(浙江选考)2019届高考物理二轮复习 专题二 能量与动量 提升训练7 动能定理的应用

合集下载

(浙江选考)2019届高考物理二轮复习 专题二 能量与动量综合训练

(浙江选考)2019届高考物理二轮复习 专题二 能量与动量综合训练

专题二能量与动量专题综合训练(二)1.质量为m=2 kg的物体沿水平面向右做直线运动,t=0时刻受到一个水平向左的恒力F,如图甲所示,取水平向右为正方向,此物体的v-t图象如图乙所示,g取10 m/s2,则()A.物体与水平面间的动摩擦因数μ=0.5B.10 s内恒力F对物体做功102 JC.10 s末物体在计时起点位置左侧2 m处D.10 s内物体克服摩擦力做功30 J2.如图所示,质量为m的物块从A点由静止开始下落,加速度是,下落H到B点后与一轻弹簧接触,又下落h后到达最低点C,在由A运动到C的过程中,空气阻力恒定,则()A.物块机械能守恒B.物块和弹簧组成的系统机械能守恒C.物块机械能减少D.物块和弹簧组成的系统机械能减少3.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,A由静止释放,B的初速度方向沿斜面向下,大小为v0,C的初速度方向沿斜面水平,大小也为v0。

下列说法中正确的是()A.A和C将同时滑到斜面底端B.滑到斜面底端时,B的动能最大C.滑到斜面底端时,B的机械能减少最多D.滑到斜面底端时,C的重力势能减少最多4.图甲为竖直固定在水平面上的轻弹簧,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹簧弹起离开弹簧,上升到一定高度后再下落,如此反复。

通过安装在弹簧下端的压力传感器,测出此过程弹簧弹力F随时间t变化的图象如图乙所示,不计空气阻力,则()A.t1时刻小球的动能最大B.t2时刻小球的加速度最小C.t3时刻弹簧的弹性势能为零D.图乙中图线所围面积在数值上等于小球动量的变化量5.如图所示,某人在P点准备做蹦极运动,假设蹦极者离开跳台时的速度为零。

图中a是弹性绳的原长位置,c是人所到达的最低点。

b是人静止地悬吊着时的平衡位置。

不计空气阻力,下列说法中正确的是()A.从P到c过程中重力的冲量大于弹性绳弹力的冲量B.从P到c过程中重力做的功等于人克服弹力所做的功C.从P到b过程中人的速度不断减小D.从a到c过程中加速度方向保持不变6.如图所示,质量为m的小球从斜轨道高h处由静止滑下,然后沿竖直圆轨道内侧运动,已知圆形轨道半径为R,不计一切摩擦阻力,重力加速度为g。

2019版物理高考二轮复习备考浙江选考版课件:专题七 计算题题型强化 第2讲

2019版物理高考二轮复习备考浙江选考版课件:专题七 计算题题型强化 第2讲
专题七 计算题题型强化
第2讲 必考计算题20题 动力学方法和能量观点的综合应 用
题型1 直线运动中动力学方法和能量观点的应用 题型2 曲线运动中动力学方法和能量观点的应用
题型1
直线运动中动力学方法和能量观点的应用
命题预测
1.航母舰载机滑跃起飞有点像高山滑雪,主要靠甲板前端的上翘来帮助战斗机
起飞,其示意图如图1所示,设某航母起飞跑道主要由长度为L1=160 m的水平 跑道和长度为L2=20 m的倾斜跑道两部分组成,水平跑道与倾斜跑道末端的高 度差h=4.0 m.一架质量为m=2.0×104 kg的飞机,其喷气发动机的推力大小恒
1234
解析 答案
规律总结
1.直线运动中多运动过程组合主要是指直线多过程或直线与斜面运动的 组合问题. 2.涉及的规律: (1)动力学观点:牛顿运动定律、运动学基本规律;(2)能量观点:动能定 理、机械能守恒定律、能量守恒定律. 3.受力分析、运动分析,将物理过程分解成几个简单的直线运动过程, 分别选择合适的规律求解. 4.相邻运动过程连接点的速度是解题关键.
4.(2017·嘉兴一中等五校联考)如图4甲所示,倾角为θ=37°的传送带以 恒定速率逆时针运行,现将一质量m=2 kg的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s末物体到达 B端,取沿传送带向下为正方向,g=10 m/s2,sin 37°=0.6,cos 37°= 0.8,求: (1)小物体在传送带A、B两端间 运答动案的平8 m均/s速度v的大小;
1234
解析 答案
(3)为确保滑草者能停在橡胶材质的水平减速带上,μ1、μ2应满足什么条 件答.案 0.4-0.2μ2<μ1<0.4 解析 设滑草者在减速带滑行距离x后停下, 由动能定理:mgH-μ1mgL-μ2mgx=0 为确保安全,0<x<s 解得:0.4-0.2μ2<μ1<0.4.

