储罐设计基础

合集下载

储罐设计基础范文

储罐设计基础范文

储罐设计基础范文储罐设计是指针对液体、气体或粉末等物质进行储存的容器的设计工作。

储罐设计的基础是确保储存物质的安全性、可靠性和经济性。

在进行储罐设计时,需要考虑以下几个方面的内容。

首先,储罐设计需要满足物质的特性和要求。

不同的物质具有不同的特性,例如密度、粘度、腐蚀性等,因此需要根据物质的特性确定储罐的材料、结构和密封方式等。

此外,还需要了解物质的储存要求,包括储存温度、压力、流量等参数,以便确保储罐能够满足物质的储存需求。

其次,储罐设计需要考虑安全性。

在储存液体或气体等危险物质时,安全性是设计的首要考虑因素。

储罐设计需要遵循相关的安全规范和标准,例如国家标准、国际标准和行业标准等。

储罐的结构需要经过强度计算和稳定性分析,以确保在储存物质的过程中不会发生泄漏、爆炸、倾倒等事故。

此外,还需要考虑防火、防爆、防腐蚀等安全措施,例如安装适当的防火设施、防爆器和防腐蚀涂层等。

第三,储罐设计需要考虑环境保护。

储罐设计需要遵循环境法规和标准,以减少对环境的污染和影响。

例如,在储罐的设计过程中,需要考虑对土壤和水源的保护,采取适当的防渗漏措施,确保储存物质不会渗漏到地下水中。

此外,还需要考虑排放控制和废物处理等环境保护方面的问题。

最后,储罐设计需要考虑经济性。

储罐的设计和建造都需要投入大量的资金和资源,因此需要在保证功能和安全性的前提下尽可能降低成本。

储罐的设计需要综合考虑材料、工艺和施工等方面的成本因素,选择经济合理的设计方案。

此外,还需要考虑储罐的使用寿命和维护成本等因素,以确保储存系统的长期可靠运行。

综上所述,储罐设计基础主要包括物质的特性和要求、安全性、环境保护和经济性等方面的考虑。

储罐设计的目标是确保储罐能够满足物质的储存需求,同时保证设计的安全、可靠和经济。

在进行储罐设计时,需要充分考虑各个方面的因素,确保设计的质量和效果。

储罐设计是一项复杂的工作,需要综合考虑多个不同的因素,在实践中不断完善和改进。

储罐及基础基础方案

储罐及基础基础方案

储罐及基础基础方案1. 背景储罐是用于储存液体或气体的设备,广泛应用于石油化工、粮食储存、水处理等领域。

储罐基础是储罐安装的基础工程,对于确保储罐的安全稳定运行至关重要。

本文将介绍储罐及基础的基础方案设计,涵盖基础方案的选址、设计及施工等关键内容。

2. 储罐基础选址储罐基础的选址是储罐工程设计的首要步骤,合理的选址能够最大程度地减少地质灾害和环境污染的风险。

以下是选址时需要考虑的几个因素:2.1 地质条件根据工程地处的地质构造和地下水位等条件,选择地质条件稳定、地基承载力较高的区域作为储罐基础选址的首选。

在选址前,应进行详细的地质勘察工作,掌握地下水位、土层结构和土壤承载力等参数。

2.2 交通条件选址时要考虑到交通条件,确保储罐基础施工和日常维护的顺利进行。

合适的交通条件能够方便原材料和产品的运输,提高生产效率。

2.3 近邻环境在选址时要考虑到储罐基础周边的环境,避免储罐对周边住宅或其他重要建筑物造成安全风险。

应与设计规范和环保要求相一致,确保周边环境受到最小的影响。

3. 储罐基础设计储罐基础设计是储罐工程的核心环节,涉及到基础的结构设计和材料选用等方面。

以下是基础设计的几个关键要点:3.1 基础结构类型根据储罐的类型和规模,选择合适的基础结构类型。

常见的基础结构类型包括浮顶式、固定顶式和圆锥顶式等。

根据具体要求,设计师需合理选择基础结构类型,用以满足储罐的稳定性和安全性需求。

3.2 地基处理地基处理是基础设计过程中重要的一步,可以通过加固或改良地基来提高地基的承载能力。

常见的地基处理方式包括深层加固、土壤固化和地基改良等,根据地质勘察结果,选择适当的地基处理方式,确保储罐基础的稳定性。

3.3 材料选用基础材料的选用对基础的稳定性和耐久性具有重要影响。

常见的基础材料包括钢筋、混凝土和地基加固材料等。

根据设计和工程要求,选择合适的基础材料,保证储罐基础的强度和耐久性。

3.4 防腐处理由于储罐在长期使用过程中常受到腐蚀的影响,基础设计中的防腐处理是必不可少的一环。

谈谈储油罐基础设计及沉降计算

谈谈储油罐基础设计及沉降计算

谈谈储油罐基础设计及沉降计算1、引言随着世界石油工业的迅速增长和能源需求的不断增加,原油和成品油的储备受到了各国的普遍关注,对各类油库储备能力的要求也越来越高,因而使各类储罐的数量剧增,对储油罐基础的安全设计有了更高要求。

本文以春风油田二号联合站建设工程5000立方储油罐(拱顶罐)基础设计为例,简单介绍了钢储罐环墙式基础的设计步骤。

2、钢储罐基础设计2.1储油罐参数油罐为5000m3拱顶罐,罐壁内径23.64m,罐底直径23.8m,高度12.518m,罐体自重(不含罐底板)1700kN,罐底板自重300kN,保温重230kN,运行重量50250kN。

罐的设计温度为95℃,操作温度为93℃。

2.2、地质条件表1 各土层一览表地层编号岩土名称土层厚度(m)压缩模量Es(MPa)内摩擦角(°)黏聚力(kPa)桩的极限侧阻力标准值qsik(kPa)桩的极限端阻力标准值qpk (kPa)地基承载力特征值(kPa)①粉质黏土0.5~3.4 13.47 20.9 19.1 40 300 140①1 粉土0.7~2.6 17.5 22.3 19.1 53 400 140②粉砂 1.2~5.6 8 25 0 46 400 140③粉质黏土最大揭露厚度24.50m 13.02 22 18.5 53 400 140③1 粉砂0.7~7.0 8 25 0 35 600 160③2 粉砂1.2~7.9 10 27 0 50 750 160③3 粉砂0.5~5.6 10 27 0 50 900 180③4 粉砂1.5~1.8 14 30 0 64 1100 180场地土对混凝土结构具有中腐蚀性,对钢筋混凝土结构中的钢筋有强腐蚀性。

