Gold序列产生及其特性实验

合集下载

Gold系列码性能分析

Gold系列码性能分析

在扩频 系统 中 , 号频 谱 的扩 展通 过 扩 频码 实 信 现. 扩频系统 的性 能同扩频 码 的性 能有很 大关 系. 在 实 际工程 中 , 用伪 随机 或伪 噪声 ( N) P 序列 作 为扩频 码. 由于 m序列 , o G l 在 扩频 码 中有 着 特 别重 要 d码
的地位 , 以下主要对其 产生 和性质 进行 讨论 .
Ab t a t Th s qu n e a l e e c r h s l l s d c d si p e d s cr m o sr c : e m—e e c nd Go d s qu n e ae t e mo twidy u e o e n s r a pe tu c mmunc — ia to y tms n t e t e i ,t e re fg n r t g t m n te h r c e r t d e .An h n i h n io — in s se .I h h ss h o i s o e e ai he a d o rc a a tr a e su i d n h d t e n te e vr n me to y tm e ,we ty t i l t he p o e s o e e a ig Go d s qu n e a d a ay e is c a a tro h n fS se Viw r o smu ae t r c s fg n r t l e e c n n l s t h r c e ft e n a t —o r lt n.T e c mp rs n hoo g l b t e e God o e a h m e u n e r d . Th e u t u o c re ai o h o a io t r u h y ewe n t l c d s nd t e h s q e c a e ma e e rsl s e a l e e c o e sftfrCDMA o t st tG d s qu n e c d si o at h o i c mmu ia in s se sa d e sc de ,be a s e c a a tro n c to y tmsa d r s o s c u e t h r ce f h

GOLD 序列码产生及特性分析实验

GOLD 序列码产生及特性分析实验

实验二 GOLD 序列码产生及特性分析实验一、实验目的1. 了解Gold 码的性质和特点;2. 熟悉Gold 码的产生方法;二、实验内容1. 熟悉Gold 码的的产生方法;2. 测试Gold 码的的波形;三、实验原理m 序列虽然性能优良,但同样长度的m 序列个数不多,且m 序列之间的互相关函数值并不理想(为多值函数)。

1967年,R .Gold 提出和讨论了一种新的序列,即Gold 码序列。

这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。

a) m 序列优选对m 序列优选对是指在m 序列集中,其互相关函数最大值的绝对值满足下式的两条n 阶m 序列:表2-1给出了部分m 序列优选对。

表2-1 部分优选对码表 级数 基准本原多项式 配对本原多项式 7 211 217,235,277,325,203,357,301,323 9 1021 1131,133310 2415 2011,3515,317711 4445 4005,5205,5337,52632.Gold 码的产生方法Gold 码是m 序列的组合码,由同步时钟控制的两个码字不同的m 序列优选对逐位模2加得到,其原理如图2-1所示。

这两个码发生器的周期相同,速率也相同,因而两者保持一整除为偶数,但不能被位奇数41212)(2/)2(2/)1(n n R n n xy ⎩⎨⎧++≤++τ定的相位关系,这样产生的组合码与这两个子码序列的周期也相同。

当改变两个m 序列的相对位移时,会得到一个新的Gold 码。

Gold 码虽然是m 序列模2加得到的,但它已不再是m 序列,不过仍具有与m 序列近似的优良特性,各个码组之间的互相关特性与原来两个m 序列之间的互相关特性一样,最大的互相关值不会超过原来两个m 序列间最大互相关值。

Gold 码最大的优点是具有比m 序列多得多的独立码组。

图2-1 Gold 码序列发生器Gold 码序列具有以下性质:(1)两个m 序列优选对经不同移位相加产生的新序列都是Gold 序列,两个n 级移位寄存器可以产生2n +1个Gold 序列,周期均为2n -1。