2019届高考物理二轮复习第章动量和能量核心素养提升课件.ppt

2019届高考物理二轮复习第章动量和能量核心素养提升课件.ppt
水平导轨进入磁场区间Ⅱ并从中滑出.
2019-9-8
谢谢你的聆听
13
运动过程中,杆 ab、cd 和 ef 与导轨始终接触良好,且保持 与导轨垂直.已知杆 ab、cd 和 ef 电阻均为 R=0.02 Ω,m=0.1 kg, l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦 阻力和导轨电阻,忽略磁场边界效应.求:
谢谢你的聆听
12
2.间距为 l 的两平行金属导轨由水平部分和倾斜部分平滑 连接而成,如图所示.倾角为 θ 的导轨处于大小为 B1、方向垂直 导轨平面向上的匀强磁场区间Ⅰ中,水平导轨上的无磁场区间静
止放置一质量为 3m 的“联动双杆”(由两根长为 l 的金属杆 cd 和 ef,用长度为 L 的刚性绝缘杆连接构成),在“联动双杆”右 侧存在大小为 B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ, 其长度大于 L.质量为 m、长为 l 的金属杆 ab 从倾斜导轨上端释 放,达到匀速后进入水平导轨(无能量 损失),杆 ab 与“联动双杆”发生碰 撞,碰后杆 ab 和 cd 合在一起形成 “联动三杆”.“联动三杆”继续沿
谢谢你的聆听
11
(3)设滑块 Q 在小车上滑行一段时间后两者的共同速度为 u, 由动量守恒可得
mQv0=(mQ+M)u⑤ 根据能量守恒,系统产生的摩擦热
μmQgL=12mQv20-12(mQ+M)u2⑥ 联立⑤⑥解得 L=6 m. 答案:(1)4 m/s (2)4 m/s (3)6 m
2019-9-8
Ep=12mPv2② 由①②式联立解得 v=4 m/s. (2)P、Q 之间发生弹性碰撞,设碰撞后 Q 的速度为 v0,P 的 速度为 v′,由动量守恒和能量守恒得 mPv=mPv′+mQv0③

【物理试题】浙江专用2019版高考物理大二轮复习优选习题仿真模拟卷7.doc

【物理试题】浙江专用2019版高考物理大二轮复习优选习题仿真模拟卷7.doc

仿真模拟卷(七)一、选择题Ⅰ(本题共13小题,每小题3分,共39分。

每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列物理量正负号的表述正确的是()A.重力势能正、负号表示大小B.电量正、负号表示方向C.功正、负号表示方向D.速度正、负号表示大小2.以下数据指时间间隔的是()A.每晚新闻联播的开播时间为19:00B.校运会上某同学获得高一女子800 m冠军,成绩是2'30″C.中午11:40是下课吃中饭的时间D.G7581次列车到达杭州站的时间是10:323.在地面上方某一点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()A.速度和加速度的方向都在不断变化B.速度与加速度方向之间的夹角一直减小C.在相等的时间间隔内,速率的改变量相等D.在相等的时间间隔内,动能的改变量相等4.图示为游乐园的过山车,圆轨道半径为R,当过山车底朝上到达轨道最高点时,游客()A.一定处于超重状态B.速度大小一定是C.加速度方向一定竖直向下D.对座椅一定没有压力5.今年上海的某活动引入了全国首个户外风洞飞行体验装置,体验者在风力作用下飘浮在半空。

若减小风力,体验者在加速下落过程中()A.失重且机械能增加B.失重且机械能减少C.超重且机械能增加D.超重且机械能减少6.在强台风到来之前,气象部门会提醒居民窗台上不能摆放花盆,以免被吹落后砸到人或物,在五楼阳台上的花盆,若掉落到地面上,撞击地面的速度大约为()A.12 m/sB.17 m/sC.25 m/sD.30 m/s7.如图所示,某滑块沿动摩擦因数一定的足够长的固定斜面,从顶端由静止下滑。

下面四个表示物体的位移x、速度v、加速度a、摩擦力F f与时间t之间的关系图象中,不正确的是()8.在玻璃皿的中心放一个圆柱形电极,沿边缘内壁放一个圆环形电极,把它们分别与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水。

浙江专题07 功和能-2019年高考真题和模拟题分项汇编物理 Word版含解析

浙江专题07 功和能-2019年高考真题和模拟题分项汇编物理 Word版含解析

专题07 功和能1.(2019·新课标全国Ⅱ卷)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和。

取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图所示。

重力加速度取10 m/s 2。

由图中数据可得A .物体的质量为2 kgB .h =0时,物体的速率为20 m/sC .h =2 m 时,物体的动能E k =40 JD .从地面至h =4 m ,物体的动能减少100 J【答案】AD【解析】A .E p –h 图像知其斜率为G ,故G ==20 N ,解得m =2 kg ,故A 正确B .h =0时,80J4m E p =0,E k =E 机–E p =100 J–0=100 J ,故=100 J ,解得:v =10 m/s ,故B 错误;C .h =2 m 时,212mv E p =40 J ,E k =E 机–E p =85 J–40 J=45 J ,故C 错误;D .h =0时,E k =E 机–E p =100 J–0=100 J ,h =4 m 时,E k ′=E 机–E p =80 J–80 J=0 J ,故E k –E k ′=100 J ,故D 正确。

2.(2019·新课标全国Ⅲ卷)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。

距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示。

重力加速度取10 m/s 2。

该物体的质量为A .2 kgB .1.5 kgC .1 kgD .0.5 kg【答案】C【解析】对上升过程,由动能定理,,得,即F +mg =12N ;下落过程,,即N ,联立两公式,得到m =1 kg 、F =2 N 。