场区地下水埋深在8.55~8.94m。

2.3、基础环墙设计规范指出,当地基土不能满足承载力设计值要求,但计算沉降差不超过规范允许值,场地受限制时,采用环墙式基础[1]。

图1 储油罐及罐基础图2 罐基础断面详图(1)环墙厚度根据规范计算环墙厚度[1]:,取0.60m。

低温储存储罐设计基础

低温储存储罐设计基础

低温储存储罐设计基础1.环境条件分析:在设计低温储罐之前,需要对所处的环境条件进行充分的分析。

环境条件包括气温、湿度、地质条件等。

这些因素将直接影响储罐的材料选择、绝缘层设计等。

2.储罐选材:由于低温环境对材料的要求较高,因此在设计储罐时需要选择合适的材料。

一般选择低温下性能良好的材料,如镍合金、不锈钢等。

此外,还需要考虑材料的韧性、耐腐蚀性、耐磨性等。

3.绝缘层设计:为了保持储罐内部的低温状态,需要在储罐外部加装一层绝缘层。

绝缘层的设计应考虑绝缘材料的导热系数、抗压性能以及施工方便性等因素。

4.排气系统设计:在储罐内部,可能会产生一定的气氛压力。

为了保证储罐的安全运行,需要设计合理的排气系统。

排气系统主要包括排气管道和排气装置两部分。

5.安全措施设计:低温储存储罐在设计过程中需要充分考虑安全措施。

包括有限装置、安全阀、紧急排放装置等,以防止罐内压力超过极限值。

6.强度计算:为了保证储罐设计的稳定性和安全性,需要进行强度计算。

强度计算主要包括内压强度计算、外力荷载计算和自重计算等。

7.储罐附属设备的设计:低温储存储罐通常还需要附属设备,如搅拌设备、冷却装置、加热装置等。

这些附属设备的设计需要根据具体的工艺需求进行,并与储罐的设计相衔接。

除了以上的基础设计要素外,设计低温储存储罐还需要充分考虑运行、施工和维护等方面的要求。

设计师需要考虑设备操作的便利性、施工的可行性以及设备的易维护性等。

总之,低温储存储罐的设计基础包括环境条件分析、储罐选材、绝缘层设计、排气系统设计、安全措施设计、强度计算、附属设备的设计等。

这些设计基础的合理应用能够确保储罐设计的稳定性、安全性和可靠性。

储罐基础工程施工设计方案

储罐基础工程施工设计方案

储罐基础工程施工设计方案一、引言储罐基础工程是储罐工程中至关重要的一部分,其施工质量直接关系到储罐的安全稳定运行。

在进行储罐基础工程的施工设计时,需要充分考虑地质环境、地下水位、荷载等因素,合理选取基础类型和设计参数,确保施工质量和安全性。

本文将对储罐基础工程的施工设计方案进行详细介绍。

二、工程概况本次基础工程设计项目为一座直腻子储罐基础工程,储罐直径为10m,高度为15m,设计使用寿命为30年,设计抗震烈度为6度。

基础选取钢筋混凝土圆形浅基础,设计承载力为1000kN。

1.地质勘察:在进行基础工程前,必须进行详细的地质勘察,了解地质情况、地下水位、土质特性等数据,为后续工程提供准确的数据支持。

2.基础选型:在进行基础设计时,应根据地质环境和荷载情况,选择适当的基础类型。

本项目选取钢筋混凝土圆形浅基础,具有承载力大、稳定性好等优点。

3.基础设计参数:根据设计荷载和地质条件,确定基础设计参数,包括基础直径、深度、钢筋配筋等内容。

本项目的设计承载力为1000kN,基础直径为12m,采用Φ12钢筋配筋。

4.施工工艺:在进行基础工程施工时,应采用符合规范和工艺要求的施工工艺,包括挖土、浇筑、浇灌等环节。

应注意控制施工过程中的温度、湿度等因素,确保混凝土的质量。

5.质量控制:在进行基础工程的施工过程中,应加强质量控制,及时发现并解决施工中的质量问题,确保施工质量和安全性。

6.安全防护:在进行基础工程施工时,应加强对施工现场的安全管理,配备足够的安全防护设备,确保施工人员的安全。

同时,应注意防水、防裂等工程质量问题,提高储罐基础的使用寿命。

四、结论储罐基础工程施工设计方案是储罐工程施工中的重要环节,其施工质量直接关系到储罐的安全稳定运行。

本文对储罐基础工程的施工设计方案进行了详细介绍,包括地质勘察、基础选型、基础设计参数、施工工艺、质量控制和安全防护等内容,为相关工程人员提供了参考。

希望本文对大家有所帮助,谢谢!。

储罐基础精选全文完整版

储罐基础精选全文完整版

可编辑修改精选全文完整版储罐基础1概述储罐基础一般为环形钢筋混凝土墙内填砂,表面覆盖沥青砂浆的结构型式,仅当地基不能满足设计要求时需要进行地基处理时,才增加复合地基或混凝土承台。

2施工程序3施工技术措施3、1土石方工程土石方工程一般采用机械开挖、人工清槽的方式施工,遇岩石时采用爆破方法开挖。

为了模板支撑加固方便和防止地基受水浸泡,环形混凝土墙基础的土方,先开挖环墙部分的土方,内部的土方待环墙混凝土施工完成后再开挖,环墙土方开挖完成合格,即可施工混凝土垫层。

3、2模板工程环形基础的内模板采用定型组合钢模板,回形销连接;外模应采用敷塑胶合板光面模板,按清水混凝土施工。

钢管分段煨成与内外模板直径相适应的弧度后,现场连接加固模板,并与基槽土壁支撑牢固。

为了钢筋绑扎易于控制形状和半径,应在钢筋绑扎前将内模安装好,待钢筋绑扎完成后支设外模。

为控制外模不漏浆,在连接钢管加固模板之前,应在周圈用两道钢筋紧固外模,钢筋由3~5吨倒练拉紧后焊接。

对小型基础的外模也可仅由此两道钢筋加固。

对带有底部承台的储罐基础,承台的外模板按上述外模加固方式即可,但模板可采用定型钢模板,上部模板支设与上述环墙相同,仅在浇筑底板混凝土时,在主筋的内外侧各100mm的位置,预埋上φ18的钢筋头,间距为500左右,用于上部支模时固定模板的根部。

