第二章 统计数据的描述
统计学原理(第二章)

数据的计量和类型
一、数据的计量尺度 4.定比尺度:又称为比例尺度或是比较水平, 是对事物之间比值的一种测度,它是最高层 次的测量,可用于参数和非参数统计推断。 它是与定距尺度属于同一层次的一种计量尺 度,但其功能比定距尺度更强一些。
在日常生活中,大多数情况下使用的都是 定比尺度。例如,年龄、收入、某地区每年的 失业人数、罪犯人数等。
数值数据的描述
一、数值数据的 分组
为什么要进行数据的分组?
品质数据的描述
某电脑公司50名销售代表某季度电脑销售量按从小 到大排序如下表:
107 108 108 110 112 112 113 114 115 117 117 117 118 118 118 119 120 120 121 122 122 122 122 123 123 123 123 124 124 124 125 125 126 126 126 127 127 128 128 129 130 131 133 133 134 134 135 139 139 139
204 80.00% 105 41.17%
235 92.16% 51 20%
255 100% 20 7.84%
— 100% —
品质数据的描述
二、品质数据的 图示 1.条形图:是用宽度相同的条形的高度或长 短来表示数据变动的图形,横置的称为带形 图,纵置的称为柱形图(直方图)。
柱形图(直方图)
120 100 80 60 40 20
定类变量、定序变量、 数值型变量(离散变量、连续变量)
第二节 品质数据的描述
一、品质数据的描述 二、数据的类型品质数据的图示 三、品质数据的分布特征描述
品质数据的描述
一、品质数据的 描述 1.频数:是落在某一特定类别(或组)中的 数据的个数。把各个类别及其相应的频数全 部列出来则形成频数分布。
【统计学】04 第二章 定量资料的统计描述

频率(%)
30
25
直条图
20
15
10
5
0
0
1
2
3
4
5
>5
产前检查次数
图2-1 1998年某地96名孕妇产前检查次数频率分布
8
二、连续型定量变量的频率分布
例2-2 抽样调查某地120名18~35岁健康男性居民血清铁含量(μmmo/L),数 据如下。试编制血清铁含量的频率分布表。
首先,分析资料类型? 定量数据---连续型
表211998年某地96名孕妇产前检查次数频率分布检查次数检查次数11频数频数22频率频率33累计频数累计频数44累计频率累计频率11132623124273115135271240125112235618496421152293656358751000合计961000图211998年某地96名孕妇产前检查次数频率分布1015202530离散型定量变量的频率分布图可用直条图表达以等宽直条的高度表示各组频率的多少直条图二连续型定量变量的频率分布例22抽样调查某地120名1835岁健康男性居民血清铁含量mmol数据如下
频数
25 20 15 10
5 0
0
20
40
60
80
100
120
140
滴度倒数
25
20
15
f 10
5
0
0
0.5
1
1.5
2
2.5
lgX
23
3、计算公式:直接法和频数表法。
(1)直接法 公式:
G n X1 X2 X3 Xn
对数的形式为
G lg 1 lg X1 lg X 2 lg X n lg 1 lg X
统计学 第2章 统计数据的描述

第2章统计数据的描述练习:2.1为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
2.2某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):152 124 129 116 100 103 92 95 127 104105 119 114 115 87 103 118 142 135 125117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
2.3某百货公司连续40天的商品销售额如下(单位:万元):41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
医学统计学 第二章 计量资料的统计描述

肌红蛋白含量
人数
0~
2
5~
3
10~
7
15~
9
20~
10
25~
22
30~
23
35~
14
40~
9
45~50
2
18
人数
25 20 15 10
5 0
2.5 12.5 22.5 32.5 42.5 52.5 血 清 肌 红 蛋 白(μg / m L)
图 2-3 101 名 正 常 人 血 清 肌 红 蛋 白 的 频 数 分 布
医学统计学 第二章 计量资料的统计 描述
计量资料(定量资料、数值变量资料) 总体:有限或无限个(定量)变量值 样本:从总体随机抽取的n个变量值:
X1,X2,X3,……,Xn
n为样本例数(样本大小、样本含量)
2
统计描述——描述其分布规律 1、用频数分布表(图)
要求:大样本 如 n〉30
2、用统计指标 描述 集中趋势 离散趋势
6
➢制表步骤 了解分布
1. 求极差(range) 极差也称全 距,即最大值和最小值之差,记作R。 本例
R 5 .7 1 2 .3 5 3 .3 6 ( m m o l/L )
7
2.确定组距(i) :
组段数通常取组 10-15组 本例组距
i 3 .3 6 /1 0 0 .3 3 6 0 .3 0
累计频率(%) (4)
0
402
402
35.80
1
330
732
65.18
2
232
964
85.84
3
118
1082
96.35
4
27
统计学第三版书后答案第二章