3.(2019·江苏卷)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m ,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A 点恰好静止.物块向左运动的最大距离为s ,与地面间的动摩擦因数为μ,重力加速度为g ,弹簧未超出弹性限度.在上述过程中A .弹簧的最大弹力为μmgB .物块克服摩擦力做的功为2μmgsC .弹簧的最大弹性势能为μmgsD .物块在A 【答案】BC【解析】小物块压缩弹簧最短时有,故A 错误;全过程小物块的路程为,所以全过程中F mg弹μ>2s 克服摩擦力做的功为:,故B 正确;小物块从弹簧压缩最短处到A 点由能量守恒得:2mg s μ⋅,故C 正确;小物块从A 点返回A 点由动能定理得:,解得:D 错误。

(浙江专用)2019版高考物理大二轮复习-专题二-能量与动量-7-动能定理的应用课件

(浙江专用)2019版高考物理大二轮复习-专题二-能量与动量-7-动能定理的应用课件

-17-
(1)求小物块P第一次运动到B点时速度的大小。
(2)求小物块P运动到E点时弹簧的弹性势能。
(3)改变小物块P的质量,将小物块P推至E点,从静止开始释放。
已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点。G点在
7
C点左下方,与C点水平相距 2 R、竖直相距R,求小物块P运动到D点
时速度的大小和改变后小物块P的质量。
答案:(1)2
12
(2) 5 mgR
3
(3)5 5
1
3
m
解析:(1)由题意可知lBC=7R-2R=5R ①
设P到达B点时的速度为vB,由动能定理得
1
mglBCsinθ-μmglBCcosθ=2 2

式中 θ=37°,联立①②式并由题给条件得 vB=2 。③
-18-
(2)设BE=x,P到达E点时速度为零,此时弹簧的弹性势能为Ep,由
1
1
-μmgcos θLcos θ-mgr= 2 − 2 ⑦
2
由 ⑥⑦两式得
73
Ff1= ×103 N=4.6×103 N⑧
2
16
要使过山车停在倾斜轨道上的摩擦力为Ff2
Ff2=mgsin θ=6×103 N⑨
综合考虑⑧⑨两式,得Ffm=6×103 N
距离xm。
-4-
答案:(1)tanθ=0.05 (2)5.6 m/s2 (3)53°
25
16
m
解析:(1)物块恰能沿斜面开始下滑,应有mgsinθ=μ1mgcosθ,解得
tanθ=0.05
(2)由牛顿第二定律可得mgsin37°-μ1mgcos37°=ma,解得a=5.6
m/s2

