GOLD序列的相关性

合集下载

5g 31阶gold序列生成方法 -回复

5g 31阶gold序列生成方法 -回复

5g 31阶gold序列生成方法-回复所谓5g 31阶gold序列生成方法,是一种在通信领域中常用的序列生成算法。

在本文中,我们将一步一步解释该方法的原理和生成过程,以及它在实际应用中的重要性和优势。

什么是5g 31阶gold序列?5g通信技术是目前最新的移动通信技术标准,具有更大的带宽和更低的延迟。

在5g通信中,使用金码序列(Gold Sequence)来实现数据加密和扰码,以提供更高的安全性和鲁棒性。

金码序列是一种伪随机序列,其特点是具有良好的自相关性和互相关性。

那么,什么是31阶Gold序列呢?31阶Gold序列指的是一个长度为31的金码序列,它能够在短时间内循环完毕。

31阶Gold序列因其周期较短,适合在5g通信中使用,能够提供更高的码率和更低的延迟。

生成5g 31阶Gold序列的方法是什么?生成5g 31阶Gold序列通常需要两个生成多项式和初始状态种子序列。

生成多项式是金码序列生成的关键参数,它决定了金码序列的特性。

初始状态种子是一个由0和1组成的序列,用来初始化金码序列生成器。

首先,我们需要确定两个不同的生成多项式。

生成多项式在5g通信中一般使用一次项为2的多项式,即x+1。

我们将两个生成多项式分别表示为G1(x)和G2(x)。

接下来,我们需要确定初始状态种子序列。

初始状态种子序列的长度通常为31位,仅由0和1组成。

然后,我们按照如下步骤生成31阶Gold序列:Step 1: 将G1(x)的各项系数和G2(x)的各项系数逐位异或运算。

Step 2: 根据初始状态种子序列,逐步计算序列的下一位。

具体计算方式为:将当前状态与G1(x)的各项系数逐位相乘并求和,然后将结果与G2(x)的各项系数逐位相乘并求和,最后将两者异或得到下一位的值。

Step 3: 重复Step 2,直到生成31位的序列。

值得注意的是,为了获得较好的码性能,初始状态种子序列的选择非常重要。

通常,初始状态种子序列需要具有较长的周期和良好的随机性。

gold序列自相关函数

gold序列自相关函数

gold序列自相关函数
就是金序列自相关函数,首先是解释它的定义——金序列自相关函数(GSCF)是一个关于序列间滞后关系的统计概念。

它的定义是描述两个序列之间的滞后关系的参数,同样地,它也可以用于描述一个单独的序列内部的滞后关系。

GSCF能够衡量一段时间序列(以向量形式表示)之间存在的线性或者因果关系。

GSCF自相关函数采用传统的距离函数来测量时间序列之间的差异,包括最小二乘法、贝叶斯方法等。

它的计算方法可以用来比较两个序列的相关性,进而确定它们之间的关系。

实际应用中,GSCF自相关函数可以用来判断某一系统的稳定性;通过判断两个序列之间的相似性,GSCF可以提高数据分析的准确性。

例如:市场走势、风险管理等,都可以以GSCF自相关函数来反映。

此外,GSCF自相关函数也可以用于指标建模,数据可视化,以及序列模式检测,GSCF自相关函数可以被用于更广泛的应用,例如指标的选择,优化序列的性能,提高分析的准确度等。

GSCF自相关函数也可以应用于大数据中,以及机器学习,使用GSCF可以帮助用户提高数据分析的准确性,更有效地进行数据处理。

总之,GSCF自相关函数是一门统计概念,用于描述序列间的滞后关系,它可以用于评估序列行为的稳定性,以及检测其相似性,它也可以用于大数据的处理,通过分析不同的时间序列间的相关性,从而更好地分析数据,并找出隐藏的有价值的信息。