4混凝土工程4.1底部承台的混凝土量一般较大,施工前应根据当地材料供应及气候情况进行温度验算,当内外温差超过25℃时,应按大体积混凝土的施工要求进行施工控制。

4.2混凝土由搅拌站集中搅拌,混凝土输送罐车输送,混凝土泵车浇筑。

承台应采用全面分层施工法;环墙应至少从对称的两点开始并均匀浇筑混凝土,防止因不对称浇筑导致模板整体变形或移位,混凝土可采用全面分层或分段分层施工法。

按混凝土浇筑、振捣要求组织混凝土浇筑,要确保混凝土浇筑连续进行不能形成施工缝。

混凝土浇筑完成后,应及时养护、拆模和回填外部土方。

5、回填土或回填砂。

储罐设计概述(基础课件)

储罐设计概述(基础课件)

顶部设计
储罐的顶部设计应考虑防雨、防 腐和防爆等要求。
保温设计
对于需要保持温度的储罐,必须 进行合适的保温设计。
常见的储罐设计问题和挑战
容量计算
如何准确计算和确定储罐的容量是一个重要问题。
材料选择
选择合适的材料以满足储存液体的特殊要求是一 个挑战。
安全设计
如何确保储罐在事故发储罐设计的重要性,它在许多工业领域发挥着至关重要的作用。有效的储罐 设计可以确保储存液体和气体的安全性和有效性。
储罐的分类和用途
按照材料分类
常见的储罐材料包括钢制、混凝土和塑料等。不同材料适用于不同的液体和气体。
按照用途分类
储罐可以用于储存石油、化学品、液化气体等各种物质。不同的用途需要不同类型的储罐。
按照结构形式分类
常见的储罐结构包括立式储罐、卧式储罐和球形储罐等。每种结构形式都有其独特的优势和 应用场景。
储罐设计的基本原则
1 安全性
储罐设计应考虑防火、防 爆和泄漏等安全问题,确 保储存物的安全性。
2 可持续性
储罐设计应注重资源利用 的可持续性,减少浪费和 环境影响。
3 经济性
储罐设计应在满足安全和 功能需求的前提下,尽可 能降低成本。
环境影响
储罐的建设和运行可能对环境产生一定的影响。
储罐设计的未来发展趋势
• 智能化设计和管理 • 绿色和可持续性发展 • 模拟和仿真技术的应用 • 新材料和新工艺的使用
储罐设计流程概述
1
需求分析
根据储存物的性质和用途,确定储罐的技术参数和要求。
2
技术设计
进行储罐结构、材料和附属设施等方面的详细设计。
3
施工和安装
按照设计要求进行储罐的施工和安装。