第2章统计数据的描述●9.某百货公司6月份各天的销售额数据如下单位万元257 276 297 252 238 310 240 236 265 278 271 292 261 281 301 274 267 280 291 258 272 284 268 303 273 263 322 249 269 295 1计算该百货公司日销售额的均值、中位数和四分位数2计算日销售额的标准差。
解1将全部30个数据输入Excel表中同列点击列标得到30个数据的总和为8223 于是得该百货公司日销售额的均值见Excel练习题2.9 xxn822330274.1万元或点选单元格后点击“自动求和”→“平均值”在函数EVERAGE 的空格中输入“A1A30”回车得到均值也为274.1。
在Excel表中将30个数据重新排序则中位数位于30个数据的中间位置即靠中的第15、第16两个数272和273的平均数Me2722732272.5万元由于中位数位于第15个数靠上半位的位置上所以前四分位数位于第1第15个数据的中间位置第8位靠上四分之一的位置上由重新排序后的Excel 表中第8位是261第15位是272从而QL2612732724261.25万元同理后四分位数位于第16第30个数据的中间位置第23位靠下四分之一的位置上由重新排序后的Excel表中第23位是291第16位是273从而QU2912732724290.75万元。
2未分组数据的标准差计算公式为s30211iixxn 利用上公式代入数据计算是个较为复杂的工作。
手工计算时须计算30个数据的离差平方并将其求和再代入公式计算其结果得s21.1742。
见Excel练习题2.9 我们可以利用Excel表直接计算标准差点选数据列A列的最末空格再点击菜单栏中“∑”符号右边的小三角“▼”选择“其它函数”→选择函数“STDEV”→“确定”在出现的函数参数窗口中的Number1右边的空栏中输入A1:A30→“确定”即在A列最末空格中出现数值21.17412即为这30个数据的标准差。
《医学统计学》第二章定量数据的统计描述

累积频数
(3) 27
196 363 457 538 580 608 622 626 629 630
-
累积频率(%)
(4) 4.29 31.11 57.62 72.54 85.40 92.06 96.51 98.73 99.37 99.84 100.00
资料如表,试计算其中位数。
某地630名正常女性血清甘油三酯含量(mmol/L)
甘油三酯(mmol/L)
(1) 0.10~ 0.40~ 0.70~ 1.00~ 1.30~ 1.60~ 1.90~ 2.20~ 2.50~ 2.80~ 3.10~
合计
频数
(2) 27 169 167 94 81 42 28 14 4 3 1
练习
例 8名食物中毒患者的潜伏期分别为1,4,3,3,2,5,8,16小时,
求中位数。
n=8,为偶数
M
1
2
(
x (
8 2
)
x (
8
1)
)
2
1 2 ( x4
x5 )
1 3 4
2
3.5(小时)
例 某传染病11名患者的潜伏期(天)分别为1,3,2,2,3,7,5,6,
4,7,9,求中位数。
n=11,为奇数 M xn1 2 x(111) x6 4(天 ) 2
偏态分布
正偏态 负偏态
正偏态:集中位置偏向数值小的一侧 负偏态:集中位置偏向数值大的一侧
医学统计学(第7版)
正 态 分 布
医学统计学(第7版)
正偏态
集中位置偏向 数值小的一侧
负偏态
集中位置偏向 数值大的一侧
(麻疹年龄分布)
(肺癌年龄分布)
统计学(第四版)袁卫 庞皓 贾俊平 杨灿 (02)第2章 统计数据的描述(袁卫)