GSCF也有助于提高预测的准确性,在后续的分析中能够有效地获取更好的结果。

GOLD序列的相关性PPT课件

GOLD序列的相关性PPT课件
主要内容
• m序列 • Gold序列 • Gold序列的相关特性
•1
m序列
m序列是目前CDMA系统中采用的最基本 的PN序列。它是最长线性反馈移位寄存器 序列的简称。若移位寄存器为n级, 则其周 期P=2n-1 。
•2
图1 反馈移位寄存器原理框图
•3
Gold序列
• m序列虽然性能优良(具有尖锐而无旁瓣 的自相关函数), 但同样长度的m序列个数 不多,且序列之间的互相关性不够好。 R·Gold提出了一种基于m序列的PN码序 列, 称为Gold码序列。
• 互相关性:Gold 码序列的互相关函数值的 最大值不超过其m 序列优选对的互相关值, 具有三值互相关函数 。
•8
谢谢!
•9
• Gold序列是用一对周期和速率均相同,但 码字不同的m序列优选对模2加后得到的。
•4
• 如果有两个m序列, 它们的互相关函数的绝
对值有界, 且满足以下条件:
n
n为奇数 n为偶数(不是4的倍数)
则我们称这一对m序列为优选对。
•5
n级m序列发生器 时钟
n级m序列发生器
模2加
Gold码序列
(a)
1
2
3
4
5
12345 (b)
图2 Gold (a) Gold码发生器的原理结构图; (b) 5级m序列优选对构成的Gold码发生器
•6
• 随着级数n的增加,Gold码序列的数量远远 超过同级数的m序列的数量,便于扩频多址 应用。
•7
Gold序列的相关性
• 自相关性:Gold 证明了Gold 码序列的自 相关函数的所有非最高峰的取值是三值。

