绝缘油溶解气体的在线色谱分析

合集下载

变压器绝缘油中溶解气体分析方法

变压器绝缘油中溶解气体分析方法

变压器绝缘油中溶解气体分析方法变压器是电力系统中不可缺少的重要设备之一,其主要作用是能将输送的电压级别进行升高或降低,从而确保电力系统的正常运行。

而变压器的绝缘系统则是其正常运转的关键之一。

绝缘油作为变压器绝缘系统的一个重要组成部分,起到了对电器的绝缘、冷却和灭弧等重要作用。

在使用过程中,变压器绝缘油中溶解的气体会对变压器绝缘系统的安全运行产生影响,因此,变压器绝缘油中溶解气体分析方法的研究备受关注。

变压器绝缘油中溶解气体的来源变压器绝缘油中溶解气体主要来源于变压器绝缘系统中的电介质的分解、老化和部分细微的微气泡。

变压器绝缘油的化学成分主要包括烃类、芳香族类和杂环类等多种有机物,以及二氧化碳、一氧化碳、氢气、甲烷、乙烷等气体。

其中,二氧化碳和一氧化碳是最主要的两种气体,占据了变压器绝缘油中气体的主要成分。

溶解气体对变压器绝缘油的影响变压器绝缘油中溶解的气体如果超过一定的浓度,就会对变压器绝缘系统产生影响。

变压器绝缘油中气体的主要影响包括以下几个方面:1. 影响电气性能当变压器绝缘油中二氧化碳、一氧化碳等气体的浓度超过规定范围时,会影响变压器绝缘油的电介质性能,使其导电性、介电常数等性能指标降低,从而导致电器故障。

2. 引起变压器内部局部放电变压器绝缘油中气体超标不仅会降低其绝缘能力,还会引发内部放电现象,进而使变压器的局部放电故障加剧。

3. 削弱绝缘油的灭弧性能气体的存在使绝缘油中的气泡增多,从而削弱绝缘油的灭弧性能,从而使得电气设备发生内部断路或短路导致事故。

变压器绝缘油中溶解气体的分析方法为了及时发现和解决变压器绝缘油中气体超标问题,需要采用一些分析方法来监测绝缘油中的溶解气体。

变压器绝缘油中气体的分析方法根据检测手段的不同,可分为物理分析法和化学分析法两类。

1. 物理分析法物理分析法的依据是溶解气体在液体中的分压平衡,通过测定变压器绝缘油的溶解气体的分压值,来判断其中气体的浓度。

常用的物理分析方法主要有:•直接测量法:采用直接测压的方法,通过测定变压器绝缘油中气体的压力或体积,推算出其中溶解气体的浓度。

绝缘油气相色谱检测标准

绝缘油气相色谱检测标准

绝缘油气相色谱检测标准
1.范围
本标准规定了绝缘油气相色谱检测的原理、设备、样品制备、试验步骤、结果计算、精度和误差以及应用。

本标准适用于绝缘油中溶解气体的分析。

2.规范性引用文件
下列文件对于本标准的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本标准。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。

GB/T 7376 电绝缘油中溶解气体组分含量的气相色谱测定法
3.术语和定义
下列术语和定义适用于本标准。

3.1 绝缘油 insulating oil
用于电力、电气等设备的绝缘材料,具有良好的电绝缘性能。

3.2 色谱峰 chromatographic peak
在色谱图上,代表某种组分的色谱柱上出现的单峰。

3.3 色谱分离 chromatographic separation
利用色谱柱将混合组分分离成单个组分的过程。

3.4 灵敏度 sensitivity
衡量仪器对样品中待测组分检出的能力,通常用单位浓度的待测组分产生一个响应信号值来表示。

3.5 精度 accuracy
测量值与真实值之间的接近程度,通常用相对误差来表示。

4.原理
本标准采用气相色谱法(GB/T 7376)对绝缘油中溶解气体进行分析。

通过色谱柱将样品中的各组分分离,然后通过检测器对分离后的组分进行检测并测量其含量。

5.设备
进行绝缘油气相色谱检测所需的设备包括:气相色谱仪、色谱柱、进样器、检测器和数据处理系统等。

绝缘油溶解气体组分含量的气相色谱测定法

绝缘油溶解气体组分含量的气相色谱测定法

一.绝缘油溶解气体组分含量的气相色谱测定法1 适用范围本标准规定了用气相色谱法测定充油电气设备内绝缘油中的溶解气体组分(包括氢、甲烷、乙烷、乙烯、乙炔、一氧化碳、二氧化碳、氧及氮等)含量的方法,其浓度以μL/L 计量。

