行程问题工程问题
6.6 数的计算—行程问题和工程问题

专题三、工程问题。
解决工程问题时,一般工作总量看做单位“1” 工作时间×工作效率=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
1.一项工程由甲队单独做30天完成,由乙队单独做20天 完成。两队合作10天,还剩下工程的几分之几?两队合作 几天完成?
( )
拓展思维:
加工一批零件,由一个人单独做,甲要12小 时,乙要10小时,丙要15小时。
(1)如果甲乙合做,多少小时可以完成? (2)如果乙丙合做这批零件的 5 要几小时?
6
(3)甲乙丙三人合做,多少小时可以完成? (4)甲丙合做3小时,还剩几分之几?
路程÷速度和=相遇时间
4500÷(50+40)=
二、同时出发,相背而行
1、甲、乙两人同时从学校出发,向反方向行去。甲每分 钟走60米,乙每分钟走70米,5分钟后两人相距多少米? 速度和×相遇时间=路程
(60+70)×5=
2、两辆汽车同时从一个工厂出发,相背而行,一辆汽 车每小时行 33 千米,另一辆汽车每小时行 42 千米。多 少分钟后两车相距150千米? 路程÷速度和=相遇时间 150÷(33+42)=
比例
解决问题(行程问题和工程问题)
专题一:行程问题
1、常见的数量关系:
⑴ 、一个物体运动 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
1、常见的数量关系:
⑵ 、两个物体运动 ① 相遇问题
速度和×相遇时间=路程 路程÷相遇时间=速度和
② 追击问题 速度差×追及时间=路程差 路程差÷追及时间=速度差
五、同时、同地点出发、 同方向行驶(追及问题)
1.甲、乙两人同时骑车从A地到B地,甲每小时行14.2千 米,乙每小时行18.7千米。8小时后两人相距多少千米? 速度差×追及时间=路程差 (18.7-14.2)×8=
小升初专题复习-行程问题和工程问题(课件)人教版六年级下册数学

队每天完成工作总量的115,也就是说甲、乙的工作效率分别是110、115。 工作总量减去甲、乙两队合干的工作量得到剩下的工作量,再除以乙队 的工作效率得到乙队单独干剩下的工作量所需的时间。 【答案】 [1-(110+115)×2]÷115=10(天) 答:剩下的工程由乙队单独完成还需要 10 天。
用了 1 小时,小刚往返的平均速度是每小时( B )。
A.5 km B.10 km C.430 km D.30 km
5.(广东·深圳)在比例尺 1∶6000000 的地图上,甲、乙两地相距 8 cm,
一列客车和一列货车分别从甲、乙两地同时开出,相向而行,4 小时后相 遇。已知客车与货车的速度比是 8∶7,货车的速度是( A )千米/时。
解:设乙每小时生产 x 个零件。 18∶x=3∶5 x=30 12×30=360(个)
3 360×3+5=135(个) 答:甲一共生产了 135 个零件。
3.甲、乙两个码头相距 130 km,汽船从乙码头逆水行驶 6.5 小时到达甲 码头,汽船在静水中每小时行驶 23 km。汽船从甲码头顺流开到乙码头需
要几小时?
