储罐基础设计的合理性
特种基础:储罐基础

1、罐底脆性破坏:罐底变形引起焊缝开裂,造成罐底脆 性破坏;
2、地震破坏:地震荷载引起;
3、罐底基础破坏:由于罐底泄漏等原因造成地基下沉, 地基承载力下降造成基础基础发生破坏。
五、储罐基础类型的选择 储罐基础的选型主要考虑储罐类型、容量、工艺要求、地 形地貌、地质条件和施工条件等因素。下表列出不同类型 储罐基础的选型要求。
环基的受力体系
(3) 环基内壁砂垫层的竖向摩擦力
主要是由于地基沉降引起的,作用方向向下。
(4) 环基底面地基反力(q3)
2、刚体假定
为便于分析,一般将环基分解为单元体进 行分析(取单位弧长),将每个单元体假 定为刚体,即不考虑单元体本身的变形, 只发生整体变形,作用在其上的分布荷载 可以用相应的等代集中荷载代替。另外, 由于环基结构及荷载的对称性,认为只有 法向力,没有切向力。根据以上原理,将 环基上的分布荷载按以下模式转换为等代 荷载。
① 当罐壁位于环墙顶面时,环墙环向力按下式计算
Ft k ( Qw w hw Qm m hx ) R
式中,Ft:环墙单位高度环拉力设计值 k:环墙侧压力系数,软土地基可取k=0.5或按1sinφ’计算 γQw、γQm:分别为水、填料的分项系数, γQw可取 1.1, γQm可取1.0 γw、γm:分别为水的容重,环梁填料的平均容重, γw取9.80,γm取18.00kN/m3计算。 hw:环墙顶面至罐内最高储液面高度 hx:环墙顶面至计算断面的高度 R:环墙中心线半径 ② 当罐壁位于环墙内侧一定距离(外环墙式),环墙环 拉力可按下式计算:
六、储罐基础的构造 储罐基础的构造主要包括基础顶面的绝缘防腐层、罐壁支 撑、边缘挡土结构、砂垫层、隔油防水层、检测信号管及 其他构造。 1、基础顶面绝缘防腐层 基础顶面铺筑的沥青砂垫层或沥青混凝土垫层,主要作用 是隔断地下毛细水、水汽等,保护底板。 沥青砂垫层一般采用中粗砂(质量比1:9),热拌合施工, 厚度80mm~100mm。沥青混凝土宜用细粒或中粒,具体 可以参照甲级路面的要求施工。 2、罐壁支撑 罐壁支撑结构主要由钢筋混凝土环梁或碎石环梁等构成,
储罐施工质量控制点

储罐施工质量控制点引言概述:储罐作为重要的储存设备,在石油、化工、食品等行业中扮演着重要的角色。
为了确保储罐施工的质量,需要进行严格的质量控制。
本文将从五个大点出发,详细阐述储罐施工质量控制的关键要点。
正文内容:1. 材料选择1.1 材料的合规性:储罐施工中所使用的材料必须符合相关的标准和规范,确保其质量和性能符合要求。
1.2 材料的检验:对于储罐所使用的材料,需要进行严格的检验,包括外观、尺寸、化学成份等方面的检验,以确保材料的质量达到要求。
2. 焊接工艺控制2.1 焊接材料的选择:选择合适的焊接材料,确保其与储罐材料的相容性和焊接性能。
2.2 焊接工艺的控制:严格按照像关的焊接工艺规范进行操作,包括焊接参数、焊接顺序、预热温度等的控制,以确保焊接质量符合要求。
2.3 焊缝的检测:对焊缝进行超声波、射线或者磁粉等无损检测,以确保焊缝的质量和可靠性。
3. 基础施工控制3.1 基础的设计和施工:储罐的基础是其稳定性和安全性的基础,需要进行合理的设计和施工,包括基础的强度、稳定性等方面的控制。
3.2 基础的质量检验:对储罐基础进行质量检验,包括基础的平整度、强度等方面的检测,以确保基础的质量符合要求。
4. 安全设施控制4.1 安全阀的设置:根据储罐的容量和性质,合理设置安全阀,以确保储罐在超压情况下能够正常释放压力,避免发生事故。
4.2 防火设施的设置:储罐周围需要设置适当的防火设施,包括喷淋系统、泡沫系统等,以提供火灾发生时的紧急处理措施。
5. 检验与验收5.1 施工过程的检验:在储罐施工过程中,需要进行多次的检验,包括焊缝检验、基础检验等,以确保施工质量符合要求。
5.2 竣工验收:在储罐施工完成后,需要进行竣工验收,包括储罐的外观检查、防腐层检测等,以确保储罐的质量和性能符合要求。
