利用单调性比较函数值大小(人教A版)

合集下载

新人教A版高中数学必修第一册3.2.1 单调性与最大(小)值 课件(2)

新人教A版高中数学必修第一册3.2.1 单调性与最大(小)值 课件(2)

定 D 上的_任__意__两个自变量的值 x1,x2,当 x1<x2 时,都有

f(x1) __<___f(x2)
那么就说函数 f(x)在区间 D 上
f(x1) __>___f(x2)
那么就说函数 f(x)在区间 D
是增函数
上是减函数

象 函数 f(x)在区间 D 上的图象是 函数 f(x)在区间 D 上的图象
0,即 f(x1)>f(x2). 所以函数 f(x)=x-2 1是区间[2,6]上的减函数.
因此,函数 f(x)=x-2 1在区间[2,6]的两个端点处分别取得最大值与最小
值,即在 x=2 时取得最大值,最大值是 2,在 x=6 时取得最小值,最
小值是 0.4.
题型五 函数单调性的应用
例5 已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)
[跟踪训练四]
解:设 x1,x2 是区间[2,6]上的任意两个实数,且 x1<x2,则 f(x1)-f(x2)
= x
1-2 1-x
2-2 1=2[xx21--11-x2x-1-11]=x
12-x12-xx2-1 1.
由 2≤x1<x2≤6,得 x2-x1>0,(x1-1)(x2-1)>0,于是 f(x1)-f(x2) >
特 _上__升__的
是下__降___的

图 示
2.单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么
就说函数y=f(x)在这一区间上具有(严格的)__单__调_性___,区 间D叫做y=f(x)的_单__调_区__间__.
[点睛] 一个函数出现两个或者两个以上的单调1 区间时,不能用 “+∪∞” )上连单接调,递而减应,该却用不“能,表”述连为接:.函如数函y数=y=1x 在x (在-(∞-,∞0,)∪0)(,0(,0, +∞)上单调递减.

人教A版 单调性与最大(小)值 教案

人教A版   单调性与最大(小)值  教案

2021届一轮复习人教A 版 单调性与最大(小)值 教案一、教学目标设置1.通过学生画出两个特殊的一次函数、二次函数的图像能直观地判断函数的变化趋势,并 能用文字语言描述函数的变化趋势。

2.通过老师几何画板动画演示和学生的类比探究让学生体会并理解“任意……都……”的含义。

3.通过例题1和定义辨析进一步让学生理解单调性的定义.4.在两个特殊函数探究中归纳抽象出单调性的定义,从而培养学生“数学抽象”这一素养。

5.在类比增函数的探究方法探究减函数定义过程中,让学生体会“类比方法”。

6.通过生活实例引入,让学生感受数学来源于生活高于生活,体会数学的应用价值。

7.通过活动设计,问题串联,让学生经历过程探究、经历从直观到抽象、从特殊到一般、类 比研究的过程,形成理性数学思维,体会事物互相联系互相影响的辩证主义唯物观。

二、学生学情分析(1)学生已有的认知基础学生通过初中阶段对一次函数、二次函数、反比例函数的学习,以及高中阶段对函数概念的学习和函数表示方法的学习,已经明确了研究函数的一些基本思路和基本方法。

初中阶段学生也接触过“单调性”它是用描述性的语言即“y 随x 的增大而增大(或减小)”来描述变量之间的依赖关系,而一次函数、二次函数、反比例函数都可以很好地呈现这一规律,这位我们抽象函数单调性的定义提供了认知基础。

此外通过学生小学初中阶段的学习,学生具备了一定的数学素养:如抽象概括、类比推理、数据处理等,为新知学习提供了一定的保障。

(2)达成教学目标所需要认知基础本节课目标的达成需要学生有一定的“数学抽象”能力和“有限”与“无限”的观点,需要 学生有一定的“数形结合”的思想。

(3)“已有基础”与“需要基础”之间的差异学生对两个具体数据的比较应该是清楚的,但要将具体的数据比较转化为“任意”两个数据大小的比较存在一定认知差异;学生用文字语言描述“y 随x 的增大而增大(或减小)也是没有问题的,但要将“文字语言”的描述抽象为为“符号语言”的描述还存在一定差异。