储罐设计基础

储罐设计基础
• 浮顶的形式有双盘式、单盘式、浮子式等。浮顶罐的使用 范围在一般情况下.原油、汽油、溶剂油以及需控制蒸发损 耗及大气污染,控制放出不良气体,有着火危险的液体化 学品都可采用浮顶罐。浮顶罐按需要可采用二次密封。
图1-4 双盘式浮顶罐
图1-5单盘式浮顶罐
图1-6 内浮顶罐
1.2.6内浮顶罐特点 • 美国石油学会认为:设计完善的内浮顶是迄今为控制固定顶
1955年美国也开始建造此种类型的储罐。
1962年美国德士古公司就开始使用覆盖浮顶罐,并在纽 瓦克建有世界上最大直径为187ft(61.6m)的带盖浮顶 罐。
1972年美国已建造了600多个内浮顶油罐。
1978年美国API650附录H对内浮盘的分类、选材、设计、 安装、检验及标准载荷、浮力要求等均做了一系列修 订和改进。先进国家都有较齐全的储罐设计专用软件, 静态分析、动态分析、抗震分析等,如T形脚焊缝波带 分析。近20年也相继出现各种形式和结构的内浮盘或 覆盖物。
• 3.环境污染,危及人的生活质量和生存
大多数的油库、油码头、石油与化工联合装置和加油站分 布在人口稠密的城市或周边地区,散发到大气中的油气含 有苯和有机活性化合物,苯对人有致癌作用,而有机活性 化合物与氮氧化物在紫外线的作用下会发生一系列的光化 学反应,生成臭氧、一氧乙酞硝酸醋、醛类、酮类和有机 酸类等二次污染物;大气中的SO2还会生成硫酸盐气溶胶, 这种一次和二次污染物的混合物称为光化学烟雾。这种烟 雾强烈刺激人的眼睛、喉咙导致头痛以及使呼吸道患者病 情恶化,严重时甚至造成死亡。因此寻找降低油品和液体 化学品损耗 的措施,是十分重要的课题。
新问题:(储罐大型化产生的):
(1)罐板壁材料的要求提高了.因储罐大型化后,同时也对 焊接质量提出更严格要求;相应增加储罐壁厚度,提高对 钢材强度和韧性的要求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
1978年国内3000m3铝浮盘投人使用,通过测试蒸发损耗,收 到显著效果。 1985年中国从日本引进第一台10×104m3 全部执行日本标准JISB8501 同时引进原材料,零部件 及焊接设备. 目前国内对10×104m3油罐有比较成熟的设计、施工和使 用 的经验,国产 大型储罐用高强度刚材已能够批量生产。 15×104m3目前国内正在建设。 储罐的发展趋势---大型化
损耗类型与损耗量
• 石油类或液体化学品储液的损耗可分为蒸发损耗和残漏损 耗两种类型。蒸发损耗和残漏损耗分别是指储液在生产、 储存、运输、销售中由于受到工艺技术及设备的限制,有 一部分较轻的液态组分气化而造成的在数量上不可回收的 损失和在作业未能避免的滴洒、渗漏、储罐(容器)内壁的 乳黏附、车、船底部余液未能卸净等而造成的数量损失, 储液(油品)的残漏损耗不发生形态变化。 • 文献和调查资料表明,储液损失,特别是油品损耗数量是 十分惊人的。1980年,中国11个主要油田的测试结果表明, 从井口开始到井场原油库,井场油品损耗量约占采油量的 2%,其中发生于井场库的蒸发损耗约占总损耗的32%。据 1995年第四届国际石油会议报道,在美国油品从井场经炼 制加工到成品销售的全过程中,品损耗数量约占原油产量 的3%。若以总损耗为3%估算,全世界每年的油品损耗约有 1X108t,几乎相当于中国一年的原油产量。