(浙江选考)2019高考物理二轮复习 专题二 能量和动量 第2讲 动量和能量观点的应用学案

(浙江选考)2019高考物理二轮复习 专题二 能量和动量 第2讲 动量和能量观点的应用学案

第2讲动量和能量观点的应用[历次选考考情分析]章知识内容考试要求历次选考统计必考加试2015/102016/042016/102017/042017/112018/04动量守恒定律动量和动量定理c 22 23 22 22 23 动量守恒定律c 23 22碰撞 d反冲运动火箭b 23考点一动量与冲量有关概念与规律的辨析1.动量定理(1)冲量:力与力的作用时间的乘积叫做力的冲量,即I=Ft,冲量是矢量,其方向与力的方向相同,单位是N·s.(2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系;冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为零的结果.(3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正方向.2.动量定理的应用(1)应用I=Δp求变力的冲量:若作用在物体上的作用力是变力,不能直接用Ft求变力的冲量,但可求物体动量的变化Δp,等效代换变力的冲量I.(2)应用Δp=Ft求恒力作用下物体的动量变化:若作用在物体上的作用力是恒力,可求该力的冲量Ft,等效代换动量的变化.3.动量守恒的适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 4.动量守恒的表达式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是( )图1A .球对手的冲量减小B .球对人的冲击力减小C .球的动量变化量不变D .球的动能变化量减小答案 BC解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-mv 得F =mvt,当时间增大时,作用力减小,而冲量和动量变化量、动能变化量都不变,所以B 、C 正确.2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释放后撞击地面弹跳的v -t 图象,小球质量为0.5 kg ,重力加速度g =10 m/s 2,不计空气阻力,根据图象可知( )图2A .横坐标每一小格表示的时间是0.1 sB .小球第一次反弹的最大高度为1.25 mC .小球下落的初始位置离地面的高度为1.25 mD .小球第一次撞击地面时地面给小球的平均作用力为55 N 答案 AB解析 小球下落时做自由落体运动,加速度为g ,则落地时速度为6 m/s ,用时t =610 s =0.6s ,图中对应6个小格,每一小格表示0.1 s ,故A 正确;第一次反弹后加速度也为g ,为竖直上抛运动,由题图可知,最大高度为:h =12×10×(0.5)2m =1.25 m ,故B 正确;小球下落的初始位置离地面的高度为:h ′=12×10×(0.6)2m =1.8 m ,故C 错误;设向下为正方向,由题图可知,碰撞时间约为t ′=0.1 s ,根据动量定理可知:mgt ′-Ft ′=mv ′-mv ,代入数据解得:F =60 N ,故D 错误.3.[动量守恒的应用](多选)如图3所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图3A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,选取向右为正方向,根据动量守恒可知:mv 0=5mv B -mav 0.要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确,A 、D 错误.考点二 动量观点在电场和磁场中的应用例1 如图4所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数均为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图4(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小. 答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,与物块Ⅱ碰撞前物块Ⅰ的速度为v 1,碰撞后共同速度为v 2,取水平向左为正方向,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ第一次经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小为F N ,则R (1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N4.(2018·诸暨市期末)在一个高为H =5 m 的光滑水平桌面上建立直角坐标系,x 轴刚好位于桌子的边缘,如图5所示为俯视平面图.在第一象限的x =0到x =4 3 m 之间有竖直向上的匀强磁场,磁感应强度B =1.0 T ,第二象限内的平行金属板MN 之间加有一定的电压.甲、乙为两个绝缘小球,已知甲球质量m 1=3×10-3kg ,带q =5×10-3C 的正电荷,乙球的质量m 2=10×10-3 kg ,静止在桌子边缘上的F 点,即x 轴上x =3 3 m 处;现让甲球从金属板M附近由静止开始在电场中加速,经y 轴上y =3 m 处的E 点,垂直y 轴射入磁场,甲球恰好能与乙球对心碰撞,碰后沿相反方向弹回,最后垂直于磁场边界PQ 射出,而乙球落到地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g =10 m/s 2,则:图5(1)求平行金属板MN 之间的电压; (2)求甲球从磁场边界PQ 射出时速度大小;(3)求乙球的落地点到桌子边缘(即x 轴)的水平距离. 答案 (1)30 V (2)103m/s (3)2 3 m解析 (1)设甲球做第一次圆周运动的半径为R 1,则由几何关系可得(R 1-OE )2+OF 2=R 12R 1=6.0 m.设平行金属板MN 之间的电压为U ,甲球加速后的速度为v 1,则qv 1B =m 1v 12R 1,得v 1=10 m/sqU =12m 1v 12代入数据得U =30 V.(2)设甲球做第二次圆周运动的半径为R 2,则由几何关系可得R 2=2.0 m qv 2B =m 1v 22R 2代入数据得v 2=103m/s.(3)甲、乙两球对心碰撞,设碰后乙球的速度为v ,以碰撞前甲球的速度方向为正方向,由动量守恒定律有m 1v 1=-m 1v 2+m 2v ,代入数据得v =4 m/s.由几何关系可得甲球的碰前速度方向与x 轴成60°,因此乙球的碰后速度方向也与x 轴成θ=60°,开始做平抛运动,设水平位移为s ,沿y 轴方向位移分量为y .H =12gt 2, s =vt , y =s sin θ,代入数据得y =2 3 m.考点三 动量和能量观点在电磁感应中的简单应用例2 如图6所示,足够长的水平轨道左侧b 1b 2-c 1c 2部分的轨道间距为2L ,右侧c 1c 2-d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒C 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图6(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、C 在水平导轨间扫过的面积之差. 答案 (1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2解析 (1)A 棒在曲线轨道上下滑,由机械能守恒定律得:mgh =12mv 02得:v 0=2gh =2×10×0.2 m/s =2 m/s(2)选取水平向右为正方向,对A 、C 利用动量定理可得: 对C :F C 安cos θ·t =Mv C 对A :-F A 安cos θ·t =mv A -mv 0 其中F A 安=2F C 安联立可知:mv 0-mv A =2Mv C两棒最后匀速运动时,电路中无电流:有BLv C =2BLv A 得:v C =2v A 解得v C ≈0.44 m/s(3)在C 加速过程中:Σ(B cos θ)iL Δt =Mv C -0q =Σi Δt得:q =509C≈5.56 C(4)根据法拉第电磁感应定律有:E =ΔΦΔt磁通量的变化量:ΔΦ=B ΔS cos θ 电路中的电流:I =E2R通过截面的电荷量:q =I ·Δt 得:ΔS =2509m 2≈27.8 m 25.如图7所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m/s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求:图7(1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m/s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有E =Bdv 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有m 1v 0=m 1v 1+m 2v 212m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v P 2r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W解得:W =4.375 J.专题强化练1.