充油电气设备中的自由气体(气体继电器中气体、设备中油面气体等)也可参照本方法进行组分分析,其浓度以μL/L计量。

2 试验性质预试、交接、大修3 试验方法3.1 方法概要首先按要求采集充油电气设备中的油样,其次脱出油样中的溶解气体,然后用气相色谱仪分离、检测各气体组分,浓度用色谱数据处理装置或记录仪进行结果计算。

3.2 样品采集按GB7597—1987全密封式取样的有关规定进行。

在运输、保管过程中要注意样品的防尘、防震、避光和干燥等。

3.3 仪器设备和材料3.3.1 从油中脱出溶解气体的仪器,可选用下列仪器中的一种。

3.3.1 恒温定时振荡器往复振荡频率275次/min±5次/min,振幅35mm±3mm,控温精确度±0.3℃,定时精确度±2min。

3.3.2气相色谱仪专用或改装的气相色谱仪。

应具备热导鉴定器(TCD)(测定氢气、氧气、氮气)、氢焰离子化鉴定器(FID)(测定烃类、一氧化碳和二氧化碳气体)、镍触媒转化器(将一氧化碳和二氧化碳鉴定器转化为甲烷)。

检测灵敏度应能满足油中溶解气体最小检测浓度的要求。

3.3.2.1 仪器气路流程。

3.3.2.2色谱柱:对所检测组分的分离度应满足定量分析要求。

常见的气路流程见表1。

表1 色谱流程3.3.3记录装置色谱数据处理机,色谱工作站或具有满量程1mV的记录仪。

3.3.4 玻璃注射器100mL、5mL、1mL医用或专用玻璃注射器。

气密性良好,芯塞灵活无卡涩,刻度经重量法校正。

(机械震荡法用100mL 注射器,应校正40.0mL的刻度)气密性检查可用玻璃注射器取可检出氢气含量的油样,存储至少两周,在存储开始和结束时,分析样品中的氢气含量,以检测注射器的气密性。

绝缘油中含气量的气相色谱测定法+绝缘油中溶解气体组分含量的气相色谱测定法

绝缘油中含气量的气相色谱测定法+绝缘油中溶解气体组分含量的气相色谱测定法

目次前言1 范围2 引用标准3 方法概要4 仪器设备、材料5 准备6 试验步骤7 精密度8 准确度绝缘油中含气量的气相色谱测定法1 范围本标准规定了绝缘油中含气量的气相色谱测定法。

本标准适用于330kV及以上充油电气设备中的绝缘油(其它电压等级的绝缘油中含气量测定可参考)。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T 7597—87 电力用油(变压器油、汽轮机油)取样法GB/T 17623—1998 绝缘油中溶解气体组分含量的气相色谱测定法DL/T 423—91 绝缘油中含气量的测定(真空压差法)3 方法概要本方法首先按GB/T 7597—87的规定采集被测油样,然后脱出油样中的气体,用气相色谱仪分离、检测各气体组分,通过记录仪或色谱数据处理机进行结果计算,结果以体积分数(%)表示。

4 仪器设备、材料4.1 脱气装置恒温定时振荡器(或其它脱气装置):往复振荡频率270次/min~280次/min,振幅35mm,控温精度0.3℃,定时精度±2min。

4.2 气相色谱仪该仪器应具备热导检测器、氢火焰离子化检测器和镍触媒转化器。

4.2.1 检测灵敏度对油中气体的最小检测浓度应满足:氧、氮 不大于50L /L ; 氢 不大于5L /L ;一氧化碳、二氧化碳 不大于25L /L ; 烃类 不大于1L /L 。