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。

提高学生概括、推理的能力。

通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。

得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。

课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习

课后提高学生的数学运算能力和逻辑推理能力。

通过练习。

函数的单调性与最大(小)值(第一课时)课件-高一数学人教A版(2019)必修第一册

函数的单调性与最大(小)值(第一课时)课件-高一数学人教A版(2019)必修第一册
符号语言、文字语言三方面类比得到增函数的定义,最终归纳
总结,并阐述单调区间的定义,加深同学们对函数单调性的理
解。
教学过程
教材分析
学情分析
教学目标
教法学法
教学过程
板书设计
三、知识应用
通过练习和例题讲解:
1、让学生学会通过图像来判断函数的单调区间及
在各区间的单调性,加深对概念的理解。
2、使学生掌握利用定义证明函数的单调性方法,
那么就称函
f ( x数
)在 区 间
I上 单 调 递 增 ( 如
1)图
.)(
特别地,函数 f(x)在它的定义域上单调递增时,
我们就称它是增函数.
如果x1 , x2 I,当x1 x2时,都有f ( x1 ) f ( x2 ),
那么就称函数f ( x)在区间I上单调递减(如图(2))
.
特别地,函数f(x) 在它的定义域上单调递减时,我们就称它是减函数.
1.函数单调性的定义:
2.判断函数的单调性:(1)图象法;
(2)定义法.
3.用定义证明单调性的步骤:
(1)取值;(2)作差;(3)变形;
(4)定号;(79页
练习题 第2题
第3题
2.预习下节课内容——最大(小)
值。

板书设计
3.3函数的单调性
一、单调性定义
二、单调区间
取值
作差变形
定号
结论
定号
结论
方法总结
函数的单调性
用定义证明函数的单调性的步骤:
1.取值:任取x1,x2∈I,且x1<x2;
2.作差变形:f(x1)-f(x2);通常是因式分解和配方;
3.定号:判断差f(x1)-f(x2)的正负;

最新人教A版高中数学必修一课件:3.2.1 第一课时 函数的单调性

最新人教A版高中数学必修一课件:3.2.1 第一课时 函数的单调性

二、应用性——强调学以致用
2.向一个圆台形的容器(如图所示)中倒水,且任意相等的时间间隔内
所倒的水体积相等,记容器内水面的高度y随时间t变化的函数为
y=f(t),则以下函数图象中,可能是y=f(t)的图象是
()
解析:向圆台形容器(下底比上底直径小)注水,由题意知是匀速注水,容 器内水面的高度y随时间t的增加而增加,但越往上直径越大,故高度升高 得越来越慢.故选D.
因为 x1,x2∈(-∞,-2),且 x1<x2, 所以(x1+2)(x2+2)>0,x1-x2<0, 所以 f(x1)-f(x2)<0,即 f(x1)<f(x2), 所以 f(x)在(-∞,-2)内单调递增. (2)任取 x1,x2∈(1,+∞),且 x1<x2, 则 f(x1)-f(x2)=x1x-1 a-x2x-2 a=x1a-xa2-xx2-1 a. 因为 a>0,x2-x1>0,又由题意知 f(x1)-f(x2)>0, 所以(x1-a)(x2-a)>0 恒成立,所以 a≤1, 即 0<a≤1,所以 a 的取值范围为(0,1].
答案:(-∞,1),(1,+∞)
2.将本例中“y=-x2+2|x|+3”改为“y=|-x2+2x+3|”,如何求解? 解:函数y=|-x2+2x+3|的图象如图所示.
由图象可知其单调递增区间为[-1,1],[3,+∞);单调递减区间为 (-∞,-1),(1,3).
题型三 函数单调性的应用
[探究发现]
【对点练清】
1.函数f(x)是R上的增函数且f(a)+f(b)>f(-a)+f(-b),则
A.a>b>0
B.a-b>0
C.a+b>0
D.a>0,b>0
解析:当a+b>0时,a>-b,b>-a.
∵函数f(x)是R上的增函数,

3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册

3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册

《3.2.1单调性与最大(小)值》教学设计第2课时函数的最值教材内容:函数的最大、最小值与函数的单调性有着密切的关系。

通常要想求出函数的最大、最小值,首先要求出函数的单调性。

本节课是对函数的单调性内容的进一步深化,也是对值域这一函数性质的进一步学习。

同时,本节课所展现出的极限的数学思想对于接下来学习幂函数、函数的实际应用也有着不可替代的作用。

教学目标:1.理解函数的最大(最小)值及几何意义,培养学生数学抽象的核心素养;2.利用图象、单调性求最值,提升直观想象和数学运算的核心素养;3.会利用单调性解决比较大小、解不等式等问题,提升逻辑推理的核心素养。