(多选)下列说法正确的是( )A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力的冲量不一定能改变物体速度的大小答案ABD解析物体动量的方向与物体的运动方向相同,A对;如果物体的速度变化,则物体的动量一定发生了变化,由动量定理知,物体受到的合外力的冲量不为零,B对;合外力对物体的冲量不为零,但合外力可以对物体不做功,物体的动能可以不变,C错;作用在物体上的合外力的冲量可以只改变物体速度的方向,不改变速度的大小,D对.2.(多选)关于动量、冲量,下列说法成立的是( )A.某段时间内物体的动量增量不为零,而物体在某一时刻的动量可能为零B.某段时间内物体受到的冲量不为零,而物体动量的增量可能为零C.某一时刻,物体的动量为零,而动量对时间的变化率可能不为零D.某段时间内物体受到的冲量变大,则物体的动量大小可能变大、变小或不变答案ACD解析自由落体运动,从开始运动的某一段时间内物体动量的增量不为零,而其中初位置物体的动量为零,故A正确;某一段时间内物体受到的冲量不为零,根据动量定理,动量的变化量不为零,故B错误;某一时刻物体的动量为零,该时刻速度为零,动量的变化率是合力,速度为零,合力可以不为零,即动量的变化率可以不为零,故C正确;根据动量定理,冲量等于动量的变化.某段时间内物体受到的冲量变大,则物体的动量的改变量变大,动量大小可能变大、变小或不变,故D正确.3.(多选)如图1所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则( )图1A.合外力做的功为0 B.合外力的冲量为m2gLC.重力做的功为mgL D.重力的冲量为m2gL答案BC4.(多选)(2018·新高考研究联盟联考)如图2所示是两名短道速滑选手在接力瞬间的照片,在短道速滑接力时,后面队员把前面队员用力推出(推出过程中可忽略运动员受到的冰面水平方向的作用力),以下说法正确的是( )图2A.接力过程中前面队员的动能增加量等于后面队员的动能减少量B.接力过程中前面队员受到的冲量和后面队员受到的冲量大小相等方向相反C.接力过程中前后两名队员总动量增加D.接力过程中前后两名队员总动量不变答案BD5.(多选)(2018·诸暨中学段考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( ) A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等答案CD6.(多选)一辆小车静止在光滑的水平面上,小车立柱上固定一条长L(小于立柱高)、拴有小球的细线,将小球拉至和悬点在同一水平面处由静止释放,如图3所示,小球摆动时,不计一切阻力,重力加速度为g,下面说法中正确的是( )图3A.小球和小车的总机械能守恒B.小球和小车的动量守恒C.小球运动到最低点的速度为2gLD.小球和小车只在水平方向上动量守恒答案AD7.(多选)质量相同的子弹、橡皮泥和钢球以相同的水平速度射向竖直墙壁,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被弹回.不计空气阻力,关于它们对墙的水平冲量的大小,下列说法正确的是( )A.子弹对墙的冲量最小B.橡皮泥对墙的冲量最小C.钢球对墙的冲量最大D.子弹、橡皮泥和钢球对墙的冲量大小相等答案AC解析由于子弹、橡皮泥和钢球的质量相等、初速度相等,取初速度的方向为正方向,则它们动量的变化量Δp=mv-mv0,子弹穿墙而过,末速度的方向为正,橡皮泥粘在墙上,末速度等于0,钢球被弹回,末速度的方向为负,可知子弹的动量变化量最小,钢球的动量变化量最大.由动量定理I=Δp,则子弹受到的冲量最小,钢球受到的冲量最大.结合牛顿第三定律可知,子弹对墙的冲量最小,钢球对墙的冲量最大,故A、C正确,B、D错误.8.(多选)如图4所示,质量为m的物体在一个与水平方向成θ角的拉力F作用下,一直沿水平面向右匀速运动,则下列关于物体在t时间内所受力的冲量,正确的是( )图4A.拉力F的冲量大小为Ft cos θB.摩擦力的冲量大小为Ft cos θC.重力的冲量大小为mgtD.物体所受支持力的冲量大小是mgt答案BC解析拉力F的冲量大小为Ft,故A错误;物体做匀速直线运动,可知摩擦力F f=F cos θ,则摩擦力的冲量大小为F f t=Ft cos θ,故B正确;重力的冲量大小为mgt,故C正确;支持力的大小为F N=mg-F sin θ,则支持力的冲量大小为(mg-F sin θ)t,故D错误.9.如图5所示,粗糙水平地面上方以PQ为界,左边有水平向右的匀强电场,场强大小为E=mgq,右边有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场以MN为右边界,一个质量为2m的带电荷量为+q的物体从地面上O点出发,在电场力作用下运动到Q点时与另一质量为m、不带电的物体发生正碰,碰后两者粘为一体,并恰好能在QN间做匀速直线运动,已知两物体与地面间的动摩擦因数μ=0.1,g为重力加速度,sin 37°=0.6,cos 37°=0.8.图5(1)求O 、Q 之间的距离x 1;(2)若MN 右侧有一倾角θ=37°的倾斜传送带正以速度v 0逆时针转动,物体系统通过N 点到传送带时无动能损失,且传送带足够大,已知物体系统与传送带间的动摩擦因数为μ1=0.5,求物体系统在传送带上上升过程中运动的最大距离.答案 (1)405m 2g 16B 2q 2 (2)9m 2g 2B 2q2 解析 (1)设两物体碰后的瞬间速度为v 2,则有:Bqv 2=3mg设带电物体的碰撞前速度为v 1,取向右为正方向,由动量守恒定律有:2mv 1=3mv 2对2m ,从O 到Q 由动能定理可得:Eqx 1-μ·2mgx 1=12×2mv 12,则x 1=405m 2g 16B 2q2 (2)物体系统沿传送带向上做匀减速运动,由牛顿第二定律得:3mg sin θ+μ1·3mg cos θ=3ma则a =g . 故物体系统上升的最大距离为:x 2=v 222a =9m 2g 2B 2q2 10.(2017·名校协作体联考)用质量为m 、电阻率为ρ、横截面积为S 的均匀薄金属条制成边长为L 的闭合正方形框abb ′a ′,如图6甲所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa ′边和bb ′边都处在磁极间,磁极间磁感应强度大小为B .方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力,重力加速度为g ).甲 装置纵截面示意图 乙 装置俯视示意图图6(1)请判断图乙金属方框中感应电流的方向;(2)当方框下落的加速度为g 3时,求方框的发热功率P ; (3)当方框下落的时间t =2mρB 2LS时,速度恰好达到最大,求方框的最大速度v m 和此过程中产生的热量.答案 (1)顺时针 (2)4m 2g 2ρ9B 2LS (3)mgρB 2LS m 3g 2ρ22B 4L 2S2 解析 (1)由右手定则可知:感应电流方向为顺时针.(2)方框受到的安培力:F 安=2BIL由牛顿第二定律有mg -F 安=mg 3 解得I =mg 3BL由电阻定律得金属方框电阻R =ρ4L S方框的发热功率P =I 2R =4m 2g 2ρ9B 2LS (3)当方框下落的加速度为零时,速度达到最大,即mg =F 安′=2B2BLv m R L 解得v m =mgρB 2LS将下落过程分成若干微元,由动量定理得mgt -∑2B2BLv i R Lt =mv m -0∑v i t =h 解得h =m 2gρ2B 4L 2S2 由能量守恒定律得mgh -Q =12mv m 2 解得Q =m 3g 2ρ22B 4L 2S2 11.(2017·鲁迅中学月考)如图7所示,两根平行金属导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直放置在导轨上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.图7(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大静摩擦力均为15mg ,将金属棒a 从距水平面高度为h 处由静止释放.①金属棒a 刚进入磁场Ⅰ时,求通过金属棒b 的电流大小;②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度为h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,金属棒a 在磁场Ⅰ内运动过程中,求金属棒b 中可能产生的电热的最大值.答案 (1)①BL 2gh 2R ②h ≤m 2gR 250B 4L 4 (2)110mgh 解析 (1)①a 棒从h 高处释放后在弯曲导轨上滑动时机械能守恒,有mgh =12mv 02 解得v 0=2gha 棒刚进入磁场Ⅰ时,E =BLv 0,此时通过a 、b 的感应电流大小为I =E 2R, 解得I =BL 2gh 2R. ②a 棒刚进入磁场Ⅰ时,b 棒受到的安培力大小F =2BIL为使b 棒保持静止,应有F ≤15mg 联立解得h ≤m 2gR 250B 4L4. (2)当金属棒a 进入磁场Ⅰ时,由左手定则判断,a 棒向右做减速运动,b 棒向左做加速运动. 二者产生的感应电动势相反,当二者产生的感应电动势大小相等时,闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时,金属棒b 中产生的电热最大. 设此时a 、b 的速度大小分别为v 1与v 2,有BLv 1=2BLv 2对金属棒a 应用动量定理,有-B I L Δt =mv 1-mv 0对金属棒b 应用动量定理,有2B I L Δt =mv 2联立解得v 1=45v 0,v 2=25v 0 根据能量守恒定律,电路中产生的总电热Q 总=12mv 02-12mv 12-12mv 22=15mgh 故金属棒b 中产生的电热最大值为Q =12Q 总=110mgh。

