东莞某水道特大桥健康监测系统研究设计

合集下载

桥梁健康监测系统的设计

桥梁健康监测系统的设计

桥梁健康监测系统的设计桥梁是连接不同岸之间的重要交通枢纽,具有重要的交通作用。

由于长期受风吹雨打和车辆经过的振动等因素的影响,桥梁结构容易出现裂纹、损伤和变形等问题,这些问题可能对桥梁结构的安全性和稳定性产生严重影响。

对桥梁结构进行健康监测,及时发现和处理结构问题,对于提高桥梁的安全性和使用寿命具有非常重要的意义。

目前,随着科技的发展和应用,桥梁健康监测系统的设计已经成为了桥梁管理和维护的重要环节。

桥梁健康监测系统主要包括对桥梁结构的变形、振动、裂缝、温度等多个方面的监测和数据采集,并通过数据分析和处理,实现对桥梁结构健康状况的实时监测和评估。

本文将对桥梁健康监测系统的设计进行详细的介绍,包括系统的构成和原理、监测技术和方法、数据处理和分析等内容,旨在为桥梁管理和维护提供参考。

桥梁健康监测系统主要包括传感器、数据采集器、数据传输系统、数据处理和分析系统等多个组成部分。

传感器用于对桥梁结构的各项参数进行监测,如变形、振动、温度等;数据采集器用于对传感器采集的数据进行采集和存储;数据传输系统用于将采集的数据传输至数据处理和分析系统;数据处理和分析系统用于对数据进行分析和处理,实现对桥梁结构健康状况的实时监测和评估。

1. 传感器传感器是桥梁健康监测系统的核心组成部分,其主要功能是对桥梁结构的各项参数进行监测。

传感器的选择应根据不同监测参数的性质和特点进行,常用的传感器有应变计、加速度计、温度计、位移传感器等。

应变计用于测量桥梁结构的应变变化,加速度计用于测量桥梁结构的振动情况,温度计用于测量桥梁结构的温度变化,位移传感器用于测量桥梁结构的变形情况。

2. 数据采集器数据采集器是用于对传感器采集的数据进行采集和存储的设备,其主要功能是实现对采集的数据进行实时监测和存储,并将数据传输至数据处理和分析系统。

数据采集器的选择应根据采集的数据类型和量级进行,可选择合适的采集器进行配置。

桥梁健康监测系统的构成和原理如上所述,其主要包括传感器、数据采集器、数据传输系统和数据处理和分析系统。

大桥结构健康监测方案 (2)

大桥结构健康监测方案 (2)

大桥结构健康监测方案
大桥结构健康监测方案可以包括以下几个方面:
1. 传感器安装:在大桥的关键位置安装传感器,以测量和
监测桥梁结构的各种参数,如挠度、应力、应变、位移等。

