的移位寄存器构成的除法电路完成。
循环码原理

循环码原理
循环码是一种在数字通信和数据存储中广泛应用的编码技术,它通过在原始数
据中添加冗余信息,以实现数据的纠错和检错。
在循环码的编解码过程中,涉及到很多重要的原理和算法,下面将对循环码的原理进行详细介绍。
首先,循环码的生成原理是基于多项式的除法运算。
在编码过程中,原始数据
被看作是一个多项式的系数,而生成多项式则是用来产生冗余信息的多项式。
通过对原始数据多项式进行除法运算,得到的余数就是添加了冗余信息的编码数据。
而在解码过程中,利用同样的生成多项式进行除法运算,可以得到余数,通过余数的位置和数值来进行错误的定位和纠正。
其次,循环码的检错和纠错原理是基于循环冗余校验(CRC)的思想。
CRC是一种通过对数据进行多项式除法运算来生成校验码的技术,循环码正是利用了
CRC的原理来实现数据的检错和纠错。
通过对接收到的数据进行除法运算,可以
得到余数,如果余数不为零,则说明数据中存在错误,通过对余数的位置和数值进行分析,可以确定错误的位置和数量,并进行纠正。
此外,循环码还涉及到很多重要的算法,如生成多项式的选择、循环移位寄存
器的设计、巴特勒特码的生成等。
这些算法都是循环码能够高效工作的关键,它们通过精确的数学推导和优化,使得循环码在实际应用中能够达到较高的纠错性能和编解码效率。
总的来说,循环码是一种非常重要的编码技术,它在数字通信和数据存储中有
着广泛的应用。
通过对循环码的原理进行深入的理解和研究,可以更好地应用和优化循环码的编解码过程,提高数据传输的可靠性和效率。
希望通过本文的介绍,读者能够对循环码有一个更清晰的认识,从而更好地应用和推广这一重要的编码技术。
RS码简介与编译码算法综述

BM译码算法
——算法基础
BM译码算法
——算法原理
BM译码算法
——迭代的具体实现
j -1 0 1 2 3a 4 5 6 1 1 1+αx 1+α11x 1+α8x+α8x2 1+α6x+αx2 1+α6x+αx2 1+α6x+αx2 0 1 1 1+α6x 1+α10x 1+α11x+α5x2 1+α11x+α5x2 1+α11x+α5x2 0 0 1 1 2 2 2
E(x)
计算S2t
计算βi
PGZ译码算法
——算法总结
PGZ译码算法
——算法总结
BM译码算法
——引入
1965年E.R.Berlekamp提出了由伴随式求σ(x)的 迭代译码算法,极大地加快了求σ(x)的速度, 实现时比较简单,且易于用计算机完成译码, 因而从工程上解决了BCH码的译码问题。1969 年J.L.Massey指出,迭代译码算法与序列的最 短线性移位寄存器的综合之间的关系,并进 行了简化,自此以后把这种算法成为BM迭代 译码算法。
RS码简介
熊竹林
背景知识
RS码是一种BCH码 BCH码是一种循环码 循环码是一种线性分组码 线性分组码是一种信道编码
背景知识
——信道编码
信道的非理想性 传输差错 香农告诉我们要纠错必须增加冗余 信道编码就是一门增加冗余的学问 亡羊补牢:反馈重传 未雨绸缪:前向纠错 线性分组码就是前向纠错码的一种
RS编码
——编码器设计
最小距离为d的本原RS码的生成多项式为 g(x)=(x-α)(x-α2)(x-α3)…(x-αd-2) 信息元多项式为 m(x)=m0+m1x+m2x2+…+mk-1xk-1 编码器主要有三种类型: 1.基于乘法形式的编码器 2.基于除法形式的编码器 3.基于校验多项式形式的编码器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文对循环码的编码方法进行了深入的分析和探讨,循环码具有很高的可靠性,在通信、军事等领域应用非常广泛。
关键词循环码编码中图分类号:G202文献标识码:A 0 引言循环码是线性分组码最重要的子集。
它除了具有线性分组码的一般性质外,还有许多特殊的性质,这些性质有助于按照要求的纠错能力系统地构造这类码,并且简化译码算法。