教学重点与难点:1.重点:函数最值的定义;函数最值的求法。

2.难点:单调性求最值;讨论二次函数的最值问题.教学过程设计:(一)新知导入1. 创设情境,生成问题科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?【提示】气温从0时逐渐降底,6时气温达到最低,从6时到17时,气温逐渐升高,17时气温达到最高,从17时到24时,气温逐渐降低。

2.探索交流,解决问题【探究1】观察下列两个函数的图象,回答有关问题:【问题1】比较两个函数的图象,它们是否都有最高点?【提示】图①中函数y=−x2的图象上有一个最高点;图②中函数y=-x的图象上没有最高点.【问题2】通过观察图①你能发现什么?【提示】对任意x∈R,都有f(x)≤f(0),f(0)是最大值。

【探究2】观察下列两个函数的图象,回答有关问题.【问题3】比较两个函数的图象,它们是否都有最低点?【提示】图①中函数y=x2的图象有一个最低点.图②中函数y=x的图象没有最低点.【问题4】通过观察图①你能发现什么?【提示】对任意x∈R都有f(x)≥f(0),f(0)是最小值。

【设计意图】通过探究,引导学生直观感受函数的最大值是函数图象的最高点纵坐标,最小值是函数图象最低点的纵坐标,并尝试用数学语言表示函数的最值,提高学生用数形结合的思维方式思考并解决问题的能力。

3.2.1函数单调性与最大(小)值-第2课时高一上学期数学人教A版(2019)必修第一册

3.2.1函数单调性与最大(小)值-第2课时高一上学期数学人教A版(2019)必修第一册
故选 D.
1
3.函数 f(x)= ,x∈[ 1,2] ,则 f(x)的最大值为________,
x
最小值为________.
【答案】1 ,


1
【解析】∵f(x)= 在区间[ 1,2] 上为减函数,
x
1
∴f(2)≤f(x)≤f(1),即 ≤f(x)≤1.
2
二、知识回顾
函数最大值与最小值
最大值
最小值

.
x1x2
x1x2
∵1≤x1<x2<2,∴x1-x2<0,x1x2-4<0,x1x2>0,
∴f(x1)>f(x2),∴f(x)在[1,2)上是减函数.
同理 f(x)在[ 2,4] 上是增函数.
∴当 x=2 时,f(x)取得最小值 4;当 x=1 或 x=4 时,f(x)取得最大值 5.
题型三 函数最值的实际应用
【规律方法】
解实际应用题的四个步骤
1审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量
的条件关系.
2建模:建立数学模型,列出函数关系式.
3求解:分析函数性质,利用数学知识探究问题解法一定注意自变量的取
值范围.
4回归:数学问题回归实际问题,写出答案.
【跟踪训练】
3.将进货单价为 40 元的商品按 50 元一个出售时,能卖出 500 个,已知这
1
D. ,2
2
【答案】C
【解析】由图可知,f( x)的最大值为 f( 1)=2,f(x) 的最小
值为 f(-2)=-1.
2.设函数 f(x)=2x-1(x<0),则 f(x)(
)
A.有最大值
B.有最小值