总结:储罐施工质量控制是确保储罐质量和安全的重要环节。
通过合规材料选择、焊接工艺控制、基础施工控制、安全设施控制以及检验与验收等多个方面的全面控制,可以有效提升储罐施工质量,保障储罐的安全运行。
罐基础施工方案

罐基础施工方案1. 罐基础施工概述罐基础是用于支撑和固定储罐的主要结构,其稳定性和坚固性对于保障储罐的安全运行至关重要。
本文将介绍罐基础施工方案,包括勘测、设计和施工过程。
2. 罐基础勘测在进行罐基础施工之前,需要对施工区域进行详细的勘测。
勘测内容包括地质条件、水平面状况、土壤承载力等。
根据勘测结果,合理选择施工方案和材料。
3. 罐基础设计根据储罐的类型和容量,进行罐基础设计。
设计包括平面布置图、截面尺寸、钢筋配筋图等。
设计时需考虑地震、风荷载和地质条件等因素,并满足相关规范要求。
4. 罐基础材料准备罐基础主要采用钢筋混凝土结构,因此需要准备相应的材料:水泥、砂石、钢筋等。
同时还需准备施工设备和工具,如混凝土搅拌机、钢筋切断机等。
5. 罐基础施工过程5.1 地基处理根据勘测结果,进行地基处理。
如果地基不均匀或土壤承载力不足,则需要采取加固措施,如加厚地基或打桩。
5.2 基础模板制作根据设计要求,制作基础的模板。
模板应具备一定的强度和稳定性,以保证施工的准确性和质量。
5.3 钢筋安装按照设计要求,在基础模板中安装钢筋。
注意钢筋的正确位置和连接。
5.4 浇筑混凝土在完成钢筋安装后,进行混凝土的浇筑。
浇注时需注意浇注均匀、充实,并采取振捣措施,以保证混凝土的质量和坚固性。
5.5 后续处理混凝土初凝后,进行后续处理。
包括表面养护、伸缩缝安装、防水层施工等。
6. 罐基础施工质量控制在罐基础施工过程中,需要进行严格的质量控制。
这包括对材料的检验、施工方案的审核、现场施工的监督和验收等。
7. 罐基础施工安全措施在进行罐基础施工时,需严格遵守相关的安全规范和操作规程。
施工现场需设立安全警示标识,保证施工人员安全。
对于高风险操作,需采取相应的防护措施。
8. 罐基础施工验收罐基础施工完成后,需要进行验收。
验收内容主要包括基础尺寸、钢筋安装质量、混凝土质量等的检查。
验收合格后,方可进行后续施工。
9. 罐基础施工注意事项在罐基础施工过程中,需要注意以下事项:•施工前需全面勘测和设计,确保施工方案的合理性和可行性。
特种基础:储罐基础

1、不均匀沉降允许值
对于地基的不均匀沉降,虽然储罐具有一定的柔性可以适 应一定的不均匀沉降,但过大的不均匀沉降会造成储罐使 用的安全性下降,一般在设计过程中要规定安全使用的允 许不均匀沉降量。
通常规定,沿罐壁圆周方向每10m周长的相对不均匀沉降 不大于壁板发生扭曲的控制值。罐底由不均匀沉降引起的 变形,必须小于底板所允许的控制值。
外环墙式基础
外环墙式基础
四、储罐基础的破坏模式
储罐的破坏主要有以下几种模式:
1、罐底脆性破坏:罐底变形引起焊缝开裂,造成罐底脆 性破坏;
2、地震破坏:地震荷载引起;
3、罐底基础破坏:由于罐底泄漏等原因造成地基下沉, 地基承载力下降造成基础基础发生破坏。
五、储罐基础类型的选择
储罐基础的选型主要考虑储罐类型、容量、工艺要求、地 形地貌、地质条件和施工条件等因素。下表列出不同类型 储罐基础的选型要求。
外环墙各部构造及尺寸
(3) 环墙截面配筋
环墙单位高环拉力钢筋面积按下式计算:
At r0Ft / fy
式中,At:环墙环向单位高所需钢筋面积; r0:重要性系数,取1.0; Ft:环向单位高环拉力设计值; fy:钢筋抗拉强度设计值。
工程实践证明,用上述方法设计环基,尽管计算中没有考 虑地基差异沉降引起的环基内力,但实际上环基具有较大 的抵抗和调整地基局部不均匀沉降的能力,环基作为整体 在抵抗环基内侧压力的能力始终能够保持,环基事实上具 有比较大的安全储备。
(1) 护坡式基础