GOLD码产生与特性分析实验

GOLD码产生与特性分析实验

实验八GOLD码特性实验一、实验目的1、掌握GOLD码的编解码原理。

2、掌握GOLD码的软件仿真方法。

3、掌握GOLD码的硬件仿真方法。

4、掌握GOLD码的硬件设计方法。

二、预习要求1、掌握GOLD码的编解码原理和方法。

2、熟悉matlab的应用和仿真方法。

3、熟悉Quatus的应用和FPGA的开发方法。

三、实验原理1、GOLD序列简介GOLD序列是由m序列的“优选对”构成的。

所谓优选对是指m序列中互相关值为[-1,-t(n),t(n)-2]的一对序列。

其中下表为部分m序列的部分优选对表1 部分m序列的部分优选对n基序序列配对序列3131554575,67,766103147,1337211217,235,277,203,301910211131,1461,1423,1167,1333,1365,1533 1020112415,2157,3515,34711140054445,4215,6015,4143,4053,7335,5747,5575,4161上表中的m序列采用8进制(可参见PN码实验)。

2、GOLD序列由m序列中的优选对{xi}和{yi}本身加上它们的相对移位模二相加构成的2n-1个序列组成,序列总数为2n+1。

任一队序列之间的互相关函数都是三值的,即即,GOLD序列的最大互相关值为下表为GOLD序列的t(n)值及其与自相关峰值Rs(0)的比值,同时给出GOLD序列族中的序列数。

表为部分GOLD序列的t(n)值、Rs(0)、序列数表级数n356791011序列长7316312751110232047序列数9336512951310252049t(n)591717336565t(n)/Rs(0)0.710.290.270.130.060.060.03四、GOLD的产生及特性分析1、建立GOLD的仿真文件(GOLD.MDL)GOLD1…GOLD7的Sample Time均设置为SampleTime;Preferred polynomial(1)设置为[1 0 1 1];Initial states(1)设置为[0 0 1]; Preferred polynomial(2)设置为[1 1 0 1];Initial states(2)设置为[0 01]。

gold序列的生成与相关特性仿真

gold序列的生成与相关特性仿真

gold序列的⽣成与相关特性仿真Gold序列⽣成与相关性仿真1.1 references[1] 基于Matlab的Gold码序列的仿真与实现.[2] Code Selection for CDMA Systems.1.2 m序列的⽣成原理1.2.1⽣成本原多项式利⽤Matlab编程环境求解本原多项式,其运⾏结果如表1所⽰.选择n=7,采⽤7级移位寄存器,产⽣的序列周期是127,其程序如下所⽰.N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');表(1)n=7 本原多项式上⾯的多项式中,仅有9个是独⽴的.因为第⼀⾏和第⼗⾏,第⼆⾏和四⾏,第三⾏和第⼗六⾏,第五⾏和第⼋⾏,第六⾏和第⼗四⾏,第七⾏和第⼗三⾏,第九⾏和第⼗⼋⾏,第⼗⼀⾏和第⼗⼆⾏,第⼗五⾏和第⼗七⾏是两两对称的.⽤⼋进制数表⽰时,所选择的本原多项式为211、217、235、367、277、325、203、313和345共9条.在这9条本原多项式中,选择⼀个基准本原多项式,再按要求选择另⼀本原多项式与之配对,构成m序列优选对,对7级m序列优选对如下表:表(2)n=7 m序列所以优选对1.2.2构成移位寄存器根据产⽣Gold码序列的⽅法,从上述本原多项式中选择⼀对m序列优选对,以211作为基准本原多项式,217作为配对本原多项式,通过并联结构形式来产⽣Gold序列,⽣成gold 序列的结构如图(6)所⽰:图(6)Gold序列⽣成结构1.3 ⾃相关函数仿真参数及初始值设定如下:N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');f1=connections(4,:); %取⼀组本原多项式序列,211f2=connections(16,:); %取另⼀组本原多项式序列,217registers1=[1 0 0 0 0 0 0];%给定寄存器的初始状态registers2=[1 0 0 0 0 0 0];%取相同的初始状态⽣成的gold 序列⾃相关函数如图(7)、(8)所⽰图(7) Gold 序列周期⾃相关函数结论:⾃相关函数取值集合{127,15,-1,-17}图(8)Gold 序列⾮周期⾃相关函数020406080100120140gold 序列周期⾃相关函数020406080100120140-40-2020406080100120140gold 序列⾮周期⾃相关函数1.4 互相关函数仿真时改变m序列寄存器初始状态,从⽽⽣成两个gold序列,求得互相关函数如图(9)(10)所⽰。