立式圆筒形储罐按其罐顶结构可分为 锥顶储罐 固定顶储罐: 拱顶储罐 伞形顶储罐 网壳顶储罐(球面网壳) 浮顶储罐(外浮顶罐) 浮顶储罐: 浮储罐(带盖浮顶)
1.2.1锥顶储罐 • 图1-1 自支撑锥顶罐简图 • 锥顶储罐又可分为自支撑锥顶和支撑锥顶两种。 • 锥顶坡度最小为1/16,最大为3/4,锥形罐顶是一种形状 接近于正圆锥体表面的罐顶。 • 自支撑锥顶其锥顶荷载靠锥顶板周边支撑于罐壁上,自支 撑锥顶又分为无加强肋锥顶和加强肋锥顶两种结构.储罐 容量一般小于1000m3。支承式锥顶其锥顶荷载主要布梁或 镶条(架) 及柱来承担。 • 柱子可采用钢管或型钢制造。采用钢管制造时,可制成封 闭式,也可设臵放空孔和排气孔。柱子下端应插人导座内, 柱子与导座不得相焊,导座应焊在罐底板上。其储罐容量 可大于1000m3以上。 • 锥顶罐制造简单,但耗钢量较多,顶部气体空间最小.可 减少“小呼吸”损耗。自支撑。锥顶还不受地基条件限制。 支撑式锥顶不适用于有不均匀沉陷的地基或地荷载较大的 地区。除容量很小的罐( 200m3以下)外,锥顶罐在国内很 少采用,在国外特别是地震很少发生的地区,如新加坡、 英国、意大利等用得较多。
图1-2 自支撑拱顶罐简图
1.2.3伞形顶储罐 自支撑伞形顶是自支撑拱顶的变种,其任何水平截面都具 有规则的多边形。罐顶荷载靠伞形板支撑于罐壁上,伞形 罐顶的强度接近于拱形顶,但安装较容易,因为伞形板仅 在一个方向弯曲。伞形罐顶在美国API650和日本JIS B 8501 油罐规范中被列为罐顶的一种结构形式。但在国内很少采 用。
储液损耗的原因 • 油品与液体化学品损耗两种类型中,蒸发是储液损耗的主 要原因。为此在这里主要阐述储罐蒸发损耗的各种原因。 • 任何储液的蒸发损耗都是在储罐内部传质过程中发生的。 这种传质过程包括发生在气、液接触面的相际传质,即储 液的蒸发(液体表面的汽化过程)。发生在储罐内气相空间 蒸气分子的扩散.上述过程的进行,使储罐内气相空间原 有的空气变为趋于均匀分布的储液蒸气和空气的混合气体. 当外界条件变化引起混合气体状态参数改变时,混合气体 从储罐排入大气,就造成了储液的蒸发损耗。 • 引起蒸发的内部因素是储液本身的固有性质。对油类来说 是多种碳氢化合物的馏分组成,馏分组成越轻,沸点越低, 蒸气压越大,蒸发损耗越大。因此在储罐内溶剂汽油、航 空汽油、车用汽油和原油,容易 造成蒸发损耗,而煤油、 燃料油的蒸发损耗稍小,润滑油的蒸发损失更小。对液体 化学品来说其组成较单一纯度较高,其蒸发损耗主要取决 于沸点、蒸汽压的大小,沸点越低、蒸气压越大就越容易 蒸发。因此在储罐内的醚类、醇类容易蒸发,苯类、酚类 稍小,酸类和碱类更小。
图1-1 自支撑锥顶罐简图
1.2.2拱顶储罐 • 拱顶储罐的罐顶是一种接近于球形形状的一部分, 其结构 一般只有自支撑拱顶一种。 • 自支撑拱顶又可分为无加强肋拱顶(容量小于1000m3 )、有 加强肋拱顶(容量大于1000~20000m3 )。 • 有加强肋拱顶由4~6mm薄钢板和加强肋(通常用扁钢构 成),以及由拱形架(用型钢组成)和薄钢板构成拱顶。拱顶 R=0.8~1.2D,它可承受较高的剩余压力,蒸发损耗较少, 它与锥顶罐相比耗钢量少但罐顶气体空间较大,制作需用 胎具,是国内外广泛采用的一种储罐。
荷载主要由梁 檀条或 桁架和柱子承 担