包括混凝土护坡、砌石护坡和碎石灌浆护坡等。一般当场 地足够,地基承载力允许,地基沉降量较小时,可采用护 坡式基础。(见下图)
储罐及基础基础方案

储罐及基础基础方案1. 背景储罐是用于储存液体或气体的设备,广泛应用于石油化工、粮食储存、水处理等领域。
储罐基础是储罐安装的基础工程,对于确保储罐的安全稳定运行至关重要。
本文将介绍储罐及基础的基础方案设计,涵盖基础方案的选址、设计及施工等关键内容。
2. 储罐基础选址储罐基础的选址是储罐工程设计的首要步骤,合理的选址能够最大程度地减少地质灾害和环境污染的风险。
以下是选址时需要考虑的几个因素:2.1 地质条件根据工程地处的地质构造和地下水位等条件,选择地质条件稳定、地基承载力较高的区域作为储罐基础选址的首选。
在选址前,应进行详细的地质勘察工作,掌握地下水位、土层结构和土壤承载力等参数。
2.2 交通条件选址时要考虑到交通条件,确保储罐基础施工和日常维护的顺利进行。
合适的交通条件能够方便原材料和产品的运输,提高生产效率。
2.3 近邻环境在选址时要考虑到储罐基础周边的环境,避免储罐对周边住宅或其他重要建筑物造成安全风险。
应与设计规范和环保要求相一致,确保周边环境受到最小的影响。
3. 储罐基础设计储罐基础设计是储罐工程的核心环节,涉及到基础的结构设计和材料选用等方面。
以下是基础设计的几个关键要点:3.1 基础结构类型根据储罐的类型和规模,选择合适的基础结构类型。
常见的基础结构类型包括浮顶式、固定顶式和圆锥顶式等。
根据具体要求,设计师需合理选择基础结构类型,用以满足储罐的稳定性和安全性需求。
3.2 地基处理地基处理是基础设计过程中重要的一步,可以通过加固或改良地基来提高地基的承载能力。
常见的地基处理方式包括深层加固、土壤固化和地基改良等,根据地质勘察结果,选择适当的地基处理方式,确保储罐基础的稳定性。
3.3 材料选用基础材料的选用对基础的稳定性和耐久性具有重要影响。
常见的基础材料包括钢筋、混凝土和地基加固材料等。
根据设计和工程要求,选择合适的基础材料,保证储罐基础的强度和耐久性。
3.4 防腐处理由于储罐在长期使用过程中常受到腐蚀的影响,基础设计中的防腐处理是必不可少的一环。
罐区及储罐安全管理知识-概述说明以及解释

罐区及储罐安全管理知识-概述说明以及解释1.引言1.1 概述概述随着工业化的进步和能源需求的增加,储罐的使用在工业领域中变得越来越常见。
储罐的安全管理是确保工业生产过程中安全运行的重要环节。
罐区及储罐安全管理知识的掌握对于保障工作人员的生命财产安全以及预防化学品泄漏等事故的发生具有重要意义。
本文将全面介绍罐区及储罐安全管理的相关知识。
首先,我们将对罐区的安全管理进行阐述。
包括储罐的分类和特点以及罐区的布局和设计要点。
对于不同种类的储罐,我们将介绍它们的特点及在罐区中的布置方式。
罐区的合理布局和设计是预防及减少事故发生的重要环节,这一部分的内容将帮助读者了解如何有效规划罐区的布局。
其次,我们将深入介绍储罐的安全管理知识。
这包括储罐的选址和基础设计,这一部分的内容将帮助读者了解选址和基础设计对储罐的安全性能起到的重要作用。
此外,我们还将介绍储罐的操作和维护要点,这对于储罐的正常运行和长期使用非常重要。
最后,我们将进行总结,并提出一些建议,以提高罐区及储罐安全管理的水平。
通过对本文内容的学习,读者将对罐区及储罐安全管理的重要性有所认识,并了解到一些在实践中可行的措施和方法。
通过对罐区及储罐安全管理知识的学习和应用,我们将能够更好地保障工作人员的安全,同时减少事故的发生概率。
希望通过本文的阐述,读者能够对罐区及储罐安全管理有更加全面的了解,并在实践中能够有效应用这些知识,确保工业生产过程中的安全运行。
1.2 文章结构文章结构部分的内容如下:文章结构:本文主要包含以下几个部分:引言、正文和结论。
引言部分主要概述了文章的主题和目的,介绍了罐区及储罐安全管理知识的重要性以及本文的结构安排。
正文部分包括了罐区安全管理知识和储罐安全管理知识两个方面的内容。