gold码生成过程 -回复

gold码生成过程 -回复

gold码生成过程-回复所谓的"gold码"是一种用于通信系统中的伪随机码。

它广泛应用于无线通信、卫星通信和编码理论等领域。

在本文中,我们将一步一步地回答关于gold码生成过程的问题,带您深入了解这个重要的通信技术。

第一步:什么是gold码?在了解gold码的生成过程之前,首先需要理解gold码是如何工作的。

gold码是一种伪随机码序列,具有良好的互相关性和周期性。

它是以线性反馈移位寄存器(LFSR)为基础生成的,用于在通信中的多径传输信道、频率选择信道和多用户干扰等环境中进行编码和解码。

通过应用gold码,可以提高通信系统的容错性和抗干扰能力。

第二步:LFSR是什么?LFSR是一种用于生成伪随机序列的移位寄存器。

它由若干个触发器组成,每个触发器代表一个二进制位。

在每个时刻,LFSR都会对输入数据进行移位和反馈计算,从而生成一个新的二进制码。

LFSR的移位操作可以视为一个带有反馈的移位操作,每次移位都会根据当前状态和反馈多项式生成一个新的二进制位。

这种移位操作可以无限地进行下去,生成一个无限长的伪随机序列。

第三步:如何生成gold码?gold码的生成是通过两个LFSR的线性组合来实现的。

首先,我们需要选择两个不同的初始状态和不同的反馈多项式,以确保生成的码之间具有差异。

然后,通过对两个LFSR的输出进行异或运算,就可以生成gold 码序列。

具体的生成过程可以分为以下几个步骤:1. 选择两个LFSR,分别用于生成两个不同的伪随机序列。

2. 设置两个LFSR的初始状态和反馈多项式。

初始状态可以是任意的二进制码,而反馈多项式则影响了伪随机序列的周期性和相关性。

3. 同步两个LFSR的时钟,并同时进行移位操作。

4. 对两个LFSR的输出进行异或运算,得到gold码序列。

5. 不断重复移位和异或运算,直到生成足够长的gold码序列。

值得注意的是,为了确保生成的gold码序列具有良好的性质,初始状态和反馈多项式的选择是非常重要的。

无线通信原理与应用-实验二 Gold序列及截短的Gold序列相关特性

无线通信原理与应用-实验二 Gold序列及截短的Gold序列相关特性

实验三、Gold序列及截短的Gold序列相关特性一、实验目的了解常用正交序列--Gold序列及截短Gold序列的自相关及互相关特性。

测量实验系统在异步CDMA工作方式下作为基站地址码的中的截短Gold序列。

二、实验内容1. 用示波器测量常用正交序列--Gold序列及截短Gold序列的波形及其相关运算后的自相关函数及互相关函数,了解其相关特性。

2. 用示波器测量实验系统在异步CDMA工作方式下作为基站地址码的中的截短Gold 序列(长32位)。

三、基本原理见实验一的”三、基本原理”。

下面是本实验待测量的Gold序列及截短Gold序列。

1. Gold序列(1)5阶Gold序列表3-3-1 5阶Gold序列的自相关特性测量(序列长25-1=31位)PN i(t) 0000,0000,1001,0100,1001,1110,1010,110.用实验一表3-1-2相位的二个5阶m序列优选对模二加产生PN j(t) 同上同上表3-3-2 5阶Gold序列的互相关特性测量(序列长25-1=31位)PN i(t) 0000,0000,1001,0100,1001,1110,1010,110.用实验一表3-1-2相位的二个5阶m序列优选对模二加产生PN j(t) 0110,1010,1010,1111,0111,1010,0110,111.用实验一表3-1-2的第一个序列与延时27位(即超前4位)的第二个序列模二加产生这就是本实验系统异步CDMA方式的二个基站地址码,只是相位不同(见式(2-2))。

54(2)7阶Gold序列表3-3-3 7阶Gold序列的自相关特性测量(序列长27-1=127位)PN i(t) 0000,0000,0011,1111,0000,1100,1110,1111,用实验一表3-1-4相位的二个7阶m序列优选对模二加产生0100,1100,0000,0010,0001,1010,1010,1100,0111,1100,1001,0011,0101,1101,0111,0101,0000,1100,0000,1000,0111,1000,1011,010.PN j(t) 同上同上表3-3-4 7阶Gold序列的互相关特性测量(序列长27-1=127位)PN i(t) 0000,0000,0011,1111,0000,1100,1110,1111,用实验一表3-1-4相位的二个7阶m序列优选对模二加产生0100,1100,0000,0010,0001,1010,1010,1100,0111,1100,1001,0011,0101,1101,0111,0101,0000,1100,0000,1000,0111,1000,1011,010.PN j(t) 0001,1110,0111,1010,1001,0001,1010,0000,用实验一表3-1-4第一个序列与延时123位(即超前4位)的第二个序列模二加产生1110,1101,1100,0110,1001,0001,1111,0111,1010,0100,0100,0001,1011,0011,0001,0000,0101,0011,1100,1000,1111,1011,1011,111.2. 截短的Gold序列(1)截短的Gold序列一:Gc1序列表3-3-5 Gc1序列自相关特性测量(序列长32位)PN i(t) 0010,1101,1110,0111,0010,1011,0011,0000.从实验一表3-1-4 PN i的第40位码片开始截取32位PN j(t) 同上同上表3-3-6 Gc1序列互相关特性测量(序列长32位)PN i(t) 0010,1101,1110,0111,0010,1011,0011,0000.从实验一表3-1-4 PN i的第40位码片开始截取32位PN j(t) 0010,1100,1110,1010,0111,1101,0000,1110.从实验一表3-1-4 PN j的第40位码片开始截取32位55(2)截短的Gold序列二:Gc2序列表3-3-7 Gc2序列自相关特性测量(序列长64位)PN i(t) 0010,1101,1110,0111,0010,1011,0111,0000, 从实验一表3-1-4 PN i的第40位码片开始截取64位0110,1101,0111,0100,0110,0100,0100,0000.PN j(t) 同上同上表3-3-8 Gc2序列互相关特性测量(序列长64位)PN i(t) 0010,1101,1110,0111,0010,1011,0111,0000, 从表3-1-4 PNi的第40位码片开始截取64位0110,1101,0111,0100,0110,0100,0100,0000.PN j(t) 0010,1100,1110,1010,0111,1101,0000,1110, 从表3-1-4 PNj的第40位码片开始截取64位0010,0100,1101,1010,1101,1110,1100,0110.四、实验步骤1. 实验箱不要插天线,打开电源。