n
2. 各变量值与平均数的离差平方和最小
(x
i 1
5 - 36
i
x ) min
2
统计学
STATISTICS
几何平均数
统计学
STATISTICS
几何平均数
(geometric mean)
n 个变量值乘积的 n 次方根 2. 适用于对比率数据的平均 3. 主要用于计算平均增长率 4. 计算公式为
QM
25%
QU
2. 不受极端值的影响 3. 主要用于顺序数据,也可用于数值型数据, 但不能用于分类数据
5 - 27
统计学
STATISTICS
四分位数
(位置的确定)
n 1 QL 位置 4 Q 位置 3(n 1) U 4 n QL 位置 4 Q 位置 3n U 4
去掉大小两端的若干数值后计算中间数 据的均值 2. 在电视大奖赛、体育比赛及需要人们进行 综合评价的比赛项目中已得到广泛应用 3. 计算公式为
1.
x
5 - 41
x( n 1) x( n 2) x( n n ) n 2 n
1 2
n 表示观察值的个数;α表示切尾系数,0
f
i
i i
样本平均数
5 - 34
f
i 1
i
统计学
STATISTICS
加权平均数 (例题分析)
x
x f
i 1 k
k
i i
f
i 1
i
3110 103.67 (件) 30
5 - 35
统计学
STATISTICS
平均数
第2章统计数据的描述