在罐区安全管理知识方面,主要包括了储罐的分类和特点以及罐区的布局和设计要点。
储罐的分类和特点部分介绍了不同类型的储罐及其特点,包括了储罐的材质、容量、存储物质等方面的内容。
储罐基础施工方案

储罐基础施工方案1. 引言储罐是一种用于存储液体或气体的设备,广泛应用于化工、石油、食品等行业。
储罐的基础施工是储罐工程中的重要环节,决定了储罐的稳定性和安全性。
本文将介绍储罐基础施工的方案和步骤。
2. 基础施工方案2.1 基础类型选择储罐基础的类型通常有三种:浅基础、深基础和特殊基础。
•浅基础适用于土层较稳定、荷载较小的情况。
常见的浅基础类型有均布荷载基础、条带基础和板式基础。
•深基础适用于土层较不稳定、荷载较大的情况。
常见的深基础类型有钻孔灌注桩、摩擦桩和螺旋桩。
•特殊基础适用于特殊情况,如软土地区、沙漠地区等。
在选择基础类型时,需要考虑土层的稳定性、储罐的荷载大小以及工程条件等因素。
2.2 基础施工步骤步骤一:场地准备在进行基础施工前,需要对场地进行准备。
首先清除场地上的杂草、垃圾和障碍物。
然后对场地进行平整处理,确保基础施工的基准面平整。
步骤二:地基处理地基处理是基础施工的重要环节。
根据地质勘探结果,采取相应的地基处理措施,如挖土、填土、加固等。
地基处理的目的是增加地基的稳定性和承载能力。
步骤三:基础基准线确定基础基准线是储罐基础施工的参考线,用于控制基础施工的水平和垂直度。
基准线的确定需要使用水准仪等专业设备进行测量,并标记在场地上。
步骤四:基础标志和定位根据基础设计图纸,确定基础的位置和尺寸,并在场地上进行标志和定位。
根据基础标志和定位,进行基础模板的安装和调整。
步骤五:钢筋绑扎根据基础设计要求,在基础模板内进行钢筋的绑扎。
钢筋的数量、直径和布置要符合设计规范,以确保基础的承载能力和稳定性。
步骤六:混凝土浇筑在完成钢筋绑扎后,进行混凝土的浇筑。
混凝土的配比和浇筑方式要符合设计要求。
在浇筑过程中要注意控制浇筑的速度和均匀性,避免混凝土的裂缝和缺陷。
步骤七:基础养护基础浇筑完成后,需要进行养护。
养护的时间和方式要根据混凝土的强度等因素确定。
养护期间要保持基础湿润,防止混凝土的干裂,以确保基础的稳定性和强度。
储罐附件标准

储罐附件标准一、基础工程1.1基础设计储罐的基础工程设计应依据地质勘察报告和设计规范进行,确保基础稳固、可靠。
基础设计应考虑储罐的重量、操作荷载及地震烈度等因素。
1.2基础施工基础施工应按照施工图及施工规范进行,确保施工质量。
在施工过程中应采取必要的排水措施,防止基础受水浸泡。
二、罐体及支撑2.1罐体材料储罐的罐体材料应符合相关标准和设计要求,具有足够的强度和耐腐蚀性。
常用的材料包括钢材、混凝土等。
2.2支撑结构储罐的支撑结构应依据设计要求进行施工,确保支撑稳固、不变形。
支撑结构应能够承受储罐的重量和操作荷载。
三、附件安装3.1阀门安装阀门安装应按照设计图进行,确保型号、规格及位置符合要求。
安装过程中应注意保护阀门不受损伤。
3.2管道连接件安装管道连接件安装应牢固、密封性好,符合设计要求。
在安装过程中应注意保护连接件不受损伤。
3.3密封件与垫片安装密封件与垫片应符合设计要求,安装时应清洁、无异物。
安装后应进行检查,确保密封性能良好。
3.4安全阀与防爆片安装安全阀与防爆片应符合设计要求,并进行试验验证其性能。
安装时应确保安全阀与防爆片在正确的位置,并能够正常工作。
四、罐内装置4.1内部支撑储罐内部应设置内部支撑,以增加罐体的强度和稳定性。
内部支撑的布置应符合设计要求,并能够方便地进行检修和维护。
4.2内部装置材料内部装置的材料应具有耐腐蚀性、防火性等特性,符合相关标准和设计要求。
在安装过程中应注意保护内部装置不受损伤。
五、安全设施5.1安全警示标识储罐周围应设置安全警示标识,标识应清晰、易见,包括但不限于危险区域、危险设备、危险操作等标识。
