储配站储罐基础设计

合集下载

浅谈3000立方米储油罐环墙基础的设计

浅谈3000立方米储油罐环墙基础的设计

浅谈3000立方米储油罐环墙基础的设计摘要:钢储罐主要用于存储原油、中间产品及成品油等石油化工行业中的产品,其所作用的荷载强度大、分布面积大。

钢制储罐基础的设计是石油化工行业构筑物设计中的重要内容,并且储罐基础是保证储罐正常投入使用、安全生产的关键环节。

对于大型储罐而言,环墙式储罐基础是应用较多的一种基础形式。

关键词:基础选型;环墙设计;构造措施;防渗措施本文主要介绍的环墙式基础是目前国内应用最多的一种钢储罐基础形式,以期给以后的工程提供一定的参考。

一、工程概况此次以实际工程项目中某一3000立方米内浮顶钢储裂解汽油罐基础的设计为例进行分析。

工程地处广东省惠州市大亚湾石化区。

1、储油罐参数油罐为3000 m3内浮顶裂解汽油罐,罐壁内径15 m,罐壁高度17.82 m,罐底板直径15.15 m,罐体自重900 kN,充水水重31540 kN,罐底层壁厚12 mm。

罐内介质温度65ºС。

2、地质条件1)场地抗震设防烈度为6度,设计基本地震加速度值为0.05 g,设计地震分组为第一组,场地特征周期为0.35 s。

2)本单体坐落在能级为8000 kN·m的强夯区,有效加固深度约6~9 m,地基承载力特征值为220 kPa。

强夯层下层土为中粗砂层,地基承载力特征值为230 kPa。

中粗砂层以下为卵砾石土层,地基承载力特征值为460 kPa。

3)场地土标准冻结深度小于0.3 m。

二、环墙基础设计1、地震作用、风荷载作用根据规范[1],不设置地脚螺栓的非桩基储罐基础可只需符合相应的抗震措施要求,不再进行抗震验算;不设置锚固螺栓的储罐基础,风荷载作用可不考虑。

2、环墙厚度在设计中需要达到一个目标是使环强底压强与环墙内同一水平地基土压强相等,因此采用规范[2]如下环墙厚度计算公式以达到此目标:(3-1)其中,(gk为罐壁底端传至环墙顶端的线分布荷载标准值)(γL为罐内使用阶段存储介质的重度),(hL为环墙顶面至罐内最高储液面高度),(γC为环墙的重度),(γm为环墙内各垫层的平均重度),(β为罐壁伸入环墙顶面宽度系数),(基础埋深0.8 m,基础高出地面1.057 m),则环墙厚度为:取。

石油液化气储配站设计

石油液化气储配站设计

石油液化气储配站设计石油液化气储配站是专门为液化石油气(LPG)的储存和配送而设计的设施。

它是石油液化气从生产到最终销售环节中的一个重要环节。

在设计石油液化气储配站时,需要考虑到多个因素,包括安全性、环保性、效率性等。

下面将介绍一个石油液化气储配站的设计要点和流程。

首先,石油液化气储配站的设计要考虑到安全性。

安全是储配站设计的首要考虑因素,主要包括以下几个方面:1.储罐设计:储罐的结构设计要满足安全要求,包括耐压能力、防爆能力等。

同时,储罐需要进行定期检验和维护,确保其安全可靠。

2.泄漏检测系统:储配站需要安装泄漏检测系统,能够及时发现和防止泄漏事故。

3.防火安全措施:储配站需要配置灭火设备和消防通道,确保能够及时应对火灾事故。

4.周边安全:储配站周边需要设立防火墙、安全警示标志等设施,确保周边环境的安全。

其次,石油液化气储配站的设计要考虑到环保性。

液化石油气是一种易燃易爆的化学物质,对环境造成污染的风险较大,因此储配站的设计要考虑到以下几个方面:1.气体处理系统:储配站需要配置气体处理系统,包括气体净化、脱硫、脱水等设备,确保气体的质量达到国家标准。

