积分公式与高阶导数
柯西积分公式与高阶导数公式

dz
(n 1,2,3, ),
高阶导数公式
C z0
D
说明: 1) 解析函数具有任意阶导数;
2) f (n)(z0 ) 可用函数 f(z)在边界上的值通过积分唯一 确定。
说明:
3)
高阶导数公式的应用: 可求积分
C
f (z) (z z0 )n1 d z
要注意: a) f(z)在简单闭曲线C及其内部解析,
进行, f (z0
则
)f2(1πzi 0C
)f (z)
z z0
1
dz.
2
i
C
f (z) (z z0 )2
dz,
(1) 解析函数是否存 在各阶导数?
f (z0 )
21
2 i C
f (z) (z z0 )3 dz,
(2) 导数运算可否在 积分号下进行?
f
(n)(z0 )
C
(
z
f
(z0z))nC1是d定Dz内,理分2.6段设光函滑数(或f可(z)求在长单)
z
z3 1 2 (z 1)4
dz
2i [z3 3!
1]
z1
C的2内i部. 区域,
则f (z)在z0处
f(n)(z0 )n!2 i
f (z) C (z z0 )n1
二、高阶导数公式
由 Cauchy积分公式 , 解析函数的积分表达式为
z0
是定D内理的2.5一个设点f (,z)C是是单任连意f通一(区z条域0含)D上z0 的在2解内1析部i函区C数域,zf(
z) z0
dz.
的分段光如滑(或果可求各长阶) Jor导dan数曲线存, 则在, 并且导数运算可在积分号下
高数微积分公式大全dy

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
导数微积分公式大全

导数微积分公式大全导数是微积分中非常重要的概念,它表示函数在其中一点的变化率。
为了计算导数,我们需要使用一系列的微积分公式。
下面是一份包含最常用的导数公式的清单:1.基本导数公式:-常数函数:如果f(x)=c,则f'(x)=0,其中c是一个常数。
- 幂函数:如果f(x) = x^n,则f'(x) = nx^(n-1),其中n是一个实数。
-指数函数:如果f(x)=e^x,则f'(x)=e^x。
- 对数函数:如果f(x) = ln(x),则f'(x) = 1/x。
- 正弦函数:如果f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数:如果f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数:如果f(x) = tan(x),则f'(x) = sec^2(x)。
2.基本运算规则:- 常数乘法规则:如果f(x)和g(x)都是可导函数,且c是常数,则(cf(x))' = c(f'(x))。
-加法规则:如果f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)。
-乘法规则:如果f(x)和g(x)都是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-除法规则:如果f(x)和g(x)都是可导函数,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^23.链式法则:-如果h(x)=f(g(x)),其中f和g都是可导函数,则h'(x)=f'(g(x))g'(x)。
4.反函数法则:- 如果y = f(x)是可导函数,且在x处有非零的导数,则它的反函数x = f^(-1)(y)的导数为(dx/dy) = 1/(dy/dx)。
5.高阶导数:-如果f(x)的导数f'(x)存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x),依此类推。
§3.4 柯西积分公式与高阶导数公式

1 f z z z0 f z 0 dz 2 2 i C z z0
2 i z z0 C
f z 解析 f z0
f z f z0 z z0
C D, f z dz 0 z, z0 D, F z f z dz
z C z0
F z f z ,即F z 解析
f z 解析.
证毕.
作业
C0
f z f z0 z z0
ds .
f z 在z0解析
f z f z0 z z0
局部有界,
f z f z0 M 0,当充分小时, M, z z0
1 2 i
Cf z 1 d Nhomakorabea f z0 z z0 2
下面证明n 1 的情形
1 2 i
dz
C
f z 1 dz f z0 dz 2 if z0 2 2 2 i C z z0 z z0
f z
f z z z0 f z0 1 dz 2 C0: z z0 int C 2 i z z0 C0
C
f z dz 柯西积分公式 z z0
1 2 i
C
f z 1 dz f z0 2 i z z0
C
f z 2 i dz f z0 z z0 2 i
C
f z0 1 f z dz dz dz z z0 C 2 i 2 i C z z0
16个微积分公式