23-130÷6.5=3(千米/时) 130÷(23+3)=5(小时) 答:汽船从甲码头顺流开到乙码头需要 5 小时。
工程问题 (北京)单独干某项工程,甲队需要 10 天完成,乙队需要 15 天完成。 甲、乙两队合干 2 天后,剩下的工程由乙队单独完成还需要多少天? 思路点拨:解决工程问题时,把工作总量看作单位“1”,理解工作总量、 工作时间和工作效率的对应关系。如果这项工作由几个人共同完成,则
答:这段路甲队单独修需要 36 天完成。
六年级行程问题以及工程问题应用题

六年级行程问题以及工程问题应用题1、甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?甲和乙相向而行,他们的速度之和是48+44=92千米/小时。
所以他们相遇需要的时间是138/92=1.5小时。
2、一辆汽车从甲地到乙地。
如果每小时行45千米,就要晚0.5小时到达,如果每小时行50千米,就可提前0.5小时到达。
问甲、乙两地相距多少千米?设甲乙两地相距x千米,则根据题意可以列出方程:x/45+0.5=x/50-0.5解得x=450千米。
3、小轿车每小时行驶90千米,大客车每小时行驶55千米,从甲地到乙地,乘小轿车要用4.4小时,乘大客车要用几小时?设从甲地到乙地的距离为x千米,则小轿车的速度是90千米/小时,大客车的速度是55千米/小时。
根据题意可以列出方程:x/90+x/55=4.4解得x=297千米。
所以乘大客车需要的时间是297/55=5.4小时。
4、甲、乙两列火车同时从A、B两城相向开出,4小时相遇。
相遇时,两车所行路程的比是3:4,已知乙车每小时行60千米,求A、B两城相距多少千米?设甲车每小时行x千米,则乙车行了240千米,甲车行了180千米。
根据题意可以列出方程:180/x=240/60-x解得x=40千米/小时,所以A、B两城相距的距离是4*60=240千米。
5、___开车从甲地到乙地,3小时行驶330千米,照这样计算,还需5小时就可以到达乙地,甲乙两地相距多少千米?设甲乙两地相距x千米,则___的速度是330/3=110千米/小时。
根据题意可以列出方程:x/110=5解得x=550千米。
6、京沪高速公路长1260千米,两辆汽车同时从北京和上海出发,相向而行,每小时分别行115千米和95千米。
大约经过几小时两车相遇?(得数保留整数)两辆车的速度之和是115+95=210千米/小时,所以它们相遇需要的时间是1260/210=6小时。
7、一辆汽车从甲地开往乙地,第一小时行了全程的1/3,第二小时比第一小时多行16千米,这时距离乙地还有94千米。
小学奥数行程问题和工程问题要点

小学奥数行程问题和工程问题要点⒈A、B两城相距380千米。
甲乙两辆汽车从A、B两城同时相向开出,4小时在途中相遇。
已知甲汽车每小时行55千米,求乙汽车每小时行多少千米?⒉张、王二人骑着车从A点同时相背而行,已知张每分钟360米,王每分钟行375米,28分钟后,二人相距多少千米?⒊甲乙两辆汽车从A、B两地之间相对行驶,甲每小时行72千米,乙每小时行78千米,由于乙有事耽搁,甲先出发,2小时后乙才出发。
4小时后两车在中途相遇。
求A、B之间的距离?⒋A、B两地之间相距913千米。
甲乙两辆汽车从A、B两地之间相对行驶,甲每小时行69千米,乙每小时行71千米,由于甲有事耽搁,晚出发3小时。
几小时后两车在途中相遇?⒌速滑队以每分钟行500米的速度从基地出发进行野外训练。
16分钟后通信员骑摩托车以每分钟900米的速度从基地出发去追速滑队,问多少分钟后通信员可以追上速滑队?⒍甲、乙二人分别从C、D两地同时同向出发。
甲在C地以每小时75千米的速度行进,乙在D地以每小时55千米的速度行进,经过6小时甲追上了乙。
求C、D两地之间的距离。
⒎甲乙两车同时从东西两城相向开出,甲每小时行56千米,乙每小时行48千米,两车在距中点24千米处相遇。
东西两城相距多少千米?⒏小李和小郭同时开车从甲乙两地相向而行。
已知甲乙两地相距1200千米,小李的车速比小郭快18千米,两车10小时后在途中相遇。
求小李和小郭的速度各是多少?⒐甲、丁两港之间的水路长216千米,一只船从甲港顺水驶往丁港,9小时到达;从丁港返回甲港时因为逆水行驶,用了12小时到达。
求船在静水中的速度和水流速度。
⒑甲、乙两列对开的火车在途中相遇。
甲车司机看见乙车从旁边开过去共用了6秒钟,乙车上的乘客看见甲车从旁边开过去共用了8秒钟。
已知甲车每秒行13米,乙车每秒行15米,求甲乙两车的车长分别是多少米?⒒龟兔赛跑,同时出发,全程7200米。
龟以每分钟30米的速度爬行,兔每分钟跑330米,兔跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑。
行程问题的公式和工程问题的公式

文章标题:深度探讨行程问题的公式与工程问题的公式一、前言在数学中,行程问题的公式和工程问题的公式是两个重要的概念。