函数的单调性与最大(小)值 高中数学获奖教案

函数的单调性与最大(小)值 高中数学获奖教案

、3.2.1单调性与最大(小)值(第一课时)(人教A 版普通高中教科书数学必修第一册第三章)一、教学目标1.借助函数图像,会用符号语言表达函数的单调性、最大(小)值,理解它们的作用与实际意义;2.会用定义简单证明函数的单调性;3.通过函数的单调性可以画出函数图像;4.在探究抽象函数单调性的过程中感受数学概念的抽象过程及符号表示的作用.二、教学重难点1.函数的单调性精确定义;2.利用函数定义判断函数单调性.三、教学过程1.研究函数单调性的过程1.1创设情境,引发思考【实际情境】 前面我们学习了函数的定义、表示方法,知道函数是描述客观世界中变量之间的一种对应关系,这样可以通过研究函数性质来把握世界的一般规律.什么是函数性质呢?比如随着自变量的增大函数值是增大还是减小的,或者有没有最大值?总的来说函数的性质就是”变化中的规律,变化中的不变性”.今天我们来研究一下函数的一个很重要的性质—函数的单调性.2019新型冠状病毒爆发(2019-nCoV ,世卫组织2020年1月命名;SARS-CoV-2,国际病毒分类委员会2020年2月11日命名 ).面对疫情政府采取了积极、高效、公开、透明的举措,不仅全力维护人民群众生命安全和身体健康,也为维护全球和地区公共卫生安全做出重大贡献,给世界带来信心.我们要为我们生在中国而自豪.要为我们是中国人而自豪!下面函数图像是截取4月16日-6月10日的数据,图1是全国现有确诊趋势;图2本土新增确诊趋势,从这两幅函数图像中我们可以直观的感受疫情的变化.全国现有确诊趋势本土新增确诊趋势问题1:(1)请看这两幅函数图像,从中你发现了图像的哪些特征?你觉得他们反映了函数哪方面的性质?【预设的答案】第一幅函数图像是上升的趋势,也就是函数值随自变量的增大而增大,但是第二幅图有上升有下降.总的来说这两幅图体现函数变化趋势比如上升下降,我们把这种性质叫做函数的单调性.【设计意图】让学生从直观的图像上感知函数的单调性.问题2:下面我们进一步用符号语言刻画函数的单调性.我们先来看一个简单的例子:f(x) =x2,在初中的时候我们就学习了这函数图像,你能现在画出这个图像吗?请在草稿纸上画出来.我们一般都用的是五点作图,在(0,+∞]上我们取的两个点满足随自变量的增大而增大,你能能否证明在(0,+∞]上所有点变化趋势也是这样的吗?也就是说明我们还有必要用代数的方法证明一下.请大家思考一下如何证明.【活动预设】我们不可能把所有的点取一遍,因为区间上的点是有无穷多个,那我们怎么把”无限”的问题转化为一种”有限”的问题?(让学是感受数学符号语言的作用)那我们可以用x1, x2来表示,请大家看一下几何画板我们发现只要x1<x2时,都有f(x1)<f(x2).(这里可以让学生用之前学习的不等式的性质证明一下f(x1)<f(x2))【设计意图】主要是引导学生如何定量的刻画函数的单调性,这个过程要让学知道定量刻画函数单调性的必要性.体会形少数时难入微.同时感受符号语言巨大的作用.1.2探究典例,形成概念活动1:通过以上活动,请同学们用符号语言总结一下上面函数的性质.【活动预设】∀x1,x2∈(0,+∞),当x1<x2时,都有f(x1)<f(x2),这时我们就说函数在区间(0,∞)上是单调递增的.【设计意图】让学生更加熟悉符号语言的表示方法.问题3:通过上述例子给出函数f(x)在区间D上单调性的符号表述.【活动预设】一般的,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减. 活动2:请同学们判断下列命题知否正确(1) 设A是区间D上某些自变量的值组成的集合,而且∀x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),我们能说函数f(x)在区间D上单调递增吗?你能说明理由吗?(2) 如果∀x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(3) 如果∀x,x+1∈D, 都有f(x)<f(x+1),那么就称函数f(x)在区间D上单调递增.这种说法正确吗?(4) 函数的单调性是对定义域的某个区间而言,您能举出在整个定义域内单调递增的函数例子吗?你能举出在定义域内的某些区间上单调递增但在另一些区间上单调递减的例子吗?【活动预设】(1)第一问构造了函数f(x)=xsinx+2x,取整函数就可以说明(2)和(3)不正确.(4)让学进一步感知“增函数”、“单调递增”的概念,以及在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.【设计意图】(1)引导学生辨析概念中“任意”两个字;(2)在不同区间上单调递增时,它们的并集不一定保证单调递增,递减同理.2.初步应用,理解概念例1 根据定义证明函数y=1在区间(0,+∞)上是单调递减的.x【预设的答案】略【设计意图】(1)进一步的熟悉定义,通过定义画出图像(2)单调区间不能并.练1 根据定义证明函数y=x+1在区间(1,+∞)上单调递增.x【预设的答案】略【设计意图】(1)让学生自己动手练习;(2)进一步熟悉定义.例2 根据定义,研究f(x)=kx+b(k≠0)的单调性.【预设的答案】略【设计意图】体会如何求解含参函数的单调性.3.归纳小结,文化渗透1. 什么叫函数的单调性?你能举出一些具体例子吗?2. 你认为在理解函数单调性的时候应把握好哪些关键问题?3. 结合本节课学习过程你对函数性质的研究内容和方法有什么体会?【设计意图】(1)进一步让学生强化对单调性定义的准确把握;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会函数性质的研究方法,体会数学语言的强大,体会数形结合的重要.四、课外作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档