Gold序列产生及特性分析实验

Gold序列产生及特性分析实验
打开移动实验箱电源,等待实验箱初始化完成。先按下“菜单”键,再按下数字键“1”,选择“一、伪随机序列”再按下数字键“2”选择“1Gold序列的产生”,则产生一个级数为31的Gold序列。
2、在测试点TP201测试输出的时钟,在测试点TP202、TP203、TP204测试用于产生Gold序列的周期为31的m序列优选对。
实验二、Gold序列产生及特性分析实验
1、实验目的
1、了解Gold序列的性质和特点。
2、熟悉Gold序列的产生方法。
2、实验内容
1、熟悉Gold序列的产生方法。
2、测试Gold序列的波形。
3、实验原理
m序列虽然性能优良,但同样长度的m序列个数不多,且m序列之间的互相关函数并不理想(为多值函数)。1967年,R.Gold提出和讨论了一种新的序列,即Gold序列。这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。
TP202测试点输出的m序列为:1 1 0 0 1 1 0 1 1 0 1 1.......
TP203测试点输出的m序列为:1 0 1 0 0 0 1 1 0 1 1 1.......
经验证符合实验结果。
1.m序列优选对
m序列优选对是指在m序列集中,其互相关函数最大值的绝对值满足下式的两条n介m序列:
2.Gold序列的产生方法
Gold序列是m序列的组合序列,由同步时钟控制的两个码元不同的m序列优选对逐位模2加得到。这两个序列发生器的周期相同,速率相同,因而两者保持一定的相位关系,这样产生的组合序列与这两个自序列的周期也相同。当改变两个序列的相对位移,会得到一个新的Gold序列。Gold序列具有以下性质:
(1)两个m序列优选对经不同移位相加产生的新序列都是Gold序列,两个n级移位寄存器可以产生 个Gold序列,周期均为 。

m 序列与gold 序列性能分析比较 包含程序

m 序列与gold 序列性能分析比较 包含程序

m序列与gold序列性能分析比较赵新宁北京邮电大学信息工程学院,北京(100876)E-mail:zhaoxinning106@摘要:在扩频系统中,伪随机序列具有十分重要的作用。

m序列和gold序列作为最常用和实用的伪随机序列,各有其特点。

本文分析其基本原理和产生方式,并特别对其性能方面做了仿真比较。

关键词:扩频;m序列;gold序列中图分类号:TN91在扩频通信系统中,伪随机序列是关键技术之一。

伪随机序列码的码型影响码序列的相关特性,序列长度决定了扩展频谱的宽度。

因此,在扩频系统中,对于伪随机序列有如下的要求:首先,伪随机序列的长度(即伪码比特率)应该足够长,能够满足扩展带宽的需要;第二,伪随机序列要具有尖锐的自相关特性(用作地址码),和良好的互相关特性;第三,伪随机序列要有足够多的数量,以满足码分多址的需求;第四,应具有近似噪声的频谱特性,即近似连续谱,且均匀分布;工程上易于实现。