2.废气排放控制:储配站需要配置废气处理设施,对废气进行净化处理,确保排放符合环保要求。

3.废水处理:储配站需要配置废水处理设施,对废水进行处理和回收,减少对环境的污染。

再次,石油液化气储配站的设计要考虑到效率性。

储配站的设计应该满足储存和配送的需求,确保供应的连续性和效率。

以下是一些提高效率的设计要点:1.储罐数量:根据需求合理确定储罐数量和容量,确保库存能够满足市场需求。

2.仓储设施:储配站需要设计合理的仓储设施,包括堆放区域、卸货区域、装货区域等,确保货物的高效存储和配送操作。

3.自动化控制系统:储配站需要配置自动化控制系统,对储罐、泄漏检测系统、仓储设施等进行远程监控和控制,提高作业效率和安全性。

4.信息管理系统:储配站需要建立完善的信息管理系统,对液化石油气的存储、配送、销售等环节进行跟踪和管理,提高信息流程和效率。

储罐基础工程施工组织设计方案

储罐基础工程施工组织设计方案

燃气3χ 104nm/d天然气液化项目储罐基础土建施工方案目录1. 工程概况32. 编制依据33. 施工准备34. (4)5. 施工程序与施工技术措施46. 质量保证措施87. 安全保证措施1三8. 雨季施工措施1四9. 施工人员机具计划1四10. 施工进度计划1五1.项目概述1.1本工程为4500m3 LNG储罐基础和1000m LPG球罐基础。

其中4500m LNG储罐基础为柱下筏板基础,筏板厚1200mm,筏板上有10根1100*800mm的柱和20根900 * 700mm的柱,储罐平台厚400mm。

1000m液化石油气球罐基础为带状基础。

1.2本工程基础施工完成后,在基础和外表面±0.000以下部分涂两层冷底子油和两层热沥青。

基础外部抹20厚免烧水泥砂浆。

2.编制基础2.1储罐施工图J03-03-(01-07)2.2图纸会审纪要和技术联系单2.3施工标准和法规2.3.1《建筑地基基础工程施工质量验收规范》GB50202-20022.3.2《混凝土结构工程施工质量验收规范》GB50204-20022.3.3《钢筋焊接及验收规范》JGJ18-20032.2.4《混凝土泵送施工技术规范》JGJ/T10-20112.2.5《混凝土强度检验评定标准》GB/t50107-20102.2.6混凝土质量控制标准GB50164-20112.3.7《混凝土外加剂应用技术规范》GB50119-20032.3.8《建筑工程施工质量验收统一标准》(GB50300-2001)2.3.9建筑施工安全检查标准JGJ59-992.3.10《建筑机械安全技术规范》JGJ33-2001/J119-20012.3.11环境空气质量标准(GB3095-1996)2.3.12《建筑施工扣件式钢管脚手架安全技术规范》JGJ128-20002.3.13《施工现场临时用电安全技术规范》JGJ46—20052.3.14《建筑防腐工程施工及验收规范》( GB50212-2002)2.3.15《建筑地面工程施工质量验收规范》GB50209-20022.3.16《建筑装饰工程施工质量验收规范》GB50210-20013.施工准备3.1技术准备3.1.1熟悉并审核图纸。

谈谈储油罐基础设计及沉降计算

谈谈储油罐基础设计及沉降计算

谈谈储油罐基础设计及沉降计算1、引言随着世界石油工业的迅速增长和能源需求的不断增加,原油和成品油的储备受到了各国的普遍关注,对各类油库储备能力的要求也越来越高,因而使各类储罐的数量剧增,对储油罐基础的安全设计有了更高要求。

本文以春风油田二号联合站建设工程5000立方储油罐(拱顶罐)基础设计为例,简单介绍了钢储罐环墙式基础的设计步骤。

2、钢储罐基础设计2.1储油罐参数油罐为5000m3拱顶罐,罐壁内径23.64m,罐底直径23.8m,高度12.518m,罐体自重(不含罐底板)1700kN,罐底板自重300kN,保温重230kN,运行重量50250kN。