(浙江选考)2019年高考物理二轮复习 专题25 动量相关知识在浙江高考中的运用试题(含解析)

(浙江选考)2019年高考物理二轮复习 专题25 动量相关知识在浙江高考中的运用试题(含解析)

专题25 动量相关知识在浙江高考中的运用一、动量、动量定理1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示.(2)表达式:p=mv。

(3)单位:kg·m/s.(4)标矢性:动量是矢量,其方向和速度方向相同。

2.冲量(1)定义:力和力的作用时间的乘积叫做这个力的冲量。

(2)表达式:I=Ft.单位:N·s.(3)标矢性:冲量是矢量,它的方向由力的方向决定。

3.动量定理项目动量定理物体在一个过程始末的动量变化量等于它在这个过程中内容所受力的冲量表达式p′-p=F合t或mv′-mv=F合t意义合外力的冲量是引起物体动量变化的原因标矢性矢量式(注意正方向的选取)二、动量守恒定律1.内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。

2.表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′或p =p′。

3.适用条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。

(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。

三、弹性碰撞和非弹性碰撞1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间的相互作用力很大的现象。

2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。

3.关于弹性碰撞的分析两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。

在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当21m m >时,01>v ,02>v ,两钢球沿原方向原方向运动;b .当21m m <时,01<v ,02>v ,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当21m m =时,01=v ,02v v =,两钢球交换速度.d .当21m m <<时,01v v ≈,02≈v ,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提升训练7动能定理的应用1.图中给出一段“S”形单行盘山公路的示意图,弯道1、弯道2可看作两个不同水平面上的圆弧,圆心分别为O1,O2,弯道中心线半径分别为r1=10 m,r2=20 m,弯道2比弯道1高h=12 m,有一直道与两弯道圆弧相切。