第二章统计数据的描述一、单项选择题1.下列中,最粗略、计量层次最低的计量尺度是()A.间隔尺度B.顺序尺度C.比例尺度D.列名尺度2.将全国人口按“民族”划分为汉、白、彝、回、藏…..,这里使用的计量尺度是()A.比例尺度B.列名尺度C.间隔尺度D.顺序尺度3.某个人对某一事物的态度可以划分为非常同意、同意、保持中立、不同意、非常不同意,这里使用的计量尺度是()A.列名尺度B.间隔尺度C.顺序尺度D.比例尺度4.下列中,计量层次的最高、最精确的计量尺度是()A.比例尺度B.间隔尺度C.顺序尺度D.列名尺度5.下列调查方式中,只能调查一些最基本、最一般现象的调查方式是()A.抽样调查B.重点调查和典型调查C.统计报表D.普查6.实际中应用最为广泛的一种调查方式是()A.重点调查B.统计报表C.普查D.抽样调查7.某城市拟对占全市储蓄额4/5的几个大储蓄所进行调查,以了解全市储蓄的一般情况,则这种调查方式是()A.抽样调查B.典型调查C.重点调查D.普查8.一次性调查是指()A.只做过一次的调查B.调查一次以后不再调查C.间隔一段时间在进行一次调查D.只隔一年就进行一次的调查9.在统计分析中,对累积的次数分配用得最直接的是()A.供给曲线B.需求曲线C.洛伦茨曲线D.边际需求曲线10.专门用来衡量和反映收入分配平均程度的统计指标是()A.基尼系数B.可决系数C.相关系数D.离散系数11.一般认为,基尼系数在()之间是比较恰当的。
A.0.1— —0.4 C.— —0..812.一般认为,基尼系数等于( )是收入分配不公平的警戒线。
A.0.2B.0.6C. 利用公式计算众数的基本假定之一是众数组的频数在该组内呈( )A.正态分布 分布 C.均匀分布 D.偏态分布14.计算中位数时,假定中位数所在组的频数在该组内呈( )A.左偏分布B.正态分布C.右偏分布D.均匀分布15.反映数据分布集中趋势的最主要的测度值是( )A.众数B.中位数C.均值D.几何平均数16.各个变量值与均值的离差之和( )A.大于0B.小于0C.等于0D.等于一个不为0的常数17.各个变量值与均值的离差平方和( )A.为最大B.为最小C.为0D.为一个不为0的常数18.下列中,专门用来衡量众数代表性大小的离散程度测度值是( )A.异众比率B.四分位差C.方差或标准差D.极差19.下列中,专门用来衡量中位数代表性大小的离散程度测度值是( )A.方差和标准差B.内距C.异众比率D.平均差20.下列中,适用于列名数据的集中趋势测度值是( )A.众数B.中位数C.均值D.几何均值21.描述数据离散程度最简单的测度值是( )A.平均差B.方差和标准差C.极差D.四分位差22.经验法则表明,当一组数据呈对称分布时,大约有95%的数据在( )范围之内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章统计数据的描述
一、填空题:
1.统计分组有等距分组与异距分组两大类。
2. 频率是每组数据出现的次数与全部次数之和的比值。
3. 统计分组的关键在于确定组数和组距。
4. 统计表从形式上看,主要由表头(总标题)、横行标题、纵栏标题和数字资料(指标数值)四部分组成。
5. 均值是测度集中趋势最主要的测度指标,标准差是测度离散趋势最主要的测度指标。
6.当平均水平和计量单位不同时,需要用变异系数(离散系数)来测度数据之间的离散程度。
7.众数是一组数据中出现次数最多的变量值。
8.对于一组数据来说,四分位数有 3 个。
二、单项选择题:
1. 次数是分配数列组成的基本要素之一,它是指( B )。
A、各组单位占总体单位的比重
B、分布在各组的个体单位数
C、数量标志在各组的划分
D、以上都不对
2. 某连续变量数列,其末组为600以上。
又如其邻近组的组中值为560,则末组的组中值为
( D )。
A、620
B、610
C、630
D、640
3. 变量数列中各组频率的总和应该是( B )。
A、小于1
B、等于1
C、大于1
D、不等于1
4. 某连续变量数列,其首组为500以下。
又如其邻近组的组中值为520,则首组的组中值为
( C )。
A、460
B、470
C、480
D、490
5. 在下列两两组合的指标中,哪一组的两个指标完全不受极端数值的影响(D )
A、算术平均数和调和平均数
B、几何平均数和众数
C、调和平均数和众数
D、众数和中位数
6. 在编制等距数列时,如果全距等于56,组数为6,为统计运算方便,组距应取(D )
A、9.3
B、9
C、6
D、10
7. 一项关于大学生体重的调查显示,男生的平均体重是60公斤,标准差为5公斤;女生的平均体重是50公斤,标准差为5公斤.据此数据可以推断( B) 用变异系数算
A、男生体重的差异较大
B、女生体重的差异较大
C、男生和女生的体重差异相同
D、无法确定
8. 某生产小组有9名工人,日产零件数分别为10,11,14,12,13,12,9,15,12.据此数据计算的结果是( A ) 众数12 中位数12 平均数12
A、均值=中位数=众数
B、众数>中位数>均值
C、中位数>均值>众数
D、均值>中位数>众数
9. 按连续型变量分组,最后一组为开口组,下限值为2000。
已知相邻组的组距为500,则最后一组组中值为(B )
A、2500
B、2250
C、2100
D、2200
10. 下列数据是某班所有学生的统计学考试成绩:72,90,91,84,85,57,90,84,77,84,69,77,66,87,85,95,86,78,86,45,87,92,73,82。
这些成绩的极差是(B)
A、78
B、50
C、45
D、40
11. 下列关于众数的叙述中,不正确的是( C )
A、一组数据可能存在多个众数
B、一组数据可能没有众数
C、一组数据的众数是唯一的
D、众数不受极端数值的影响
三、多项选择题:
1. 下列分组哪些是按品质标志分组?(BCDE )
A、职工按工龄分组
B、科技人员按职称分组
C、人口按民族分组
D、企业按所有制分组
E、人口按地区分组
F、职工按收入水平分组
2. 下列分组哪些是按数量标志分组(AF )。
A、职工按工龄分组
B、科技人员按职称分组
C、人口按民族分组
D、企业按所有志分组
E、人口按地区分组
F、职工按收入水平分组
3. 下列哪些属于离散程度的测度指标(BDE )。
A、几何平均数
B、极差
C、中位数
D、方差
E、离散系数
4. 下列哪些属于集中趋势的测度指标(AC )。
A、几何平均数
B、极差
C、中位数
D、方差
E、离散系数
四、计算题:
1.从某大学一年级学生中随机抽取36人,对公共理论课的考试成绩进行调查,结果如下:
67 90 66 80 67 65 74 70 87 85 83 75 58 67 54
65 79 86 89 95 78 97 76 78 82 94 56 60 93 88
76 84 79 76 77 76
要求:
(1)根据以上数据将考试成绩等距分为5组,组距为10,并编制成次数分布表,绘制次数分布直方图;
(2)根据分组后的数据计算考试成绩的算术平均数。
(写出公式、计算过程,结果保留1位小数)
2. 某企业1982年12月工人工资的资料如下:
要求:(1)计算平均工资;79
(2)计算工资的众数、中位数、标准差。
85 85 方差为206.86
3. 某车间有两个小组,每组都是7个工人,各人日产的件数如下:
第一组:20 40 60 70 80 100 120
第二组:67 68 69 70 71 72 73
这两个组每人平均日产件数都是70件,试计算工人日产量的变异指标:
(1)全距(2)标准差,并比较哪一组的平均数代表性大?
(1)第一组100 第二组6
(2)第一组10 第二组2 第二组的平均数代表性大。