罐的设计温度为95℃,操作温度为93℃。

2.2、地质条件表1 各土层一览表地层编号岩土名称土层厚度(m)压缩模量Es(MPa)内摩擦角(°)黏聚力(kPa)桩的极限侧阻力标准值qsik(kPa)桩的极限端阻力标准值qpk (kPa)地基承载力特征值(kPa)①粉质黏土0.5~3.4 13.47 20.9 19.1 40 300 140①1 粉土0.7~2.6 17.5 22.3 19.1 53 400 140②粉砂 1.2~5.6 8 25 0 46 400 140③粉质黏土最大揭露厚度24.50m 13.02 22 18.5 53 400 140③1 粉砂0.7~7.0 8 25 0 35 600 160③2 粉砂1.2~7.9 10 27 0 50 750 160③3 粉砂0.5~5.6 10 27 0 50 900 180③4 粉砂1.5~1.8 14 30 0 64 1100 180场地土对混凝土结构具有中腐蚀性,对钢筋混凝土结构中的钢筋有强腐蚀性。

场区地下水埋深在8.55~8.94m。

2.3、基础环墙设计规范指出,当地基土不能满足承载力设计值要求,但计算沉降差不超过规范允许值,场地受限制时,采用环墙式基础[1]。

图1 储油罐及罐基础图2 罐基础断面详图(1)环墙厚度根据规范计算环墙厚度[1]:,取0.60m。

储罐基础施工方案

储罐基础施工方案

储罐基础施工方案1. 引言储罐是一种用于存储液体或气体的设备,广泛应用于化工、石油、食品等行业。

储罐的基础施工是储罐工程中的重要环节,决定了储罐的稳定性和安全性。

本文将介绍储罐基础施工的方案和步骤。

2. 基础施工方案2.1 基础类型选择储罐基础的类型通常有三种:浅基础、深基础和特殊基础。

•浅基础适用于土层较稳定、荷载较小的情况。

常见的浅基础类型有均布荷载基础、条带基础和板式基础。

•深基础适用于土层较不稳定、荷载较大的情况。

常见的深基础类型有钻孔灌注桩、摩擦桩和螺旋桩。

•特殊基础适用于特殊情况,如软土地区、沙漠地区等。

在选择基础类型时,需要考虑土层的稳定性、储罐的荷载大小以及工程条件等因素。

2.2 基础施工步骤步骤一:场地准备在进行基础施工前,需要对场地进行准备。

首先清除场地上的杂草、垃圾和障碍物。

然后对场地进行平整处理,确保基础施工的基准面平整。

步骤二:地基处理地基处理是基础施工的重要环节。

根据地质勘探结果,采取相应的地基处理措施,如挖土、填土、加固等。

地基处理的目的是增加地基的稳定性和承载能力。

步骤三:基础基准线确定基础基准线是储罐基础施工的参考线,用于控制基础施工的水平和垂直度。

基准线的确定需要使用水准仪等专业设备进行测量,并标记在场地上。

步骤四:基础标志和定位根据基础设计图纸,确定基础的位置和尺寸,并在场地上进行标志和定位。

根据基础标志和定位,进行基础模板的安装和调整。

步骤五:钢筋绑扎根据基础设计要求,在基础模板内进行钢筋的绑扎。

钢筋的数量、直径和布置要符合设计规范,以确保基础的承载能力和稳定性。

步骤六:混凝土浇筑在完成钢筋绑扎后,进行混凝土的浇筑。

混凝土的配比和浇筑方式要符合设计要求。

在浇筑过程中要注意控制浇筑的速度和均匀性,避免混凝土的裂缝和缺陷。

步骤七:基础养护基础浇筑完成后,需要进行养护。

养护的时间和方式要根据混凝土的强度等因素确定。

养护期间要保持基础湿润,防止混凝土的干裂,以确保基础的稳定性和强度。