5.2紧急排放设施储罐应设置紧急排放设施,以便在紧急情况下快速排放物料。
紧急排放设施应定期检查和维护,确保其正常工作。
5.3消防设施储罐周围应设置消防设施,包括消防水系统、灭火器等。
消防设施应按照相关标准和规范进行配置和维护。
六、清洗和维修6.1清洗:储罐在使用过程中应定期清洗,以保持内部的清洁度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储罐基础设计的合理性随着国民经济的发展,人们物质生活的提高,对能源及化工用品的需求量增大,化工行业得到蓬勃发展,各种石油产品储罐以及化工行业的气罐、液体原料罐日益增多,成为设计人员经常碰到的课题。
罐基础设计的合理与否直接影响到储罐是否能安全,正常的工作,从事故发生的原因来看一般反应在以下几个方面。
基础的选型是设计是否能达到安全、经济、合理的关键,基础的选型应根据储罐的形式、容积、储存的介质,地质条件、业主所能提供的材料情况以及当地的施工技术条件。
1,当储罐直径小于等于6米时,可采用整板基础,采用此基础的优点是基础整体性好,沉降均匀,由于没有了环墙内夯土,所以施工进度快且质量易得到保证,缺点是混凝土和钢筋用量较大,施工时要采取减小大体积混凝土带来不利影响的措施2,当储罐直径大于6米时可采用环墙基础,外环墙式和护坡式基础,优点是混凝土和钢筋用量较省,缺点是由于储罐底部夯土较深,施工时间较长且需采取冲水试压等措施,基础沉降量大,环墙的宽度必须和地基以及罐底压强相协调,否则会照成环墙和罐底沉降差过大,以致罐底钢板拉裂或顶破。
3,存储低温介质的钢储罐基础必须采用深基础,其罐底做架空板,板底与地面留有空隙(约800mm)以防止罐内低温介质作用于土壤,形成冻土。
4,存储高温介质钢储罐要根据介质温度的不同采用不同的隔热措施,当介质温度高于95度时,与罐底接触的罐基础表面应采取隔热措施,一般可采用平铺三层浸渍沥青砖,罐底面和砖顶面应刷冷底子油两遍。
5,存储剧毒,酸,碱腐蚀介质的钢储罐应做成实体架空基础(自地面300mm 以下做成整板基础,其上部做架空基础),目的是若罐内介质泄露,介质会顺着架空基础的槽内流出,容易被及时发现,且介质不会流入土壤中,对其产生腐蚀,影响地基承载力。
钢储罐基础应设置沉降观测点,具体要求详见《石油化工企业钢储罐地基与基础设计规范》SHT3068-2007.在基础施工完成后要进行充水试压,目的是对基础及储罐进行检测,同时对地基进行预压,充水预压时要注意控制充水速度及预压时间,以免认为的对基础和罐体照成破坏。
基础可以根据具体的地基情况而比较常见的采用环墙基础、筏板基础、桩基础和地基处理,地基处理在钢储罐基础设计中是经常遇见的,下面介绍一个工程实例:该工程位于南京市六合区,由于以前为丘陵地域,所以场地高低起伏较大,经厂区平整后有些地区不可避免的有较厚的素、杂填土,具体场地土层分布情况如下:①层杂填土:灰色,黄灰色,稍湿,表层夹较多植物根茎,局部含少量砼块、石子等,主要成份为粘性土,为近期人类活动填积形成,性质极不均匀。
该层最大厚度6.30~10.80m,平均8.11m。
②-1层粉质粘土:灰黄色,黄色,稍湿,可塑状态,含少量铁锰质浸斑及灰白色粘土条带,中等偏高压缩性,无摇振反应,切面光滑,稍有光泽,干强度中等,韧性较高。
该层厚度9.30~13.90m,平均11.55m;层顶标高5.19~11.09m,平均9.20m,层顶埋深6.30~10.80m,平均8.11m。
②-2层粉质粘土:黄色,黄褐色,暗紫色,湿,可~硬塑,含铁锰质结核,局部夹砂粒,中等压缩性,无摇振反应,切面光滑,稍有光泽,干强度高,韧性较高。
该层厚度1.60~11.00m,平均5.79m;层顶标高-4.71~0.05m,平均-2.35m,层顶埋深16.80~21.20m,平均19.66m。
③-1层强风化粉砂质泥岩,棕红色,暗红色,密实,局部夹薄层卵石,母岩风化强烈,原有组织结构大部分已被破坏,矿物成份已发生明显变化,风化裂隙发育,岩芯呈砂土状,手捏易碎,水冲易散,干钻很难钻进。