16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
常用的求导和定积分公式

常用的求导和定积分公式求导和定积分是微积分中的基础概念,求导是一种衡量函数变化率的方法,而定积分是对函数在一定区间上的面积或体积的计算。
在实际问题中,求导和定积分公式的应用非常广泛。
下面是一些常用的求导公式:1.基本导数公式:- 常数函数: $ \frac{d}{dx} (c) = 0$- 幂函数:$ \frac{d}{dx} (x^n) = nx^{n-1}$- 指数函数:$ \frac{d}{dx} (e^x) = e^x$- 对数函数:$ \frac{d}{dx} (\ln(x)) = \frac{1}{x}$-三角函数:- 正弦函数:$ \frac{d}{dx} (\sin(x)) = \cos(x)$- 余弦函数:$ \frac{d}{dx} (\cos(x)) = -\sin(x)$- 正切函数:$ \frac{d}{dx} (\tan(x)) = \sec^2(x)$2.基本运算法则:- 常数乘以函数:$ \frac{d}{dx} (cf(x)) = cf'(x)$- 函数的和或差:$ \frac{d}{dx} (f(x) \pm g(x)) = f'(x) \pm g'(x)$- 乘法法则:$ \frac{d}{dx} (f(x)g(x)) = f'(x)g(x) +f(x)g'(x)$- 除法法则:$ \frac{d}{dx} \left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$- 复合函数法则:$ \frac{d}{dx} (f(g(x))) = f'(g(x))g'(x)$3. 链式法则:如果函数 $y = f(u)$ 和 $u = g(x)$ 都可导,则复合函数 $y = f(g(x))$ 的导数为:$ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$4. 高阶导数:将求导的操作应用多次可以得到高阶导数,例如二阶导数表示为 $f''(x)$ 或 $\frac{d^2y}{dx^2}$。
常用微积分式导数公式

常用微积分式导数公式微积分是数学中重要的分支,它涉及到诸多的概念和公式。
其中导数是微积分的基本概念之一,它描述了函数的变化率。
在实际应用中,导数常常用于求解最优化问题、解微分方程、描述曲线的性质等等。
下面将介绍一些常用的微积分导数公式。
一、基本函数的导数公式:1.常数函数导数公式:如果c是一个常数,那么对于常数函数f(x)=c,它的导数为f'(x)=0。
2. 幂函数导数公式:对于幂函数f(x) = x^n,其中n是任意实数,它的导数为f'(x) = nx^(n-1)。
3. 指数函数导数公式:对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,它的导数为f'(x) = a^x * ln(a)。
4. 对数函数导数公式:对于自然对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。
5.三角函数导数公式:- 正弦函数的导数公式:f'(x) = cos(x)- 余弦函数的导数公式:f'(x) = -sin(x)- 正切函数的导数公式:f'(x) = sec^2(x)- 余切函数的导数公式:f'(x) = -csc^2(x)-反正弦函数的导数公式:f'(x)=1/√(1-x^2)-反余弦函数的导数公式:f'(x)=-1/√(1-x^2)-反正切函数的导数公式:f'(x)=1/(1+x^2)-反余切函数的导数公式:f'(x)=-1/(1+x^2)二、基本运算法则:1. 变量替换法则:如果y=f(u),且u=g(x)是可导函数,那么由链式法则可得dy/dx = (dy/du)*(du/dx)。
2.和、差、积法则:-和差法则:[f(x)±g(x)]'=f'(x)±g'(x)-积法则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)3.乘幂法则:[f(x)^n]'=n*f'(x)*f(x)^(n-1)。
柯西积分公式 解析函数的高阶导数公式