水泥储罐基础施工方案

水泥储罐基础施工方案

水泥储罐基础施工方案一、工程概况与目标本工程为水泥储罐基础施工项目,目标是确保水泥储罐基础的稳固与安全,为储罐的长期运行提供坚实基础。

工程地点为[具体地点],预计施工周期为[具体时间]。

二、施工准备工作实地勘察:对施工场地进行详细的地质勘察,了解土壤类型、承载力等参数,为基础设计提供依据。

施工图纸编制:根据勘察结果,编制详细的施工图纸,明确基础结构尺寸、材料要求等。

材料采购:按照施工图纸要求,提前采购所需材料,确保材料质量符合标准。

施工队伍组织:组建专业的施工队伍,进行技术交底和安全培训,确保施工质量和安全。

三、基础结构设计水泥储罐基础采用钢筋混凝土结构,设计包括基础底板、基础墙和基础顶板。

基础底板需考虑土壤承载力和地基反力,基础墙需满足储罐的侧向稳定性要求,基础顶板需承受储罐底部的荷载。

四、材料选择与检验水泥:选用质量稳定、强度等级符合要求的普通硅酸盐水泥。

骨料:选用质地坚硬、粒径符合要求的砂石骨料。

钢筋:选用符合国家标准的钢筋,进行严格的检验和验收。

其他材料:如外加剂、掺合料等,均需符合相关标准,并进行必要的检验。

五、施工流程与方法基础底板施工:进行场地清理、平整,然后进行基础底板的钢筋骨架搭设和混凝土浇筑。

基础墙施工:在基础底板浇筑完成后,进行基础墙的钢筋骨架搭设和混凝土浇筑。

基础顶板施工:基础墙浇筑完成后,进行基础顶板的钢筋骨架搭设和混凝土浇筑。

养护与拆模:混凝土浇筑完成后,按规定进行养护,达到拆模条件后进行拆模。

六、质量控制标准施工过程中应严格执行国家和地方的有关标准,如《混凝土结构设计规范》、《建筑工程施工质量验收规范》等。

对关键工序进行质量检查和控制,确保施工质量符合设计要求。

七、安全与环保措施施工现场应设置明显的安全警示标志,并配备必要的安全设施。

施工人员应佩戴安全防护用品,如安全帽、安全鞋等。

施工过程中应采取措施减少噪音、粉尘等对周边环境的影响。

废弃材料应分类堆放,进行合理利用或处理。

石油液化气储配站设计

石油液化气储配站设计

石油液化气储配站设计一、引言二、设计要求1.容量要求:根据当地用户需求和规模,确定储存罐的容量。

2.安全要求:确保储配站的安全运行,包括预防火灾、爆炸和泄漏等事故。

3.环境要求:符合环保标准,减少对周围环境的污染。

4.供应稳定性:保证稳定的燃气供应,满足用户需求。

5.经济效益:在满足安全和环保要求的前提下,实现经济可行性。

三、设计方案1.场地选址:选择距离居民区和危险品仓库一定距离,并且方便运输和供应的地点。

2.储罐设计:根据容量要求和安全性考虑,选择适当的储存罐类型和材料。

应采用双层罐或加保温措施,以减少液化气的散失。

3.输送管道:采用高品质的钢管或塑料管道,确保气体输送的安全性和稳定性。

4.设备选择:选择优质的液化气气化设备和供应设备,以确保供应的可靠性和高效性。

5.安全设施:设置适当的火灾报警系统、泄漏报警系统和通风设备,以及紧急切断阀等设施,保证安全。

6.环保设施:采取措施减少气体排放,如设置废气处理设备和废水处理设施。

7.自动化控制:采用现代化自动化控制系统,实现对储配站运行的监控和控制,提高运行效率。

四、施工和运维要求1.施工过程中,需遵守相关法律法规和安全操作规程,确保工人和周围环境的安全。

2.施工完成后,需要进行安全检查和验收,确保设施符合安全要求。