gold序列的生成与相关特性仿真

gold序列的生成与相关特性仿真

gold序列的⽣成与相关特性仿真Gold序列⽣成与相关性仿真1.1 references[1] 基于Matlab的Gold码序列的仿真与实现.[2] Code Selection for CDMA Systems.1.2 m序列的⽣成原理1.2.1⽣成本原多项式利⽤Matlab编程环境求解本原多项式,其运⾏结果如表1所⽰.选择n=7,采⽤7级移位寄存器,产⽣的序列周期是127,其程序如下所⽰.N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');表(1)n=7 本原多项式上⾯的多项式中,仅有9个是独⽴的.因为第⼀⾏和第⼗⾏,第⼆⾏和四⾏,第三⾏和第⼗六⾏,第五⾏和第⼋⾏,第六⾏和第⼗四⾏,第七⾏和第⼗三⾏,第九⾏和第⼗⼋⾏,第⼗⼀⾏和第⼗⼆⾏,第⼗五⾏和第⼗七⾏是两两对称的.⽤⼋进制数表⽰时,所选择的本原多项式为211、217、235、367、277、325、203、313和345共9条.在这9条本原多项式中,选择⼀个基准本原多项式,再按要求选择另⼀本原多项式与之配对,构成m序列优选对,对7级m序列优选对如下表:表(2)n=7 m序列所以优选对1.2.2构成移位寄存器根据产⽣Gold码序列的⽅法,从上述本原多项式中选择⼀对m序列优选对,以211作为基准本原多项式,217作为配对本原多项式,通过并联结构形式来产⽣Gold序列,⽣成gold 序列的结构如图(6)所⽰:图(6)Gold序列⽣成结构1.3 ⾃相关函数仿真参数及初始值设定如下:N=7; %以7级寄存器为例,并组其中的⼀组优选对:211,,217connections=gfprimfd(N,'all');f1=connections(4,:); %取⼀组本原多项式序列,211f2=connections(16,:); %取另⼀组本原多项式序列,217registers1=[1 0 0 0 0 0 0];%给定寄存器的初始状态registers2=[1 0 0 0 0 0 0];%取相同的初始状态⽣成的gold 序列⾃相关函数如图(7)、(8)所⽰图(7) Gold 序列周期⾃相关函数结论:⾃相关函数取值集合{127,15,-1,-17}图(8)Gold 序列⾮周期⾃相关函数020406080100120140gold 序列周期⾃相关函数020406080100120140-40-2020406080100120140gold 序列⾮周期⾃相关函数1.4 互相关函数仿真时改变m序列寄存器初始状态,从⽽⽣成两个gold序列,求得互相关函数如图(9)(10)所⽰。

Gold序列产生及特性分析实验

Gold序列产生及特性分析实验
打开移动实验箱电源,等待实验箱初始化完成。先按下“菜单”键,再按下数字键“1”,选择“一、伪随机序列”再按下数字键“2”选择“1Gold序列的产生”,则产生一个级数为31的Gold序列。
2、在测试点TP201测试输出的时钟,在测试点TP202、TP203、TP204测试用于产生Gold序列的周期为31的m序列优选对。
实验二、Gold序列产生及特性分析实验
1、实验目的
1、了解Gold序列的性质和特点。
2、熟悉Gold序列的产生方法。
2、实验内容
1、熟悉Gold序列的产生方法。
2、测试Gold序列的波形。
3、实验原理
m序列虽然性能优良,但同样长度的m序列个数不多,且m序列之间的互相关函数并不理想(为多值函数)。1967年,R.Gold提出和讨论了一种新的序列,即Gold序列。这种序列有较为优良的自相关和互相关特性,构造简单,产生的序列数多,因而得到广泛的应用。
TP202测试点输出的m序列为:1 1 0 0 1 1 0 1 1 0 1 1.......
TP203测试点输出的m序列为:1 0 1 0 0 0 1 1 0 1 1 1.......
经验证符合实验结果。
1.m序列优选对
m序列优选对是指在m序列集中,其互相关函数最大值的绝对值满足下式的两条n介m序列:
2.Gold序列的产生方法
Gold序列是m序列的组合序列,由同步时钟控制的两个码元不同的m序列优选对逐位模2加得到。这两个序列发生器的周期相同,速率相同,因而两者保持一定的相位关系,这样产生的组合序列与这两个自序列的周期也相同。当改变两个序列的相对位移,会得到一个新的Gold序列。Gold序列具有以下性质:
(1)两个m序列优选对经不同移位相加产生的新序列都是Gold序列,两个n级移位寄存器可以产生 个Gold序列,周期均为 。