该层厚度1.20~4.80m,平均2.16m;层顶标高-15.27~-2.06m,平均-8.13m,层顶埋深19.20~31.00m,平均25.45m。
③-2层中风化粉砂质泥岩,棕灰色,棕色,致密,原有组织结构部分已被破坏,矿物成份已部分发生部分变化,岩芯较完整,呈长柱状,岩芯钻方可钻进,锤击易碎,岩体基本质量等级为V级。
该层未钻穿,最大控制深度5.80m;层顶标高-16.47~-6.15m,平均-10.29m;层顶埋深23.30~32.20m,平均27.61m。
根据分析①层杂填土不可作为基础持力层,因此浅基础不适用于该工程,该层土层厚度为6.30~10.80m,平均8.11m,所以亦不适用于桩基础,决定采用砂石桩法对地基进行处理以②-1层粉质粘土,地基承载力特征值220Kpa为持力层,具体计算过程如下:一、设计资料1.1地基处理方法:砂石桩法1.2基础参数:基础类型:矩形基础基础长度L:28.00m基础宽度B:28.00m褥垫层厚度:300mm基础覆土容重:20.00kN/m31.3荷载效应组合:标准组合轴力Fk:56000.00kN标准组合弯矩Mx:630.00kN•m标准组合弯矩My:63.00kN•m准永久组合轴力Fk:56000.00kN1.4桩参数:布桩形式:矩形X向间距:0.80m,Y向间距:0.80m桩长l:10.00m,桩径d:300mm桩体承载力特征值:200.00kPa桩土应力比:2.501.5地基变形计算参数:自动确定地基变形计算深度自动确定地基变形经验系数1.6复合地基计算公式:《建筑地基处理技术规范》(JGJ 79-2002 J220-2002)式(7.2.8-1)fspk = m fpk + (1- m)fsk1.7地基处理设计依据《建筑地基处理技术规范》(JGJ 79-2002 J220-2002)《建筑地基基础设计规范》(GB 50007-2002)1.8土层参数天然地面标高:0.00m水位标高:-8.00m桩顶标高:-5.00m土层参数表格层号土层名称厚度m 容重kN/m3 压缩模量MPa 承载力kPa d 桩侧阻力kPa 桩端阻力kPa1 粉质粘土8.00 18.00 20.00 100.00 1.00 20.00 1000.002 粉质粘土30.00 18.00 20.00 220.00 1.00 20.00 1000.00 注:表中承载力指天然地基承载力特征值桩侧阻力指桩侧阻力特征值(kPa)、桩端阻力指桩端阻力特征值(kPa)桩在土层中的相对位置土层计算厚度(m) 容重kN/m3 压缩模量MPa1 3.00 18.00 20.002 7.00 18.00 20.00二、复合地基承载力计算2.1桩体承载力特征值桩体承载力特征值fpk= 200.00 kPa2.2面积置换率计算由”建筑地基处理技术规范”式7.2.8-2m = d2de2 计算d--桩身平均直径,d=0.30mde-- 一根桩分担的处理地基面积的等效圆直径de=1.13s1s2=1.13×0.80×0.80=0.90ms1、s2--桩X向间距、Y向间距,s1=0.80m、s2=0.80mm =d2de2 = 0.3020.902 =11.012.3复合地基承载力计算《建筑地基处理技术规范》(JGJ 79-2002 J220-2002)式(7.2.8-1)fspk = mfpk + (1- m)fskfspk--砂石桩复合地基承载力特征值(kPa)fpk--桩体承载力特征值,fpk=200.00kPafsk--处理后桩间土承载力特征值(kPa),取天然地基承载力特征值,fsk=100.00kPam--面积置换率,m=11.01fspk= 0.1101200.00+(1-0.1101)100.00 = 111.01kPa经砂石桩处理后的地基,当考虑基础宽度和深度对地基承载力特征值进行修正时,一般宽度不作修正,即基础宽度的地基承载力修正系数取零,基础深度的地基承载力修正系数取1.0。