3.储配站的运维需要定期进行设备检查和维护,确保设备正常运行。

4.操作人员需要经过专门培训,了解安全操作规程和应急处理措施。

5.储配站应设有安全管理人员,负责安全管理和应急处理。

五、结论石油液化气储配站的设计是一个综合性的工程,需要兼顾安全、环保和经济效益。

通过选择合适的设备和措施,确保储配站的安全运行和稳定供应,可为用户提供高品质的燃气服务。

在设计、施工和运维过程中,要严格按照相关规范和要求进行操作,以保证设施的完整性和安全性。

储罐设计基础

储罐设计基础
ห้องสมุดไป่ตู้
1978年国内3000m3铝浮盘投人使用,通过测试蒸发损耗,收 到显著效果。 1985年中国从日本引进第一台10×104m3 全部执行日本标准JISB8501 同时引进原材料,零部件 及焊接设备. 目前国内对10×104m3油罐有比较成熟的设计、施工和使 用 的经验,国产 大型储罐用高强度刚材已能够批量生产。 15×104m3目前国内正在建设。 储罐的发展趋势---大型化
损耗类型与损耗量
• 石油类或液体化学品储液的损耗可分为蒸发损耗和残漏损 耗两种类型。蒸发损耗和残漏损耗分别是指储液在生产、 储存、运输、销售中由于受到工艺技术及设备的限制,有 一部分较轻的液态组分气化而造成的在数量上不可回收的 损失和在作业未能避免的滴洒、渗漏、储罐(容器)内壁的 乳黏附、车、船底部余液未能卸净等而造成的数量损失, 储液(油品)的残漏损耗不发生形态变化。 • 文献和调查资料表明,储液损失,特别是油品损耗数量是 十分惊人的。1980年,中国11个主要油田的测试结果表明, 从井口开始到井场原油库,井场油品损耗量约占采油量的 2%,其中发生于井场库的蒸发损耗约占总损耗的32%。据 1995年第四届国际石油会议报道,在美国油品从井场经炼 制加工到成品销售的全过程中,品损耗数量约占原油产量 的3%。若以总损耗为3%估算,全世界每年的油品损耗约有 1X108t,几乎相当于中国一年的原油产量。
立式圆筒形储罐按其罐顶结构可分为 锥顶储罐 固定顶储罐: 拱顶储罐 伞形顶储罐 网壳顶储罐(球面网壳) 浮顶储罐(外浮顶罐) 浮顶储罐: 浮储罐(带盖浮顶)
1.2.1锥顶储罐 • 图1-1 自支撑锥顶罐简图 • 锥顶储罐又可分为自支撑锥顶和支撑锥顶两种。 • 锥顶坡度最小为1/16,最大为3/4,锥形罐顶是一种形状 接近于正圆锥体表面的罐顶。 • 自支撑锥顶其锥顶荷载靠锥顶板周边支撑于罐壁上,自支 撑锥顶又分为无加强肋锥顶和加强肋锥顶两种结构.储罐 容量一般小于1000m3。支承式锥顶其锥顶荷载主要布梁或 镶条(架) 及柱来承担。 • 柱子可采用钢管或型钢制造。采用钢管制造时,可制成封 闭式,也可设臵放空孔和排气孔。柱子下端应插人导座内, 柱子与导座不得相焊,导座应焊在罐底板上。其储罐容量 可大于1000m3以上。 • 锥顶罐制造简单,但耗钢量较多,顶部气体空间最小.可 减少“小呼吸”损耗。自支撑。锥顶还不受地基条件限制。 支撑式锥顶不适用于有不均匀沉陷的地基或地荷载较大的 地区。除容量很小的罐( 200m3以下)外,锥顶罐在国内很 少采用,在国外特别是地震很少发生的地区,如新加坡、 英国、意大利等用得较多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储配站储罐基础的设计
摘要:在储配站的设计中,设备基础主要是罐池和储罐基础的设计。