它们在实际生活和工作中有着广泛的应用,并且对于深入理解数学和物理学的原理有着重要的作用。
本文将就行程问题的公式和工程问题的公式进行全面的评估,为读者提供深度、广度兼具的知识。
二、行程问题的公式1. 行程问题的定义行程问题是数学中一个重要的概念,它描述了物体在一定时间内的运动情况。
常见的行程问题包括匀速直线运动、加速直线运动等。
在行程问题中,最重要的是要确定物体的位移、速度和加速度之间的关系。
2. 行程问题的公式在行程问题中,位移、速度和加速度之间有着一定的关系。
根据物体的运动情况,可以得到一些重要的公式,如匀速直线运动的位移公式:$s=vt$,加速直线运动的位移公式:$s=vt+\frac{1}{2}at^2$等。
这些公式在实际生活和工作中都有着重要的应用,可以帮助人们更准确地描述物体的运动情况。
3. 个人观点和理解对于行程问题的公式,我个人认为它们是数学在实际生活中的重要应用。
通过这些公式,我们可以更好地理解物体的运动规律,为工程和科学研究提供重要的参考。
行程问题的公式也可以帮助我们更好地解决一些实际问题,如交通规划、物流运输等。
三、工程问题的公式1. 工程问题的定义工程问题是指在工程实践中常见的一些数学问题。
这些问题往往涉及到力学、热力学、流体力学等领域,对工程师和科学家有着重要的指导作用。
工程问题的公式是解决这些问题的重要工具之一。
2. 工程问题的公式在工程问题中,常见的公式包括动力学公式、热力学公式、流体力学公式等。
这些公式帮助工程师和科学家更好地理解和解决工程实践中的问题,如牛顿第二定律$F=ma$、热传导方程$q=ks\frac{\Delta T}{\Delta x}$等。
这些公式的应用使工程实践更加科学和高效。
3. 个人观点和理解工程问题的公式是解决工程实践中的重要工具,它们对于工程师和科学家来说是不可或缺的。
行程问题的公式和工程问题的公式

行程问题的公式和工程问题的公式行程问题的公式和工程问题的公式一、行程问题的公式:行程问题是运用数学知识来解决关于时间、速度和距离之间关系的问题。
在行程问题中,我们经常需要根据已知的速度和时间,计算出距离;或者根据已知的速度和距离,计算出时间;又或者根据已知的时间和距离,计算出速度。
为了解决这些问题,我们可以利用行程问题的公式。
1. 速度、时间、距离的关系公式:在行程问题中,速度、时间和距离的关系可以用以下公式表达:距离 = 速度× 时间时间 = 距离÷ 速度速度 = 距离÷时间这些公式是解决行程问题的基础,通过灵活运用这些公式,我们可以轻松解决各种与行程有关的数学问题。
2. 示例分析:如果一辆汽车以每小时60英里的速度行驶,我们可以通过以上公式计算出,这辆汽车行驶100英里需要的时间是多少。
根据时间 = 距离÷ 速度的公式,可以得出时间= 100 ÷ 60 = 1.67小时。
二、工程问题的公式:工程问题是指在实际工程实践中,通过数学公式和方法来解决各种与工程相关的问题。
工程问题的公式通常涉及到面积、体积、力学、热力学等方面的计算。
在工程问题中,我们需要根据已知的条件,利用数学方法来计算出所需的参数,以便解决实际工程中遇到的各种问题。
1. 面积和体积的计算公式:在工程问题中,我们经常需要计算各种形状的面积和体积。
常见的面积和体积的计算公式包括:矩形的面积 = 长× 宽圆的面积= π × 半径的平方立方体的体积 = 长× 宽× 高球体的体积= (4/3)π × 半径的立方通过这些公式,我们可以有效地解决各种与面积和体积有关的工程问题。
2. 力学和热力学的公式:在工程问题中,力学和热力学方面的公式也占据重要的地位。
牛顿第二定律 F = ma,能量守恒定律 E = mc^2,热传导公式 Q =kAΔT/Δx 等,这些公式在解决各种工程问题时发挥着重要作用。
练习(行程问题-工程问题)

行程问题:1、大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车.如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车.问:小轿车实际上每小时行多少千米?2、小强骑自行车从家到学校去,平常只用20分钟。
由于途中有2千米正在修路,只好推车步行,步行速度只有骑车的1/3,结果用了36分钟才到学校。
小强家到学校有多少千米?3、小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前的路程中乘车,车速是小灵通步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜一猜咱们爷孙俩谁先到家?4、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的,甲、乙两城相距多少千米?5 、小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。