经深度修正后砂石桩复合地基承载力特征值fa 为fa = fspk+0(d-0.50)上式中0为基底标高以上天然土层的加权平均重度,其中地下水位下的重度取浮重度0= ∑ihi∑hi = 18.00×5.005.00 = 18.00kN/m3基础埋深,d=5.00mfa = 111.01+18.00×(5.00-0.50)=192.01kPa轴心荷载作用时Gk = GAd = 20.00 × 28.00 × 28.00 × 5.00 = 78400.00 kNpk = Fk+GkA = 56000.00+78400.00784.00 = 171.43kPa pkfa,满足要求偏心荷载作用时pkmin = Fk+GkA - MkyWy - MkxWx = 56000.00+78400.00784.00 - 63.003658.67 - 630.003658.67= 171.24kPa pkmin> 0,满足要求pkmax = Fk+GkA + MkyWy + MkxWx = 56000.00+78400.00784.00 +63.003658.67+ 630.003658.67= 171.62kPa pkmax1.2fa,满足要求三、变形计算3.1计算基础底面的附加压力荷载效应准永久组合时基础底面平均压力为:Gk = GAd = 20.00 × 28.00 × 28.00 × 5.00 = 78400.00 kNpk = F+GkA = 56000.00+78400.00784.00 = 171.43kPa基础底面自重压力为:pc= 0d=18.005.00=90.00kPa基础底面的附加压力为:p0=pk-pc=171.43 - 90.00 = 81.43kPa3.2确定z按《建筑地基基础设计规范》(GB 50007-2002)表5.3.6:由b=28.00 得z=1.003.3确定沉降计算深度沉降计算深度按”地基规范”式5.3.6由程序自动确定zn = 25.00 m3.4计算复合土层的压缩模量换算系数换算系数复合土层的分层与天然地基相同,各复合土层的压缩模量按《建筑地基处理技术规范》(JGJ 79-2002 J220-2002)式(7.2.9)确定Esp = [1 + m(n - 1)]Es令 = 1 + m(n - 1),即复合土层的压缩模量换算系数 = 1 + 0.1101×(2.50 -1) = 1.1653.5计算分层沉降量根据《建筑地基基础设计规范》(GB 50007-2002)表K.0.1-2可得到平均附加应力系数,计算的分层沉降值见下表:《建筑地基基础设计规范》(GB 50007-2002)的分层总和法沉降计算表z(m) l1/b1 z/b1  zzii - zi-1i-1 Esi(MPa) si = p0(zii - zi-1i-1)/Esi ∑si(mm)0 1.00 0 4×0.25=1.00 03.00 1.00 0.21 4×0.2496=0.9982 2.9947 2.9947 23.30 10.4610.46410.00 1.00 0.71 4×0.2382=0.9528 9.5277 6.5330 23.30 22.8333.29224.00 1.00 1.71 4×0.1882=0.7527 18.0650 8.5373 20.00 34.7668.05125.00 1.00 1.79 4×0.1847=0.7387 18.4672 0.4022 20.00 1.6469.688上表中l1 = L/2 = 14.00m, b1 = B/2 = 14.00mz = 25.00m范围内的计算沉降量∑s = 69.69 mm, z = 24.00m至25.00m(z为 1.00m), 土层计算沉降量s’n = 1.64 mm ≤ 0.025∑s’i = 0.025 × 69.69 = 1.74 mm,满足要求。