循环码还有易于实现的特点,很容易用带反馈的移位寄存器实现其硬件。
正是由于循环码具有码的代数结构清晰、检纠错能力强、编译码易于实现,具有很高的可靠性等特点,因此在通信、军事等领域应用非常广泛。
1 循环码的相关概念 1.1 循环码的特性表1给出了(7,3)循环码的所有码字,我们可以直观的看出循环码具有如下特性:(1)封闭性。
(线性性):任何许用码组的线性和还是许用码组。
(2)循环性:任何许用的码组循环移位后的码组还是许用码组。
表1 (7,3)循环码 1.2 循环码的码多项式用码多项式来表示来表示循环码,可以方便的利用代数理论对其进行研究。
若许用码字为C = (,,…,):,码多项式可表示为:C(x) = … c1x c0其中:对于二元码组,多项式的每个系数是0或者1; x仅是码元位置的标志,并不关心x的取值。
利用码多项式可以方便的表示循环移位特性。
若C(x) 是一个长为n的许用码字,则xi C(x) (左乘xi)在按模xn 1运算下,亦是一个许用码字,也就是:xiC(x) = Ci(x) (模xn 1),正是C(x) 代表的码组向左循环移位次的结果。
1.3 循环码的生成多项式和生成矩阵循环码的生成多项式g(x)是一个常数项为1,且能除尽xn 1的r = n - k次多项式;循环码中其它码多项式都是g(x)的倍式。
由生成多项式可以表示出生成矩阵G(x)为: 1.4 循环码的监督多项式和监督矩阵利用循环码的特点来确定监督矩阵H, 由于循环码中是的因式,因此可令:h(x) == xk hk-1xk-1 … h1x 1,这里称为监督多项式。
与G(x)相对应,监督矩阵表示为: 其中:h*(x)是h(x)逆多项式,h*(x) = xk h1xk-1 h2xk-2 … hk-1x 1。
2 循环码编码的具体实现方法 2.1 利用生成矩阵编码 2.1.1 求解生成多项式根据g(x)的特性,g(x)是xn 1的一个r次因式。
因此,先对xn 1进行因式分解,找到它的r次因式。
以(7,3)循环码为例进行分析: 第一步:对x7 1进行因式分解得:x7 1 = (x 1)(x3 x2 1)(x3 x 1) 第二步:构造生成多项式g(x),即找r = n - k = 4次因子。
不难看出,这样的因子有两个,即: (x 1)·(x3 x2 1) = x4 x2 x 1 (x 1)·(x3 x 1) = x4 x3 x2 1 2.1.2 编码由g(x)得到生成矩阵为: 循环码是线性码的一种,根据线性码编码的特点,生成矩阵确定,码组也就确定了。
C = mG 其中,C是编码之后的码字,m是信息码元序列,G是生成矩阵。
2.2 利用监督矩阵编码由h*(x)得到监督矩阵为: 根据线性码编码的特点,监督矩阵确定,码组也就确定了。
HCT = 0其中,C是编码之后的码字,H是监督矩阵。
2.3 循环码的系统码编码方法设要产生(n,k)循环码,m(x)表示信息多项式,编码步骤如下: (1)用xn-k乘m(x)。
根据码多项式的特点,左乘xn-k实际上是把信息位左移位(n-k),即在信息码后加上(n-k)个“0”。
例如,信息码为110,它相当于m(x) = x2 x。
当n-k = 7-3 = 4时, xn-k·m(x) = x6 x5,它相当于1100000。
而希望的到得系统循环码多项式应当是C(x) = xn-k·m(x) r(x) (2)求r(x)。
由于循环码多项式C(x)都可以被g(x)整除,也就是: == (3)求C(x),C(x) = xn-k·m(x) r(x) 例如,对于(7,3)循环码,若选用g(x) = x4 x2 x 1,信息码110时,则: = ,求得r(x) = x2 1,这时的编码输出为:1100101。
3 结论本文深入系统地分析了循环码的编码技术。
随着数字技术的高速发展,循环码纠错技术已经广泛应用于各种通信系统中。
其编码和译码都可以通过简单的反馈移位寄存器来完成,实现简单,纠错能力强 ,可以降低误码率,保证数据传输的可靠性,大大提高通信质量。