有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。
那么小明每天步行上学需要时间多少分钟?工程问题:1、原计划18个人植树,按计划工作了2小时后,有3个人被抽走了,于是剩下的人每小时比原计划多种1棵树,还是按期完成了任务.原计划每人每小时植______棵树.2 、一项工程,甲做10天乙20天完成,甲15天乙12也能完成。
现乙先做4天,问甲还要多少天完成?3、一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成。
如果先由甲打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时,……两人如此交替工作。
那么,打完这部书稿时,甲、乙二人共用了多少小时?4、如果用甲、乙、丙三那根水管同时在一个空水池里灌水,1小时可以灌满;如果用甲、乙两管,1小时20分钟可以灌满;如果用乙、丙两根水管,1小时15分钟可以灌满,那么,用乙管单独灌水的话,灌满这一池的水需要______小时。
5、一项工程,预计15个工人每天做4个小时,18天可以完成。
专题四:行程与工程问题

专题四:行程与工程问题一、行程问题1、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为40千米,则返回时每小时应航行( )千米。
2、一列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒。
①若列车的前方有一辆与它同向行驶的货车,货车车身长 320米,速度为每秒17米。
列车与货车从车头追上到车尾相离需要多少秒?②若列车与另一列长150米、时速为72千米的列车相向而行,错车而过需要几秒钟?3、一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用( )小时。
4、甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有8米,丙离终点还有12米.如果甲、乙、丙赛跑时速度不变,那么,当乙到达终点时,丙离终点还有( )米。
5、一辆货车每小时行驶70千米,一辆客车与货车的速度比为8:7,两车同时从甲、乙两地相对开出,在距中点50千米处相遇。
问甲、乙两地相距多少千米?6、甲、乙两车同时从A 、B 两地相向而行,甲行完全程需6小时,比乙的速度快50%,相遇时,甲比乙多行180千米,求乙车的速度。
7、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的43,问甲、乙两城相距多少千米?8、甲、乙两人同时从A 、B 两地相向而行,相遇时距A 地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A 地150米处再次相遇,求AB 两地的距离。
二、工程问题1、修一条公路,甲单独做6天完成,乙单独做8天完成,现在两队分别从公路两头同时开工,修了3天后,还剩下180米,求甲队每天修多少米?2、一批零件甲独做要6小时完成,乙每小时完成36个,甲乙合作完成任务时所做零件个数比是5∶3,这批零件一共多少个?3、加工一批零件,原计划每天加工15个,若干天可以完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程问题+行程问题典型应用题工程问题+行程问题首先给大家讲下分数工程问题,这种题一般不给出总量。
这种题的解法重点是:1 把总工作量看做单位“1”2 工作效率*工作时间=工作量3 变式关系式:工作量÷工作效率=工作时间;工作量÷工作时间=工作效率4 比如一项工程甲单独做需要6天完成,乙单独做需要10天完成,那么甲的工作效率就是可1/6,乙的为1/10(即1天工作全部工程1/6或1/10)例题1一项工程,甲、乙队合作20天可以完成。
共同做了8天后,甲离开了,由乙继续做了18天才完成。
如果这项工程单独由甲队或乙队单独完成,各需要几天?思路导航:设这项工程为单位“1”,当甲离开后,乙做的工作量为:1-1/20*8=3/5乙单独做这项工程的时间为18除以3/5 18÷3/5=30天甲单独做的时间:1÷(1/20-1/30)=60天例题2师傅和徒弟合做一件工作要15天才能完成。
若让师傅先做10天,则剩下的工作,徒弟单独做还需要17天才能完成。
徒弟单独做这件工作需要多少天才能完成?思路导航:由于给出条件是“合做15天完成”,所以,将分开做的转化成为合做10天共做多少:1/15*10;还剩下多少:1-1/15*10=1/3。
徒弟单独做几天完成:(17-10)/1/3=21天。
写下解析就是:1-1/15*10=1/317-10=77÷1/3=21当然可以解方程,但是比较麻烦:1/X+1/Y=1/1510/X+17/Y=1例题3一批稿件,甲单独做20分钟打完;乙单独30分钟打完。