通常,作为扩频通信系统工程实现上的伪随机序列一般是m序列和gold序列。

目前,在cdma2000系统中采用伪随机序列中的m序列(长码)来区分用户,wcdma系统中则用gold码来区分用户。

1.m序列的原理和产生在所有的伪随机序列中,m序列是最重要、最基本的一种伪随机序列。

而另外的多种伪随机序列都是由它引出并且产生的。

m序列是一种周期性的伪随机序列,又被称作最长线性移位寄存器序列;是由带线性反馈的移位寄存器产生的周期最长的序列[1]。

其周期为2n-1(n 为移位寄存器级数)。

m序列具有与随机噪声类似的尖锐的自相关特性,但它不是真正随机的,而是按照一定的规律周期性的变化。

这种特性使得m序列适合于工程应用。

m序列最大长度决定于移位寄存器的级数,而序列构成则决定于反馈系数的不同设置。

并非所有的反馈系数的设置都可以产生对应长度的m序列。

m序列具有平衡性和其游程特性,即一个序列周期中,“1”的数目与“0”的数目最多相差一个;同时,长度为n的元素游程出现的次数比长度为n+1的游程出现的次数多一倍。

m序列和Gold序列特性研究要点上课讲义

m序列和Gold序列特性研究要点上课讲义

m序列和G o l d序列特性研究要点Harbin Institute of Technology扩频通信实验报告课程名称:扩频通信实验题目:Gold码特性研究院系:电信学院班级:通信一班姓名:学号:指导教师:迟永钢时间: 2012年5月8日哈尔滨工业大学第1章实验要求1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程;2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式;3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画出它们的自相关和互相关函数图形;4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性;5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其分布关系。

6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一,且在作业后面附上源程序,并加必要注释。

7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理2.1 m 序列二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。

m 序列易于产生于复制,在扩频技术中得到了广泛应用。

2.1.1 m 序列的定义r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。

r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示2012() {0,1}r r i f x c c x c x c x c =++++∈L (1)图 2-1 r 级线性移位寄存器式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。

因此成为线性移位寄存器。

否则称为,非线性移位寄存器。

对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈L (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。

移动通信实验序列产生极其特性

移动通信实验序列产生极其特性

1、 m 序列产生及特性分析实验一、实验目的1、了解m 序列的特性及产生。

二、实验模块1、 主控单元模块2、 14号 CDMA 扩频模块3、 示波器三、实验原理1、14号模块的框图14号模块框图2、14号模块框图说明(m 序列)该模块提供了四路速率为512K 的m 序列,测试点分别为PN1、PN2、PN3、PN4。

其中,PN2和PN4分别由PN 序列选择开关S2、S3控制;不同的开关码值,可以设置m 序列码元的不同偏移量。

开关S6是PN 序列长度设置开关,可选127位或128位,其中127位是PN 序列原始码长,128位是在原始码元的连6个0之后增加一个0得到。

Gold 序列测试点为G1和G2,其中G1由PN1和PN2合成,G2由PN3和PN4合成。

拨码开关S1和S4是分别设置W1和W2产生不同的Walsh 序列。

实验中还可以观察不同m 序列(或Gold 序列)和Walsh127位128位序列的合成波形。

注意,每次设置拨码开关后,必须按复位键S7。

3、实验原理框图m 序列相关性实验框图为方便序列特性观察,本实验中将Walsh 序列码型设置开关S1和S4固定设置为某一种。

4、实验框图说明 m 序列的自相关函数为()R A D τ=-式中,A 为对应位码元相同的数目;D 为对应位码元不同的数目。

自相关系数为()A D A DP A Dρτ--==+ 对于m 序列,其码长为P=2n -1, 在这里P 也等于码序列中的码元数,即“0”和“1”个数的总和。

其中“0”的个数因为去掉移位寄存器的全“0”状态,所以A 值为121n A -=-“1”的个数(即不同位)D 为12n D -=m 序列的自相关系数为1 0()1 0,1,2,p τρτττ=⎧⎪=⎨-≠=⎪⎩…,p-1cT τm 序列的自相关函数四、实验步骤及实验现象记录(注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南科技大学
移动通信实验报告
姓名:吴文建
学号:1208030104
专业班级:应用电子技术教育一班
实验名称:GOLD序列产生及其特性实验
实验目的:1)掌握Gold序列的特性、产生方法及应用。