质量m=1 200 kg的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑。

(sin 37°=0.6,sin 53°=0.8)(1)求汽车沿弯道1中心线行驶时的最大速度v1;(2)汽车以v1进入直道,以P=30 kW的恒定功率直线行驶了t=8.0 s,进入弯道2,此时速度恰为通过弯道2中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;(3)汽车从弯道1的A点进入,从同一直径上的B点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道,设路宽d=10 m,求此最短时间(A、B两点都在轨道的中心线上,计算时视汽车为质点)。

2.(2017浙江金华十校期末)金华某商场门口根据金华“双龙”元素设计了一个精美的喷泉雕塑,两条龙喷出的水恰好相互衔接(不碰撞)形成一个“∞”字形。

某学习小组为了研究喷泉的运行原理,将喷泉简化成如图所示的模型,两个龙可以看成两个相同对称圆的一部分(近似看成在同一平面内),E、B两点为圆的最高点。

抽水机M使水获得一定的初速度后沿ABCDEFG运动,水在C、F两处恰好沿切线进入管道,最后回到池中。

圆半径为R=1 m,角度θ=53°,忽略一切摩擦。

(g取10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)水从B点喷出的速度多大?(2)取B处一质量为m=0.1 kg的一小段水,管道对这一小段水的作用力多大?方向如何?(3)若管道B处横截面积为S=4 cm2,则抽水机M的输出功率是多少?(水密度ρ=1×103 kg/m3)3.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度。

滑道简化图如乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接。

AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0。

一质量为m的游客从A点由静止开始下滑,到达底端D点时的安全速度不得大于,已知sinθ1=、sinθ2=,坐垫与滑道底面间摩擦及空气阻力均不计,若未使用坐垫,游客与滑道底面间的摩擦力大小F f恒为重力的,运动过程中游客始终不离开滑道,问:(1)游客使用坐垫自由下滑(即与侧壁间无摩擦),则游客在BC段增加的动能ΔE k多大?(2)若游客未使用坐垫且与侧壁间无摩擦下滑,则游客到达D点时是否安全?(3)若游客使用坐垫下滑,则克服侧壁摩擦力做功的最小值是多少?4.某电视台拟推出一个水上娱乐节目,体验者乘坐滑水车运动过程可以简化为如下模型。

如图所示,滑水车从倾角为θ=53°的长直轨道AC上的B点由静止开始下滑,到达C点后进入弧形的涉水轨道CDEF,其中CDE是半径为R=5 m,圆心角为106°的圆弧,EF为半径为R=5 m,圆心角为53°的圆弧,此时滑水车刚好能到达F点。

已知滑水车与体验者的总质量为60 kg,B点到C点的距离为L0=4 m,滑水车与轨道AC间存在摩擦,涉水轨道CDEF可视为光滑轨道,不计滑水车受到的其他阻力作用,则:(1)求滑水车经过CDE轨道时对D点的压力大小;(2)求滑水车与轨道AC间的动摩擦因数μ;(3)若要使得滑水车能在F点水平抛出,求滑水车在AC上的释放点B'到C的距离L'的范围。

5.如图所示,是某兴趣小组通过弹射器研究弹性势能的实验装置。

半径为R的光滑半圆管道(管道内径远小于R)竖直固定于水平面上,管道最低点B恰与粗糙水平面相切,弹射器固定于水平面上。

某次实验过程中,一个可看作质点的质量为m的小物块,将弹簧压缩至A处,已知A、B相距为L。

弹射器将小物块由静止开始弹出,小物块沿圆管道恰好到达最髙点C。

已知小物块与水平面间的动摩擦因素为μ,重力加速度为g,求:(1)小物块到达B点时的速度v B及小物块在管道最低点B处受到的支持力;(2)小物块在AB段克服摩擦力所做的功;(3)弹射器释放的弹性势能E p。

6.(2018年3月台州质量评估)如图所示为某水上乐园急速滑道的简化示意图,内壁光滑的水平半圆形管道BC分别与倾角θ=37°的倾斜管道AB和水平直管道CD中顺滑连接,管道AB的A端离管道BC所在平面的高度h1=6 m,管道BC的直径d=10 m,离水面EF的高h2=1.8 m。

质量m=60 kg的游客(可视为质点),从A端静止滑下,游客与管道AB的动摩擦因数μ1=0.125,与管道CD的动摩擦因数μ2=0.5,整个运动过程空气阻力不计。

(sin37°=0.6,cos 37°=0.8)(1)求游客经过B点时的速度大小;(2)求游客受到BC管道的作用力大小;(3)要使游客落到水中且落水的速度不超过8 m/s,求管道CD的长度。

7.如图所示,所有轨道均光滑,轨道AB与水平面的夹角为θ=37°,A点距水平轨道的高度为H=1.8 m。

一无动力小滑车质量为m=1.0 kg,从A点沿轨道由静止滑下,经过水平轨道BC再滑入圆形轨道内侧,圆形轨道半径R=0.5 m,通过圆形轨道最高点D然后从水平轨道E点飞出,E点右侧有一壕沟,E、F两点的竖直高度差h=1.25 m,水平距离s=2.6 m。