现在两人合打这批稿件,合做中,甲因有事离开了5分钟,乙休息了若干分钟,这样共用了16分钟打完。
乙休息了多少分钟?思路导航:由于不知16分钟有多少是在合作,也不知道甲、乙各自单独做了几分钟,因此,假设既没有离开也没有休息,16分钟全部在工作,次题就好做了。
甲、乙合作不休息16分钟能打:(1/20+1/30)*16=4/34/3-1=1/3-------表示甲5分钟打的加上乙为休息做的甲5分钟能打多少?5*1/20=1/4乙休息的时间能打多少?1/3-1/4=1/12乙休息了多少时间?1/12÷1/30=5/2即乙休息了5/2分钟。
例题4一件工作,甲先做7天,乙接着做14天可以完成;如果由甲先做10天,乙接着做2天也可以完成。
现在甲先做了5天后,剩下的全部由乙接着做,还需要多少天完成?思路导航:一般解法:设甲每天做1/X,乙每天做1/Y 那么可以得到方程:7/X+14/Y=110/X+2/Y=1解法二:等量代换法甲(10-7)天的工作量=乙(14-2)天的工作量即:甲1天的工作量=乙4天的工作量甲(7-5)天的工作量=乙8天的工作量所以乙还需要8+14=22天解法很快就能得出答案例题5搬运一个仓库的货物,甲需9小时,乙需12个小时,并需18个小时。
有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物。
丙开始帮忙甲搬运,中途又转向帮助乙搬运。
最后三人同时搬完。
问:丙帮了甲、乙各多少时间?思路导航:设一个仓库的总货物为“1”,尽管丙在AB 两仓库搬运的时间难以确定,但是我们要“变种找不变”,什么不变?因为他们三人同时搬完,那就是他们三个搬运的时间。
2÷(1/9+1/12+1/18)=8小时丙帮助甲搬的时间为(1-1/9*8)÷1/18=2所以帮助乙的就是8-2=6小时第二部分:行程问题单岸型公式:S=(3S1+S2)/2双岸型公式:S=3S1-S2两艘轮船甲、乙分别从南北两岸相向开出,离北岸260千米处第一次相遇,继续行驶,返回时又在南岸200千米处相遇,求河宽。
卡卡西解析:画图:南北------------------------C--------------D-------------------- 同样C表示第一次相遇,D表示第二次相遇。
根据:“离北岸260千米处第一次相遇”,所以追踪乙的轨迹为北C+C南+南D,观察发现比1S多走了南D段所以:3*260-200=S此处为什么是走了3个260呢?解答:设河宽为S,设260=S1,200=S2 从出发到第一次相遇时,乙行驶了S1,甲就行驶了S-S1;从出发到第二次相遇时,乙行驶了S+S2,甲行驶了2S-S2;时间一定的情况下速度和路程成正比,那么V甲:V乙=S-S1:S1=2S-S2:S+S2 由这个式子化解消元就能得到S=3S1-S2这个是两岸型的最终公式只要你看到第一次相遇距A多少米,第二次相遇距B多少米这种题,求AB 的题 ,就直接套这个公式,不用怀疑它的正确性。
例题1甲、乙两车同时从A、B两地相对开出,第一次在离A 地50千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地26千米处。
A、B两地相距多少千米?思路导航:由条件“第一次在离A地50千米处相遇”可知,甲在第一个相遇时间内行了50千米。
从而开始A、B两地同时相对开出,到第二次相遇,甲、乙两车一共走了3个全程。
也即是经过了3个相遇时间,即甲行了3个相遇时间才到第二次相遇地点。
所以A-B相距50*3-26=124公式s= 3a-ba是A走的距离即b是剩下的那个距离例题2小李从A地上山,越过山顶B后下山到C地,共行了18千米,用了5小时。
又知他上山每小时3千米,下山每小时5千米。
小李从C地经过原路上山,越过山顶B返回A地要多少时间?此题可以用“鸡兔同笼”的解法设全为下坡:5*5=25与实际相差:25-18=7则去时上坡时间:7÷(5-3)=3.5小时下坡时间为:5-3.5=1.5小时所以AB和BC的距离就能算出来了剩下的问题就好解了例题3甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,他们两人下山的速度都是各自上山速度的2倍。
甲到山顶时乙距离山顶还有500米,甲回到山脚时乙刚好下到半山腰。
求从山脚到山顶的距离思路导航:假设甲到达山顶后继续上山,还可以上行1/2,同时,乙还可以上行1/4这时路程差为;500*(1+1/2)=750750÷(1/2-1/4)=3000下面写下常规解法:S/V甲=(S-500)/V乙S/2V甲=1/2S/2V乙+500/V乙例题4(老题,但是非常经典)甲班和乙班学生同时从学校出发去某个公园,甲班不行的速度是每小时4千米,乙班的速度是每小时3千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短的时间内达到,那么甲班学生与乙班学生需要步行的距离比是多少?估计很多人都记得答案了15:11下面解析…最短时间到达,只需要甲乘坐汽车与乙走路同时到达某公园。