分可化为定积分来计算; 3)对于解析函数的积分,可通过牛顿—莱布尼兹公式计
算; 4)对于沿封闭曲线的积分,往往以柯西积分定理,复合
闭路定理、闭路变形公式、柯西积分公式、高阶导数公式等 为工具。
3.5柯西积分公式 3.6解析函数的高阶导数公式
一、柯西积分公式
定理 1:(柯西积分公式)如果 f (z) 在区域 E 内解析,C 为
E 内的任何一条正向简单闭曲线,它的内部完全含于 E ,z 为
C 内的任一点,则
fБайду номын сангаас
(z)
1
2 i
C
f
( )d
z
。
证明:z C
,令 F( )
f ( ) z
1
1) 2i
sin z
z 4 z dz ,2)
z
2
ez dz z 1
。
例 4:计算 I
zi 1 2
1 dz z(z2 1)
。
sin z
例 5:计算 I C
z
2
4 1
dz
,其中:
1) C
:
z
1
1 2
,2) C
:
z
1
1 2
,3) C :
z
2.
二、高阶导数公式
d
注 1.解析函数的导数仍是解析函数。
注 2. 析不在于通过积分求导,而是通过
求导来求积分,即
C
(
z
f
(z z0
) )
n1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 | | 令 C1: z | , C2: z 1| , 3 3
则 I
C1
f ( z ) dz
C2
f ( z ) d z (复合闭路定理)
C1
2z 1 2z 1 ( ) ( ) z 1 dz z C2 z 1 dz z
2z 1 2πi z 1 2z 1 2πi z z 0
解析函数在其解析区域内的值完全由边界上的值确定。
换句话说,解析函数可用其解析区域边界上的值以一种
特定的积分形式表达出来。
一、柯西积分公式
注意 柯西积分公式中的区域 D 可以
是多连域。比如对于二连域 D,
其边界为 C C1 C 2 ,则
z
D C1
C2
z0
1 f ( z0 ) 2π i 1 2π i
1 则由柯西积分公式有 f ( z ) 2π i
C
f ( ) d , ( z D ) . z
d d2 1 2 又 [( z ) ] ( z ) , [( z )1 ] 2 ( z ) 3 , dz dz2
……
n! dn 1 ( n 1) , ( ) n! ( z ) n 1 n ( z ) dz z
f
( n)
n! ( z0 ) 2πi n! ( z0 ) | 2π
| z z | R
0 0
1
f (z) d z , (n 1 , 2 , ) . n 1 ( z z0 )
n! M | f ( z)| , ds n n 1 R1 | z z0 |
|f
( n)
(柯西积分公式)
4πi .
z 1
C
解 I
| z | 2
z ( ) 2 9 z dz . z ( i )
z i
3
0
2
3
i
z 2π i 9 z2
π . 5
试考虑积分路径为 | z | 4 的情况。
二、平均值公式
(连续函数的平均值)
定理 (平均值公式) 如果函数 f (z ) 在 | z z0 | R 内解析,
2i ez (e z )( n1) z 0 dz 1 z n ( n 1)! z 2i . ( n 1)!
例 计算 I
ez
| z | 2
( z 1)
2
2
dz .
i
C1
C
2
解 (1) 令f ( z )
ez
( z 1)
2 2
ez
(z i) (z i)
f ( z0 )
z z0
1 d z 2 π if ( z0 ). z z0
C
z0
D
一、柯西积分公式
定理 如果函数 f (z ) 在区域 D 内解析,
在边界 C 上连续,z0 D , 则
C
z
D
z0
G
证明 如图,以 z0 为圆心, 为半径作圆 G,则
(思路)
(跳过?)
二、柯西不等式
定理
设函数 f (z ) 在 | z z0 | R 内解析,且| f ( z ) | M , 则
|f
( n)
n! M ( z0 ) | , (n 1 , 2 , ) . n R
(柯西不等式)
证明R1 : 0 R1 R ,
函数 f (z ) 在 | z z0 | R1 上解析,
1 左边 f ( z0 ) 2π i 1 右边 2π i
Γ
f ( z0 ) dz , z z0 f (z) Γ z z0 dz ,
f (z) 1 C z z0 dz 2πi
| f ( z ) f ( z0 ) | 1 | 右边 左边 | Γ | z z0 | ds , 2π
§3.3 柯西积分公式
一、柯西积分公式 二、平均值公式 三、最大模原理
分析:
设 z0 D, 若 f (z) 在D内解析,则
f ( z) f ( z) d z闭路变形原理 z z0 z z0 d z C z z0