4.2.2 仪器气路流程。

常用仪器气路流程见表1。

4.2.3 色谱柱色谱柱所检测组分的分离度应满足分析要求。

适用于测量H 2、O 2、N 2组分的固定相、柱长见表2,其它组分的测定可参照GB /T 17623—1998中5.2的方法,选择合适的固定相和柱长。

4.3 记录装置采用记录仪或数据处理机。

4.4 玻璃注射器100mL 、10mL 、5mL 、1mL 医用或专用玻璃注射器,气密性好。

气相色谱法测定绝缘油中溶解气体浓度的不确定度评定

气相色谱法测定绝缘油中溶解气体浓度的不确定度评定
02 视 为 正 态 分布 , . %, 包含 因子 k 3 则 : =,
u P) ( :

: .6 % 00 7
K 06 . O
O3 _ 9
气体 乙烯 ( 2 CI  ̄
乙炔 ( 2 cH )
K . l6 4
12 . 0
22 标 准气体浓度 引入的相对标 准不确定度 u ( . .2 . C) u C ( 用 B类评定方法评定。混合标准气 合格证书上显示
气相色 谱法可分测定 电气 设备绝缘 油中溶解气 体 的组 分 含量, 并根据氢气、 乙炔 、 甲烷 等七种特 征气体 的含量来判 断充 油电气设备的潜 伏性故障 。目前本单位采用 A i n69 N型气 g et8 0 l 相色谱仪测量油中溶解气体含量。为确保分析数据 的可靠性和 准 确性 ,依 据 JG 0 — 9 9 《 相色 谱仪 检定规 程》 和 G / J 7 0 19 气 B T 72 —9 8 绝缘油中溶解气 体组分含量 的气相色谱测定法》 16 3 19 《 的要 求 , 该 方 法 的 测量 不确 定 度 进 行 分析 评 定 。 对
V lVl + . 0 x 5 一) = 【 00 8 (0 t】 1 0 式 中:
— —

() 3
5 ℃、 O 试验压力下平衡气体体积 , ; mL
v 一 室温 t试验压力下平衡气体体积, L 、 m ; V. ——5 ℃油样 体积 , ; 0 mL v—— 室温 t 时所取油样体积 , ; mL l — 试验 时 的室 温 ,c — q; 00 0— — 油 的热 膨 胀 系 数 , 。 . 8 0 U℃ () 了便于对测量不确 定度 分量采用相对标准不确定度 3为 进行评定, 可将式 () 1转化为式 () 4:

5.5 绝缘油中溶解气体的色谱分析

5.5 绝缘油中溶解气体的色谱分析
5.4 绝缘油中的色谱分析
变压器绝缘材料主要是绝缘油和绝缘 纸,变压器在故障下产生的气体主要 是来源于油和纸的热裂分解,气相色 谱分析就是根据故障时产生的气体在 绝缘油中含量的多少,判断其故障类 型。
2013-3-15
第五章 电气设备绝缘试验(一)
1 过热性故障
1.1 裸金属过热 如果设备内的热量只引起绝缘油的分解时,一 般称为裸金属过热。它包括分接开关接触不良、 引线和分接开关的连接处焊接不牢,铁心多点接 地或局部短路等。油中气体的特征是,烃类相应 增多,其中甲烷和乙烯是特征气体,二者之和一 般为总烃的80%以上,当故障点的温度较低时, 甲烷所占比例大;随着温度升高,乙烯比例有所 增加。此外,氢气也急剧增高,但没有烃类气体 增长速度快。当严重过热时也会产生少量乙炔气 体,但不超过总烃的 6%。
色谱分析仪
2013-3-15
第五章 电气设备绝缘试验(一)
第五章 电气设备绝缘试验(一)
2.3 局部放电故障
常发生在油浸纸绝缘中的气体空穴内 或悬浮带电体的空间内,该类放电产 生的特征气体是氢气,其次是甲烷, 当放电能量密度高时,也会产生少量 的乙炔气体)一般不超过 2%。 无论是哪一种放电,只要有固体绝 缘介入时,都会产生一氧化碳和二氧 化碳气体
2013-3-15 第五章 电气设备绝缘试验(一)
201ቤተ መጻሕፍቲ ባይዱ-3-15
第五章 电气设备绝缘试验(一)
2
放电性故障
2.1 高能量放电(电弧放电) 是指线圈匝间、层间绝缘击穿,过电压 引起内部闪络,引线断裂引起的闪络,分 接开关飞弧和电容屏击穿等引起电弧放电 故障。这类故障产气急剧,产气量大。其 故障特征气体主要是乙炔(占总烃20%-70%) 和氢气,其次是乙烯和甲烷。由于故障能 量较大,所以总烃很高。如果涉及固体绝 缘一氧化碳也相对较高。