VN≥1000m3 不适用地基有不均匀沉降, 坡度较自支撑式小,顶部气体空 耗钢量较自支撑多 间最小,可减少“小呼吸”损耗 气体空间较锥顶大,制造 需胎具,单台成本高,分 有加强肋和无加强肋两种 拱顶板
拱顶罐 (一般 只有自 支撑式 ) 伞形顶 罐 (一般 只有自 支撑式 ) 网壳顶 罐
• 3.环境污染,危及人的生活质量和生存 大多数的油库、油码头、石油与化工联合装臵和加油站 分布在人口稠密的城市或周边地区,散发到大气中的油气 含有苯和有机活性化合物,苯对人有致癌作用,而有机活 性化合物与氮氧化物在紫外线的作用下会发生一系列的光 化学反应,生成臭氧、一氧乙酞硝酸醋、醛类、酮类和有 机酸类等二次污染物;大气中的SO2还会生成硫酸盐气溶 胶,这种一次和二次污染物的混合物称为光化学烟雾。这 种烟雾强烈刺激人的眼睛、喉咙导致头痛以及使呼吸道患 者病情恶化,严重时甚至造成死亡。因此寻找降低油品和 液体化学品损耗 的措施,是十分重要的课题。
第1章. 储罐设计概述
主要内容 ● 储罐及发展概况 ● 影响储罐工艺系统和储罐建造的因素 ● 储罐的种类及特点 ● 储罐材料及选用 ● 储罐设计方法与基本要求
•教学重点: 储罐种类、特点及应用情况, 储罐设计的常用规范; 储罐的大型发展趋势及技术难题 储罐材料及的常用规范 •教学难点: 无
1.1储罐及发展概况
荷载靠拱顶周 边支撑于罐壁
受力情况好,结构简单,刚性好 能承受较高的剩余压力,耗钢量 最小
荷载靠伞形板 周边支撑于罐 壁上
系美国API650和日本JIS 强度接近于拱顶,安装较拱顶容 B8501规范中的一种罐顶结 易 构形式,但国内很少采用
荷载靠网格结 构支撑于罐壁 上
刚性好,受力好,可用于 VN>2×104m3以上的固定顶储罐
1.1.2储罐大型化特点 优点: (1)总图布臵的占地面积小 (2)节省罐区(包括管网和配件)的总投资 (3)节省钢材和基地工程材料 (4)便于储运和管理 理论上存在一种建设费用合理的尺寸组合,罐的高度由 于地耐力或基础的造价不可能有太大变化(日本24m为 限),主要是增加直径。 新问题:(储罐大型化产生的): (1)罐板壁材料的要求提高了.因储罐大型化后,同时 也对焊接质量提出更严格要求;相应增加储罐壁厚度,提 高对钢材强度和韧性的要求。 (2)事故危害性增大.随着容量的增大对消防措施要求高.
可制造成部件,在现场组 装成整体结构
1.2.7储液损耗 研究石油类或液体化学品储运系统储液的损耗日益受到 人们的重视。损耗不但使资源浪费,降低了储液的质量, 造成经济损失,而且严重污染环境,危害人们的生活质量 和生存,因此作为储运系统重要组成部分的储罐技术发展 的标志之一,就是有效径制和尽量减少储液的很耗。
1.2储罐种类和特点
储罐按几何形状可分为 • 圆筒形储罐 • 卧式圆筒形储罐 适用于储存容量较小且需压力较高的液 体。 • 球形储罐 适用于储存容量较大有一定压力的液体 如液氨、液化石油气、乙烯等。 • 双曲线储罐(滴形储罐) 自出现后由于结构复杂,施工困 难,造价高,国内没建造过,国 外也很少采用,实际上 己被淘汰 • 悬链式储罐:在国内又称为无力矩储罐,这种国内在20世 纪50--60年代曾建造过.但由于顶板过薄易积水,锈蚀遭 损坏,目前已被淘汰
按制造储罐的材料,又可分为: 非金属储罐 塑料防震储罐 软体储罐 金属储罐(钢壳衬里、铝及其合金等)
按储罐所在位臵和达到某种目的又可分为: 地上储罐 地上储罐 半地下储罐 山洞储罐 海中储罐地下废坑道 废矿穴改建地下的储库等。