扩频编码M序列和gold序列

扩频编码M序列和gold序列

M序列由n级移位寄存器所能产生的周期最长的序列。

这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。

例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。

从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。

M序列最早是用抽象的数学方法构造的。

它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。

后来发现这种序列具有某些良好的伪随机特性。

例如,M序列在一个周期中,0与1的个数各占一半。

同时,同样长度的0游程与1游程也各占一半。

所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。

隐蔽通信内容的通信方式。

为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。

电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。

另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。

保密技术和破译技术是在相互对立中发展起来的。

1881年世界上出现了第一个电话保密专利。

电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。

置乱后的信号仍保持连续变化的性质。

在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。

70年代以来,由于采用集成电路,电话保密通信得到进一步完善。

但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。

模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。

数字保密是由文字密码发展起来的。

数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GOLD序列的相关性 GOLD序列的相关性
主要内容
• m序列 • Gold序列 • Gold序列的相关特性
m序列
m序列是目前 序列是目前CDMA系统中采用的最基本 序列是目前 系统中采用的最基本是最长线性反馈移位寄存器 序列的简称。若移位寄存器为 级, 则其周 序列的简称。若移位寄存器为n级 的简称 期P=2n-1 。
图1 反馈移位寄存器原理框图
Gold序列 Gold序列
• m序列虽然性能优良(具有尖锐而无旁瓣 序列虽然性能优良( 序列虽然性能优良 的自相关函数) 但同样长度的m序列个数 的自相关函数), 但同样长度的 序列个数 不多,且序列之间的互相关性不够好 且序列之间的互相关性不够好。 不多 且序列之间的互相关性不够好。 R·Gold提出了一种基于 序列的 提出了一种基于m序列的 提出了一种基于 序列的PN码序 码序 称为Gold码序列。 码序列。 列, 称为 码序列 • Gold序列是用一对周期和速率均相同,但 序列是用一对周期和速率均相同 序列是用一对周期和速率均相同, 码字不同的m序列优选对模 加后得到的。 序列优选对模2加后得到的 码字不同的 序列优选对模 加后得到的。
• 如果有两个 序列 它们的互相关函数的绝 如果有两个m序列 序列, 对值有界, 且满足以下条件: 对值有界 且满足以下条件 + n2 1 2 + 1, n为奇数 R(τ ) = n +1 2 2 + 1, n为偶数(不是4的倍数) 则我们称这一对m序列为优选对。 则我们称这一对m序列为优选对。 优选对
Gold序列的相关性 Gold序列的相关性
• 自相关性:Gold 证明了Gold 码序列的自 相关函数的所有非最高峰的取值是三值。
• 互相关性:Gold 码序列的互相关函数值的 最大值不超过其m 序列优选对的互相关值, 具有三值互相关函数 。
谢谢!
模2加
图2 Gold码发生器 码发生器 码发生器 (a) Gold码发生器的原理结构图; (b) 5级m序列优选对构成的 码发生器的原理结构图; 序列优选对构成的Gold码发生器 码发生器的原理结构图 级 序列优选对构成的 码发生器
• 随着级数n的增加,Gold码序列的数量远远 随着级数n的增加,Gold码序列的数量远远 超过同级数的m序列的数量, 超过同级数的m序列的数量,便于扩频多址 应用。 应用。
相关文档
最新文档