变压器绝缘油色谱在线监测探究

变压器绝缘油色谱在线监测探究

变压器绝缘油色谱在线监测探究摘要:变压器是电力系统的主要设备之一,保证变压器的安全可靠运行,对提高电力系统的供电可靠性具有十分重要的意义。

变压器油中溶解气体色谱分析的在线监测方法是基于油中溶解气体分析理论,它直接在现场实现油色谱的定时在线智能化监测与故障诊断,不仅可以及时掌握变压器的运行状况,发现和跟踪存在的潜伏性故障,并且可以及时根据专家系统对运行工况自动进行诊断。

因此,变压器油中溶解气体在线监测及故障诊断装置的应用具有重要的现实意义和实用价值。

关键词:变压器;绝缘油;色谱分析1 变压器色谱在线监测1.1 色谱在线监测的必要性绝缘油和固体绝缘材料由于热或电能作用分解出的气体经对流、扩散, 不断地溶解在油中。

这些气体的组成和含量与故障的类型及其严重程度有密切关系。

因此,分析溶解于油中的气体, 就能尽早发现变压器内部存在的潜伏性故障。

油色谱分析法判断故障的可靠性高,但常规的实验室油色谱分析法存在一系列不足之处, 不仅脱气中可能存在较大的误差, 而且检测曲线的人工修正也会加大误差, 主要存在以下问题:l)从取油样到实验室分析,作业程序复杂, 花费的时间和费用较高, 在技术经济上不能适应电力系统发展的需要;2)时效性差, 变压器发生保护动作后, 要迅速恢复运行, 首要的问题是要通过油色谱分析得知变压器的绝缘状况, 时效是最突出的问题;3)检测周期长, 不能及时发现潜伏性故障和有效地跟踪发展趋势;4)受设备费用和技术力量的限制, 不可能每个电站都配备常规油色谱分析仪;5)运行人员无法随时掌握和监视本站变压器的运行状况,运行可靠性会进一步下降, 不能充分发挥油色谱分析法的有效性和优点。

因此, 变压器油中溶解气体色谱分析的在线监测就成为安全、可靠运行的有效手段之一。

现阶段, 应用最广的在线监测系统仍是基于气相色谱原理。

对于变压器油中溶解气体色谱分析的在线监测方法,虽然仍以油中溶解气体为反映故障的特征量,但它直接在变压器现场实现油色谱的定时在线智能化监测与故障诊断。

绝缘油色谱试验方法探讨与浅析

绝缘油色谱试验方法探讨与浅析

绝缘油色谱试验方法探讨与浅析1裴国利1韩显文1王利2国网蒙东赤峰供电公司内蒙古赤峰市0240001内蒙古龙源蒙东新能源有限公司内蒙古赤峰市0240002摘要:在电网运行过程中,电力变压器的作用在于确保电力传输的可靠度,同时还要保证电力传输的连续不断。

电力变压器日常检测手段较多,变压器油中溶解气体测试是诊断变压器故障最为有效的方法之一。

本文主要探讨电力变压器绝缘油中溶解气体试验方法,如何获得较为准确的试验数据,基于此为电力变压器日常运维提供保障.关键词:电力变压器;色谱仪;自动进样装置一、电力设备绝缘油色谱试验的相关概念目前绝缘油中溶解气体分析采用的气相色谱法,该方法是一种先分离后检测的分析方法,因此对其他分析方法无法分析的极其复杂的多组分样品,可同时获得每—组分的定性定量结果。