20 世纪 70 年代以来,内浮顶储油罐和大型浮顶油罐发展 较快。 第一个发展油罐内部覆盖层的是法国。 1955年美国也开始建造此种类型的储罐。 1962 年美国德士古公司就开始使用覆盖浮顶罐,并在纽 瓦克建有世界上最大直径为 187ft(61.6m) 的带盖浮顶 罐。 1972年美国已建造了600多个内浮顶油罐。 1978年美国API650附录H对内浮盘的分类、选材、设计、 安装、检验及标准载荷、浮力要求等均做了一系列修 订和改进。先进国家都有较齐全的储罐设计专用软件, 静态分析、动态分析、抗震分析等,如T形脚焊缝波带 分析。近 20 年也相继出现各种形式和结构的内浮盘或 覆盖物。 目前已有16×104m3 20×104m3 24×104m3
图1-4 双盘式浮顶罐
图1-5单盘式浮顶罐
图1-6 内浮顶罐
1.2.6内浮顶罐特点 • 美国石油学会认为:设计完善的内浮顶是迄今为控制固定顶 油罐蒸发损耗研究出来的和投资最少的方法。 • 大量减少蒸发损耗。 • 由于液面上有浮动顶覆盖,储液与空气隔离,减少空气污 染和着火爆炸危险,易于保证储液质量。特别适用于储存 高级汽油和喷气燃料以及有毒易污染的化学品。 • 易于将已建固定顶罐改造为内浮顶罐,并取消呼吸阀、阻 火器等附件,投资少、经济效益明显。 • 因有固定顶,能有效地防止风砂、雨雪或灰尘污染储液, 在各种气候条件下保证储液的质量,有“全天候储罐”之 称。 • 在密封效果相同情况下,与浮顶罐相比,能进一步降低蒸 发损耗,这是由于固定顶盖的遮挡以及固定顶与内浮盘之 间的气相层甚至比双盘式浮顶具有更为显著的隔热效果。 • 内浮顶罐的内浮盘与浮顶罐上部敞开的浮盘不同,不可能 有雨、雪荷载,内浮盘上荷载少、结构简单、轻便,可以 省去浮盘上的中央排水管、转动浮梯等附件,易于施工和 维护。密封部分的材料可以避免日光照射而老化。
相关文档
最新文档