f z f z0 0
证 (1) | f (0) |
1 2π f ( z 0 R e i ) d θ . 2π 0
三、最大模原理
定理 (最大模原理) 如果函数 f (z ) 在 D 内解析,且不为常数,
则在 D 内 | f ( z ) | 没有最大值。 证明 (略) 理解 如图,函数 f (z ) 在解析区域 D 内任意一点 z0 的函数值是 以该点为圆心的圆周上所有
2 2
.
i
C2
如图,作 C1 , C2两个小圆, 则 I
C1
f ( z ) dz
C2
f ( z ) d z (复合闭路定理)
C1
dz ez dz 2 2 C2 ( z i )2 ( z i )2 (z i) (z i)
ez
记为
I1 I 2 .
例 计算 I 解 (2)I1
一、柯西积分公式
定理 如果函数 f (z ) 在区域 D 内解析,
在边界 C 上连续,z0 D , 则
C
z
D
z0
G
证明 | 右边 左边 |
(思路)
| f ( z ) f ( z0 ) | 1 Γ | z z0 | ds , 2π
1 2πδ , (当 充分小时) 2π
zi
πi cos i
πi (e e 1 ) . 2
例 计算 解
| z | 1 z100 d z .
ez
2πi 2πi z 99 . dz (e ) z 0 99! 99!
ez
| z | 1 z100
ez 例 求积分 n dz . ( n 为整数) z z 1
C2
cos z dz z
cos z (函数 在 | z 2 | 1 上解析) z
0.
(柯西积分定理)
例 计算 I
C
2z 1 dz , 其中 C 如图所示。 2 z z
C
C1 0 1 C2 2
2z 1 2z 1 解 令 f (z) 2 , , 则 f (z) z( z 1) z z
即只要 足够小,所证等式两边的差的模可以任意小,
故等式成立。
一、柯西积分公式
定理 如果函数 f (z ) 在区域 D 内解析,
在边界 C 上连续,z0 D , 则
C D
z
z0 G
意义 将 z0 换成 z,积分变量 z 换成 ,则上式变为
f (z)
1 2π i
f ( ) C z d , ( z D) .
证明(略)
意义 解析函数的导数仍解析。 高阶导数公式的作用, 不在于通过积分来求导, 而在于利用求导计算积分. f (z) 2πi ( n ) dz f ( z0 ) . 应用 反过来计算积分 C n 1 n! ( z z0 ) 推出一些理论结果。
解
| zi | 1
2π i cos z cos z dz 3 2! (z i)
根据柯西不等式有 | f ( z0 ) | 令 R , 即得 f ( z0 ) 0 , 由 z0 的任意性,知在全平面上有 f ( z ) 0 , 则 f (z ) 为一常数。
M , R
证(1) 任取正数 r 2 , (注意 f (z ) 在 | z | 2 上的性态不知道) 则函数 f (z ) 在 | z | r 内解析, 由高阶导数公式有
在 | z z0 | R 上连续, 则有
1 2π f ( z0 ) f ( z 0 R e i ) d θ . 2π 0
y
R C
z
z0
证明 由柯西积分公式有
f ( z0 )
1 f (z) | z z0 | R z z 0 d z 2π i
x
1 2 π f ( z0 R e i ) R e i i dθ 2πi 0 R e i
| z z | R
( n)
1
令 R1 R , 即得 | f
n! M ( z0 ) | , (n 1 , 2 , ) . n R
三、刘维尔定理
定理设函数 f (z ) 在全平面上解析且有界,则 f (z ) 为一常数。 证明 设 z0 为平面上任意一点,
R 0 , 函数 f (z ) 在 | z z0 | R 上解析,且 | f ( z ) | M ,
D
z0 G
z0
G
z0 G
点的函数值的平均值, 因此, | f ( z0 ) | 不可能达到最大,
除非 f (z ) 为常数。
三、最大模原理
推论 1 在区域 D 内解析的函数,如果其模在 D 内达到最大值, 则此函数必恒为常数。
推论 2 若 f (z ) 在有界区域 D 内解析,在 D 上连续,则 | f ( z ) | 在 D 的边界上必能达到最大值。
C
cos z dz , 其中 C 为: z
0
C1 1 2
C2
(1) C1 : | z | 1; (2) C2 : | z 2 | 1 . 解 (1) I
cos z dz z
2π i cos z
C1
在 | z | 1 上解析
z0
(柯西积分公式)
2πi .
(2) I
e 解 (1) n 0, n 在 z 1 上解析, z