这是因为以气体作流动相时,组分在气相中传质速度快与固定相相互作用的次数多。

另外,目前可供选择的固定液种类繁多,不下千种,检测手段齐全、灵敏度高、选择性好,可供选择的商品检测器有十种以上,每一种检测器可以适于检测不同种类的化合物。

概括起来讲气相色谱法具有高效能、高选择性、高灵敏度、分析速度快、样品用量小、定性重复性好、定量精度高、设备简单、易实现自动化及应用范围广等优点。

色谱仪是色谱分析过程中的重要环节,它担负着对样品的分离、检测,同时还对仪器的辅助部分如气路、温度等进行精密控制,它的质量好坏将直接影响分析结果的准确性绝缘油色谱监测系统即色谱仪主要包括载气系统、气路控制系统、进样系统、色谱柱、柱箱、检测器、温度控制系统、数据记录与处理系统等部分。

一、载气系统气源的选择:气源是气相色谱仪载气和辅助气的来源,它通常由气体发生器,空气泵,高压气体钢瓶以及减压阀(氧表)等组成。

气相色谱仪对载气和辅助气的主要要求如下:1、惰性(不与样品或固定相发生化学反应),无腐蚀性,在200℃~400℃内不分解;2、气体的扩散性小,以提高柱效率;3、易得到,并且易纯化;4、能满足检测器要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝缘油溶解气体的在线色谱分析
一、气相色谱分析及在线监测方法简介
油中溶解气体分析就是分析溶解在充油电气设备绝缘油中的气体,根据气体的成分、含量及变化情况来诊断设备的异常现象。

例如当充油电气设备内部发生局部过热、局部放电等异常现象时,发热源附近的绝缘油及固体绝缘(压制板、绝缘纸等)就会发生过热分解反应,产生CO2、CO、H2和CH4、C2H4、C2H2等碳氢化合物的气体。

由于这些气体大部分溶解在绝缘油中,因此从充油设备取样的绝缘油中抽出气体,进行分析,就能够判断分析有无异常发热,以及异常发热的原因。

气相色谱分析是近代分析气体组分及含量的有效手段,现已普遍采用。

图4-7所示为油色谱分析在线监测的原理框图。

图4-7 油色谱分析在线监测原理框图
进行气相色谱分析,首先要从运行状态下的充油电气设备中取油样,取样方法和过程的正确性,将严重影响到分析结果的可信度。

如果油样与空气接触,就会使试验结果发生一倍以上的偏差。

因此,在IEC和国内有关部门的规定中都要求取样过程应尽量不让油样与空气接触。

其次,要从抽取的油样中进行脱气,使溶解于油中的气体分离出来。

脱气方法有多种,常用的是振荡脱气法,即在一密闭的容器中,注入一定体积的油样,同时再加入惰性气体(不同于油中含有的待测气体),在一定温度下经过充分振荡,使油中溶解的气体与油达到两相动态平衡。

于是就可将气体抽出,送进气相色谱仪进行气体组分及含量的分析。

常规的油色谱分析法存在一系列不足之处,不仅脱气中可能存在较大的人为误差,而且监测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;监测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的限制,不可能每个电站都配备油色谱分析仪,运行人员无法随时掌握和监视本站变压器的运行状况,从而会加大事故率。

因此,国内外不仅要定期作以预防性试验为基础的预防性检修,而且相继都在研究以在线监测为基础的预知性检修策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。

绝缘油气相色谱在线监测主要解决油气分离问题,目前在线监测油气分离采用的是不渗
透油只渗透各种气体的透气膜,集存渗透气体的测量管和装在变压器本体放油阀上变换气流通过的六通阀以及电动设备;气体监测包括分离混合气体的气体分离柱及监测气体的传感器,控制气体分离柱工作温度的恒温箱、载气、继电器自动控制以及辅助电路设施。

二、油色谱传感器简介
为了解决油色谱气相分析在线监测,近年来研究出了各种渗透性薄膜,把它装在被测设备的油道中,可以把不同气体渗透出来,再通过各种传感器,分别监测不同的气体。