基础设计主要采用钢筋混凝土结构,设计中不仅要核对总图、工艺的相关说明还要结合相关结构规范的有关规定。

本文主要讨论了储罐基础在埋地情况下的设计与处理。

关键词:钢筋混凝土罐池储罐基础
中图分类号:tu37 文献标识码:a文章编号:
一、钢筋混凝土的优点
1、取材容易:混凝土所用的砂、石一般易于就地取材。

2、合理用材:钢筋混凝土结构合理地发挥了钢筋抗拉和混凝土抗压的性能,与砖基础相比有更高的承载力。

3、耐久性:密实的混凝土有较高的强度,同时由于钢筋被混凝土包裹,不易锈蚀,维修费用也很少,所以钢筋混凝土结构的耐久性比较好。

4、耐火性:混凝土包裹在钢筋外面,火灾时钢筋不会很快达到软化温度面导致结构整体破坏。

与裸露的木结构、钢结构相比耐火性要好。

5、可模性:根据需要,可以较容易地浇筑成各种形状和尺寸的钢筋混凝土结构。

6、整体性:浇筑或装配整体式钢筋混凝土结构有很好的整体性,有利于抗震,抵抗振动和爆炸冲击波。

二、设备基础的一般规定
1、基础宜采用钢筋混凝土结构(若使用砖基础,砖和砂浆共同作用时会使砖承载力降低,100m3的储罐重量一般在13吨左右,罐中液化石油气重量一般在7吨左右,储罐重量和液化石油气重量之和可能会超出砖基础承载力,使基础上砖体压碎),混凝土强度等级不宜低于c20,素混凝土垫层强度等级不宜低于c15,基础混凝土应一次浇灌完毕,不留施工缝;钢筋宜采用ⅰ、ⅱ级热轧钢筋,构造钢筋宜采用ⅰ级钢筋,钢筋保护层厚度有垫层时取40mm,无垫层时取70mm(同柱下独立基础的设计)。

2、储罐一般都用地脚螺栓固定。

地脚螺栓的材质除特殊说明外,应采用未经冷加工的q235-a、f钢,并按设备要求设置。

一般情况下地脚螺栓采用预留孔埋置,预留孔的大小要有足够大,可为螺栓直径的3-5倍,以防由于定位误差储罐不能在基础上定位或定位以后储罐位置与总图不对应。

预留孔的二次灌浆宜采用强度等级高于基础本体一级的细石混凝土。

三、地下储罐的设计
1、罐池的设计
总图中设计储罐时会考虑间距问题,当场地有足够间距时会考虑采用地上储罐,便于储罐的维修和管理。

当间距不够时会考虑地下储罐,地下储罐的间距要求比地上储罐的间距要减小一半,但是地下储罐要求设置在钢筋混凝土槽内,槽内应填充干沙,且储罐之间应设置隔墙。

这样一来,在结构设计时不仅要确定储罐基础的尺寸及配筋还要计算罐池的配筋,且两者都要考虑所填沙子的影响。

为了简化计算,罐池可视为一般挡土墙,计算时按挡土墙的有关规定进行配筋计算,即罐池的配筋只与所填沙子的深度和地面活荷载有关。

假定池壁和池底受到的恒载为q1,地面活荷载为q2,则q1=αγhk0;q2=βqk0 (α为恒荷载分项系数;β为活荷载分项系数;γ为罐池内回填沙子的重度;q为地面活荷载值;h为填沙深度;k0为沙子对池壁的侧压力系数(可取为0.5))。

池底弯矩可分两部分计算,一部分是均布荷载作用下的弯矩,另一部分是三角形荷载作用下的弯矩,计算后迭加。

将叠加后的弯矩作为配筋弯矩使用,有了弯矩,罐池的配筋计算就简单了。

2、储罐基础的设计
(1)配筋计算
储罐基础的设计可参照框架结构中柱下独立基础的设计。

查看地址勘察报告,获得场地所在地区地质情况,大至可确定地基承载力设计值f和基础埋置深度d。

先假定基础为轴心受压,由公式a ≥f/f-γgd可确定基础的底面尺寸a,根据实际情况a值可适当放大(在地基承载力很弱的情况下,需用加大基础埋深或加大基础底面积的方法来减小地基承载力,此时储罐基础可以采用连体基础)。