设,乙先坐车,甲走路,当汽车把乙班送到C点,乙班学生下车走路,汽车返回在B点处接甲班的学生,根据时间一定,路程的比就等于速度的比:简单化下图A……………B……………………C…………..D其实就是比例解法:AB(AC+BC)=4;48=1:12AB:2BC=1:11------------------①在C点乙班下车走路,汽车返回接甲,然后汽车与乙班同时到达某公园(BC+BD):CD=48:3=16:12BC:CD=15:1------------------②将①、②做比AB:CD=15:11轨迹追踪法解行程问题(原创)所谓轨迹追踪法就是画图抓住运动轨迹与S的关系而解出答案的一种办法。
用例题来说明这个问题例题1:甲乙两人分别从A、B两地同时出发,相向而行,当他们第一次相遇时甲离B地相距l04米,然后两人继续向前走,当达到目的地后都立即返回,当第二次相遇时,乙离B地相距40米。
问AB两地相距多少米?A.176米B.144米C.168米D.186米卡卡西解析:此题为最基础的多次相遇问题:抓住相遇时间是解题的关键。
这个必须会:第一次相遇走了一个相遇时间t,第二次相遇走了3个相遇时间3t.轨迹追踪法:A------------------------C----------D-------------------B 设C为第一次相遇的地点,D为第二次相遇的地点由题中“第一次相遇时甲离B地相距l04米”,即一个相遇时间t内乙走了104里追踪乙的轨迹:BC------CA----AD我们发现,第二次相遇的时候乙比2个全程S少走了BD段,而BD段恰好是40米。
根据第二次相遇走了3个相遇时间可以知道,乙走了104*3所以104*3+40=2S S=176估计有部分新Q友会问:“为什么第二次相遇走了3个相遇时间?为什么不是2个相遇时间?”。
下面我来推导下这个问题A------------------------C----------D-------------------B 设C为第一次相遇的地点,D为第二次相遇的地点第一次甲走的:AC 乙走的是BC 甲乙第一次相遇1个相遇时间t内共走了1S.第二次相遇时,甲走了AC+CB+BD------------------①乙走了BC+CA+AD------------------②①+②=3S (甲乙共走了3S)甲乙第一次相遇共走了1S,1t甲乙第二次相遇共走了3S,因为速度不变,所以走的时间为3t推广下成公式:第N次相遇,甲乙共走了(2N-1)个S,花了(2N-1)个相遇时间t。
例题2:两艘轮船甲、乙分别从南北两岸相向开出,离北岸260千米处第一次相遇,继续行驶,返回时又在南岸200千米处相遇,求河宽。
卡卡西解析:画图:南------------------------C--------------D--------------------北同样C表示第一次相遇,D表示第二次相遇。
根据:“离北岸260千米处第一次相遇”,所以追踪乙的轨迹为北C+C南+南D,观察发现比1S多走了南D段所以:3*260-200=S练习题:甲乙两车同时从A.B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。
A.B两地相距多少千米?追击问题的两点重要思路1、设间隔距离看作单位12、路程差=速度差×时间讲解几个例题:1、某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面而来.2个起点站的发车间隔相同,那么这个间隔是多少------------------------------------------------------1、设间隔距离看作单位12、路程差=速度差×时间画个简单的图帮助大家理解后面追上:------------------A----------->------------------------B------>---------(速度差)迎面而来:------------------A------------>------------------<---B-----------------(速度和)所以根据图我们可以得到下面的方程(1) 后面追:(V电-V人)=1/12(2) 迎面来:(V电+V人)=1/4(1)+(2)==> 2V电=1/12+1/4=1/3(问题是算发车间隔,所以我们要计算车的速度)V电=1/6根据时间=路程÷速度间隔=1 ÷1/6T=6PS:做熟悉了直接就是1/[(1/12+1/4)/2]=62、一条街上,一个骑车人和一个步行人同向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。