最简单的是氢气(H2)的渗透膜技术。

常用的从油中分离H2的渗透性薄膜原料有聚四氟乙烯及其共聚物、聚酰亚胺。

这种薄膜有独特的透气性,只让油中所含的气体能从薄膜中透析到气室内,如图4-8所示。

另外要求H2的渗透度较其他气体有较大的差异。

厚度一般为5.0×10-3cm,具有良好的抗油性能,例如Panametric公司生产的Hydran型H2测定仪采用的是0.005cm厚的聚四氟乙烯薄膜,日立公司研制的H2测定仪采用0.005cm厚的聚酰亚胺薄膜。

气体分析盘
图4-8 现场用色谱分析系统
1—实时气体分析器;2—CO2传感器
H2是充油电力设备绝缘材料分解所产生的主要气体之一,可作为监测分析绝缘材料异常现象的依据之一,但仅凭H2的测量还不能完全作出准确判断。

因此,为了进行准确的监测和诊断,还需要测量CO2、CH4、C2H2、C2H4和C2H6等气体,特别是某种表征异常状态所对应的特征气体。

这就需要研究能渗透过多种气体的渗透膜。

最近,发明了用PFA(Tetrafluoroethylene-Perfluoroalkylvinylether)共聚薄膜,从油中分离出H2、CO2、CH4、C2H2、C2H4及C2H6等气体进行监测的技术。

利用PF A薄膜渗透气体的特性,从渗透膜分离出的油中气体,可利用半导体传感器来测定气体含量,由此可构成直接测量油中溶解气体的装置,直接诊断充油电力设备中内部有无异常。

现在各个领域不断地在开发新渗透膜、新传感器,所以很好地组合这些新产品,将会出现更好、更可靠的油中气体自动分析装置。

三、绝缘油溶解气体的在线检测
1.油中氢气的在线检测
不论是放电性故障还是过热性故障都会产生H2,由于生成氢气需克服的键能最低,所以最容易生成。

换句话说,氢气既是各种形式故障中最先产生的气体,也是电力变压器内部
气体各组成中最早发生变化的气体,所以若能找到一种对氢气有一定的灵敏度、又有较好稳定性的敏感元件,在电力变压器运行中监测油中氢气含量的变化、及时预报,便能捕捉到早期故障。

目前常用的氢敏元件有燃料电池或半导体氢敏元件。

燃料电池是由电解液隔开的两个电极所组成,由于电化学反应,氢气在一个电极上被氧化,而氧气则在另一电极上形成。

电化学反应所产生的电流正比于氢气的体积浓度(ppm)。

半导体氢敏元件也有多种:例如采用开路电压随含氢量而变化的钯栅极场效应管,或用电导随氢含量变化的以SnO2为主体的烧结型半导体。

半导体氢敏元件造价较低,但准确度往往还不够满意。

不仅油中气体的溶解度与温度有关,在用薄膜作为渗透材料时,渗透过来的气体也与温度有关。

因此进行在线监测时,宜取相近温度下的读数来作相对比较,或在系统中考虑到温度补偿。

测得的氢气浓度,一般在每天凌晨时测值处于谷底,而在中午时接近高峰。

2.油中多种气体的在线检测
监测油中的氢气可以诊断变压器故障,但它不能判断故障的类型。

图4-9给出了诊断变压器故障及故障性质的多种气体在线检测装置。

图4-9 变压器油中气体在线检测原理
气体分离单元包括不渗透油而只渗透各气体成分的氟聚合物薄膜(PFA)、集存渗透气体的测量管和装在变压器本体排油阀上改变气流通过的六通控制阀,排油阀通常在打开位置。

当渗透时间相当长时,则渗透气体浓度与油中气体浓度成正比。

检测单元通过一直通管与气体分离单元相连,利用空气载流型轻便气相分析仪进行管中各渗透组成气体的定量测定,诊断单元包括信号处理、浓度分析和结果输出等功能。

用色谱柱进行气体分离后可测量出变压器油中色谱图(如图4-10所示)。

得到这些气体的含量,就可根据比值准则,利用计算机进行故障分析,可以诊断变压器中局部放电、局部过热、绝缘纸过热等故障。

图4-10 六种气体色谱图例。

相关文档
最新文档