储罐基础上的主要荷载f为沙子的重力f1、罐体自重f2及基础自重设计值和基础上的土重标准值g,其中沙子自重值占主导地位。

安全起见,暂假定池中所有的沙子重力都由基础承担,则f= f1+
f2+g(g=γgad,γg为基础与基础台阶上土的平均重度,可近似按20kn/m3计算)。

由此可得钢筋面积as=fh/0.9h0fy(h为基础顶面至
基础底面的高度;h0为基础的有效高度;fy为钢筋的抗拉强度设计值)。

(2)抗冲切验算
储罐基础属于局部受压,若基础高度不够会产生冲切破坏。

沿基础台阶变截面处发生近似45°方向的斜拉裂缝,形成冲切角锥体。

故必须进行抗冲切验算。

抗冲切验算是在冲切角锥体以外的地基净反力(不计基础自重引起的地基反力)引起的冲切荷载qc应小于基础冲切可能破坏面上的混凝土的抗冲切强度q即qc≤q。

(3)遇软弱下卧层时基础的处理
土层大都是成层的,通常,土层的强度随深度而增加,而外荷载引起的附加应力则随深度而衰减,因此只要基出地面持力层满足设计要求即可以。

但也有不少情况,持力层不厚,在持力层以下受力层范围内存在软弱土层,软弱下卧层的承载力比持力层小得多,这时,要求传递到软弱下卧层顶面的附加应力和土的自重应力之和不超过软弱下卧层的承载力设计值,若经验算达不到要求时,基础应尽量浅埋,以增加基底到软土层顶面的距离;也可以通过加大基础底面积的方法减小基底压力。

(4)遇湿陷性黄土时基础的处理
湿陷性是黄土最主要的工程特征。

所谓湿陷性就是黄土浸水后在外荷载或自重作用下发生下沉的现象。

这种现对基础的安全使用很不利,湿陷性黄土基础的设计和施工,除必须遵循一般基础的设计和施工原则外,还应针对湿陷性特点采用适当的工程措施,包括
以下三方面:①处理地基,以消除产生湿陷性的内在原因;②防水和排水防止产生引起湿陷性的外界条件;③采取结构措施,改善建筑物对不均匀沉降的适应性和抵抗能力。

a、地基处理
湿陷性黄土地基处理的原理,主要是破坏湿陷性黄土的大孔结构,以便全部或部分消除地基的湿陷性。

目前常用的方法有垫层法、夯实法、挤密法、桩基法、预浸水法、单液硅化或碱液加固法等。

b、防水措施
尽量选择排水畅通或利于场地排水的地形条件,避开受洪水或水库等可能引起地下水位上升的地段,确保管道和贮水构筑物不漏水。

场地内应设置排水沟等;罐池内、外必须有排水措施,池内的给水,排水管道应尽量明装;施工场地应平整,做好临时性防洪、排水设施。

大型基坑开挖时应防止地面水流入,坑底应保持一定坡度便于集水和排水,尽量缩短基坑暴露时间。

c、结构措施
加强罐池的整体性和空间刚度(罐池和储罐基础采用钢筋混凝土整体浇注)。

在湿陷性黄土地基的设计中,应根据建筑物的类别,场地湿陷类型、结合当地的建筑经验、施工与维护管理等条件综合确定。

四、结论
为确保基础的安全使用,在埋地储罐的设计中不仅要通过人为计算来确定基础的各项参数还要参考相关的规范规定。

参考文献:
[1]《混凝土结构设计规范》gb50010-2010
[2]《化工设备基础设计规定》hg/t 20643-98
[3]《城镇燃气设计规范》gb50028-2006
[4]高大钊,土力学与基础工程[j]. 同济大学,2009。

相关文档
最新文档