不计小滑车通过B点时的能量损失,小滑车在运动全过程中可视为质点,g取10 m/s2,sin37°=0.6,cos 37°=0.8,求:(1)小滑车从A滑到B所经历的时间;(2)在圆形轨道最高点D处小滑车对轨道的压力大小;(3)要使小滑车既能安全通过圆形轨道又不掉进壕沟,则小滑车至少应从离水平轨道多高的地方由静止滑下。

8.低碳环保绿色出行的理念逐渐深入人心,而纯电动汽车是时下相对较环保的汽车。

为宣传“低碳环保”健康生活理念,某次志愿者举行玩具电动小汽车的表演。

如图所示,质量m=2 kg的小汽车以v0=4 m/s的初速度从水平轨道A处出发,沿平直轨道AC运动,到达C点时关闭发动机,进入半径R=1.8 m圆轨道,恰能做完整的圆周运动后又进入CE水平轨道向右运动,直至停下。

已知小汽车与水平面的摩擦阻力恒为重力的,AB段运动过程中风力较大,可简化为受0.8 N的水平向左的作用力,过B点后小汽车所受空气作用力均忽略不计。

圆轨道可视作光滑。

已知AB段长度x1=3 m,BC段长度x2=2 m,CE段足够长。

小汽车自身长度可忽略。

求:(1)要使小汽车完成上述运动,AC段电动机至少提供多少能量?(2)若CE阶段启用动力回收系统,把机械能转化为电能,回收效率为30%,则该段小汽车还能滑行多远?9.(2018年5月温州十五校联合体高二期中联考)如图所示,轻弹簧一端与墙相连,质量为4 kg的木块沿水平面以4 m/s的速度向左运动并压缩弹簧,木块离开弹簧时的动能为28.8 J,离开弹簧后又运动了3.6 m,g取10 m/s2,求:(1)木块与水平面间的动摩擦因数;(2)弹簧在被压缩过程中的最大弹性势能;(3)另一木块以2 m/s的速度压缩弹簧,弹簧在被压缩过程中的最大弹性势能与前面相同,则木块的质量为多少?10.如图所示为水上滑梯的简化模型:倾角θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7 m,BC长d=2 m,端点C距水面的高度h=1 m。

质量m=50 kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.1。

已知cos 37°=0.8,sin 37°=0.6,运动员在运动过程中可视为质点,g取10 m/s2。

求:(1)运动员从A滑到B所需的时间t;(2)运动员到达C点时的速度大小v C;(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B'C'位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B'C'距水面的高度h'。

11.(2017浙江七彩阳光联盟期初联考)如图甲为滑板运动,如图乙为滑板比赛滑道示意简图,滑行轨道均在同一竖直平面内,斜轨道AB的倾角θ=37°,与水平轨道BC间用小圆弧平滑相连(小圆弧的长度可忽略)。

斜轨道DE倾角α=53°,与半径R=1.0 m的光滑圆弧轨道EFG相切于E点,F为圆弧轨道最低点,已知H1=4.2 m,L1=15.0m,H2=1.0 m,H3=5.0 m。

设滑板与直轨道间的摩擦因数均为μ=0.25,运动员连同滑板的总质量m=60.0 kg。

运动员从A点由静止开始下滑,从C点水平飞出,与斜面DE碰撞后,没有反弹,继续滑行,经过圆弧轨道F点时对轨道压力大小为F N=4 800 N,从G点飞出后落在与G点同一水平面且间距为L2=6.0 m的K点,轨迹最高点I与GK面的距离H4=1.8 m。

运动员连同滑板可视为质点,忽略空气阻力,sin 37°=0.6,cos 37°=0.8。

求:甲(1)运动员从C点水平飞出时的速度大小v C;(2)运动员落在斜面DE上与斜面碰撞过程中损失的动能ΔE k;(3)G点与圆心O的高度差Δh。

12.(2018年2月温州六校协作体高三期末)上海热带风暴水上乐园有个项目叫做“音速飞龙”。

如图甲所示,两条高速滑道,人可以仰卧下滑,下滑起伏共有3层。

图乙为其轨道侧视图,质量为70 kg的人从A处静止下滑,经BCDEF,最终停在G处。

已知AB、BC、CD、DE、EF是半径为14 m的圆弧,其对应的圆心角均为60°,FG段水平。

设人滑到F点时速度为20 m/s,g取10 m/s2,求:(1)人刚滑到圆弧末端F点时,滑道对人竖直向上的作用力F1的大小;(2)在AF段上滑动过程中人克服阻力所做的功W f;(3)若一光滑小球在该轨道无水时自A处静止释放,且不计空气阻力,小球能否沿ABCDEF轨道运动?若能,请说明理由;若不能,请求出小球脱离轨道的位置及落回轨道所在的圆弧部分。

13.(2018年3月绍兴选考适应性)如图为杂技演员进行摩托车表演的轨道,它由倾斜直线轨道AB、圆弧形轨道BCD、半圆形轨道DE、水平轨道EF组成,已知轨道AB的倾角θ=37°,A、B间高度差H=12 m,轨道BCD的半径R=4.8 m,轨道DE的半径r=2.4 m,轨道最低点C距水平地面高度差h=0.2 m,在轨道AB上运动时摩托车(含人)受到的阻力为正压力的,其余阻力均不计。

相关文档
最新文档