2) 掌握Gold序列与m序列的区别。

实验仪器:1、pc机一台2、
实验原理:
m序列虽然性能优良,但同样长度的m序列个数不多,且m序列之间的互相关函数并不理想(为多值函数)。

1.m序列优选对
m序列优选对是指在m序列集中,其互相关函数最大值的绝对值满足下式的两条n介m序列:
2.Gold序列的产生方法
Gold序列是m序列的组合序列,由同步时钟控制的两个码元不同的m序列优选对逐位模2加得到。

这两个序列发生器的周期相同,速率相同,因而两者保持一定的相位关系,这样产生的组合序列与这两个自序列的周期也相同。

当改变两个序列的相对位移,会得到一个新的Gold序列。

Gold序列具有以下性质:
(1)两个m序列优选对经不同移位相加产生的新序列都是Gold序列,两个n级移位寄存器可以产生2n+1个Gold序列,周期均为2n−1。

(2)Gold序列的周期性自相关函数是一个三值函数,与m序列相比,具有良好的互相关特性。

Gold序列的产生有两种形式:并联形式和串联形式
实验步骤:
1.预习Gold序列的产生原理及性质及独立设计Glod序列产生方法。

2.画出Gold序列仿真流程图。

3.编写MATLAB程序并上机调试。

4.比较m序列与Glod序列的异同。

5.撰写实验报告。

实验数据、结果表达及误差分析:
实验仿真图形如图所示
实验编写程序(此程序在实验五编写程序之上方可运行):function c=gold()
n=7;
a=[1 1 1 1 1 1 1 1];
co=[];
for v=1:2^n-1
co=[co,a(1)];
a(8)=mod(a(5)+a(1),2);
a(1)=a(2);
a(2)=a(3);
a(3)=a(4);
a(4)=a(5);
a(5)=a(6);
a(6)=a(7);
a(7)=a(8);
end
m1=co;
b=[1 0 1 0 0 0 0 1];
co=[];
for v=1:2^n-1
co=[co,b(1)];
m=mod(b(5)+b(1),2);
p=mod(b(6)+m,2);
b(8)=mod(b(7)+p,2);
b(1)=b(2);
b(2)=b(3);
b(3)=b(4);
b(4)=b(5);
b(5)=b(6);
b(6)=b(7);
b(7)=b(8);
end
m2=co;
c=xor(m1,m2);
subplot(1,1,1)
stem(co)
title('使用生成多形式(217)8=(010001001)2产生第一个序列')
我们通过程序可知道,首先要生成一个周期为127的m1序列,产生序列的方法为:
倒序赋值,将D2赋值给D1,D3赋值给D2,以此类推。

最高位D8为D5和D1相加后除二的余数。

如此我们得到m1序列。

m2序列产生方法如同m1,不过m2的D8是由D7和p加后除二后的余数得到,而p等于D6和m相加除二所产生的余数。

m等于D5和D1相加后除二的余数。

如此才得到我们所需的m2。

我们所需的要Glod序列就是由我们前面所产生的两个m序列m1和m2模二加所得到的。

我们得到的序列为:
ans =
010111111100011011001111011011111100110110101010110011010110000001011001000 0110111100001010010100010110000000011101000100110110
通过计算对比,我们仿真所的到的序列与我们得到的值完全一致。

误差:实验误差主要来自于程序的编写,无实际误差.
思考题:
m序列组成的互相关特性好的互为优选的序列集很少,对于多址应用技术来说,可用的地址数太少了。

而Gold序列具有良好的自、互相关特性,且地址数远大于m序列的地址数,结构简单,易于实现。

m序列主要运用于扩展频谱通信,cdma,通信加密等,而GOLD序列在各种卫星系统中得到广泛的应用。

相关文档
最新文档