传感器的类型可以包括应变计、加速度计、位移传感器等。

2. 数据采集系统:搭建一个用于采集传感器数据的系统。

这可以是一个现场采集系统,也可以是一个远程监测系统。

系统应该能够实时采集数据,并对数据进行分析和处理。

3. 数据分析:使用合适的数据分析方法,对采集到的大桥
结构数据进行处理和分析。

这可以包括盖帽分析、频域分析、模态分析等。

通过分析数据,可以了解桥梁的健康状态,以及是否出现了损伤或变形等问题。

4. 健康评估与预警:根据数据分析的结果,对桥梁的健康
状态进行评估,判断是否需要进行维护和修复工作。

如果
发现了潜在的问题或存在风险,应及时发出预警,并采取
相应的措施来保证桥梁的安全运营。

5. 数据可视化:将数据和分析结果以可视化的方式展示,
方便用户对大桥结构健康状态进行监测和管理。

这可以采
用图表、图像、地图等形式来呈现,并提供实时更新的功能。

6. 定期检测与维护:除了实时监测,还需要定期对大桥进
行检测和维护。

定期检测可以包括视觉检查、超声波检测、磁粉检测等多种方法,以进一步确认桥梁的健康状况,并
及时修复可能存在的问题。

通过以上方案,能够实现对大桥结构的持续健康监测,及
时发现和处理潜在问题,确保桥梁的安全运营。

桥梁健康监测系统的设计

桥梁健康监测系统的设计

桥梁健康监测系统的设计桥梁健康监测系统的设计是为了实时监测和评估桥梁的结构健康状况,及时发现潜在的结构问题,并采取相应的维修措施,保障桥梁的安全运行。

该系统的设计可以分为硬件和软件两个方面。

硬件方面,桥梁健康监测系统主要包括传感器、数据采集设备和通信设备。

传感器用于测量桥梁的结构参数,如挠度、应变、位移等,常用的传感器有应变计、加速度计、位移传感器等。

数据采集设备用于实时采集传感器的数据,并进行初步的处理和存储。

通信设备用于传输采集到的数据到监测中心,常用的通信设备有无线、有线和卫星通信等。

软件方面,桥梁健康监测系统主要包括数据处理和分析软件、预警软件和远程监测软件。

数据处理和分析软件用于对采集到的数据进行处理和分析,提取有用的信息,并生成结构健康评估报告。

预警软件用于监测桥梁的结构参数是否超过设定的阈值,一旦超过,系统将发出预警信号,通知相关人员进行及时处理。

远程监测软件用于远程监控和管理桥梁健康监测系统,可实时查看桥梁的结构参数和状态,以及进行远程控制和维护。

桥梁健康监测系统的设计需要考虑以下几个关键因素。

传感器的选型和布置需要考虑到测量的参数和精度要求,不同的桥梁结构可能需要不同类型和数量的传感器。

数据采集设备需要具备较高的采样频率和存储容量,以确保采集到的数据能够准确反映桥梁的健康状况。

通信设备需要具备较高的稳定性和可靠性,以确保数据能够实时传输到监测中心。

在软件设计方面,需要考虑到数据处理和分析的算法和模型的选择,以及预警和远程监测的逻辑和界面设计。

数据处理和分析的算法和模型可以采用传统的数学方法,如频域分析、时域分析等,也可以采用机器学习和人工智能等先进的技术。

预警和远程监测的逻辑和界面设计需要简洁直观,易于使用和操作,以方便相关人员进行监测和管理工作。

桥梁健康监测系统的设计是一个复杂的工程,需要充分考虑硬件和软件两个方面,以及传感器、数据采集设备、通信设备和软件系统的选型和配置。

只有在设计过程中充分考虑到实际需求和技术要求,才能设计出稳定可靠、功能强大的桥梁健康监测系统,为桥梁的安全运行提供有效的保障。

桥梁健康监测系统的设计

桥梁健康监测系统的设计

桥梁健康监测系统的设计桥梁是连接城市和交通要道的重要设施,它的安全和健康状况直接关系着人们的出行和生活安全。

随着时间的推移,桥梁结构会受到各种自然和外部因素的影响,可能会出现裂缝、变形、腐蚀等问题,因此需要对桥梁进行定期的健康监测和评估。

随着科技的发展,桥梁健康监测系统已经成为了桥梁管理的重要工具。

本文将针对桥梁健康监测系统的设计进行讨论。

一、桥梁健康监测系统的意义桥梁健康监测系统是指利用先进的传感器技术、数据采集系统和信息处理技术,对桥梁结构进行实时、连续的健康监测和评估。

这种系统可以实时收集桥梁结构的信息,对桥梁结构的健康状况进行评估,及时发现结构的异常变化,提前预警,保障桥梁的安全使用。

它的意义主要表现在以下几个方面:1. 提高桥梁的安全性和可靠性。

通过监测桥梁的结构变形、应力、裂缝等情况,可以及时发现潜在的问题,采取措施加以修复,提高桥梁的安全性和可靠性。

2. 延长桥梁的使用寿命。

通过科学合理的监测和评估,可以及时发现桥梁的结构状况,采取适当的维护措施,延长桥梁的使用寿命。

3. 降低维护成本。

定期的健康监测可以获取更准确的桥梁结构情况,使维护更加有针对性,减少不必要的维护成本。

4. 提升桥梁管理水平。

桥梁健康监测系统可以为桥梁管理部门提供丰富的数据信息,帮助其科学决策,提升桥梁管理水平。

1. 传感器技术。

传感器是桥梁健康监测系统的核心设备,其选择和布置直接影响监测系统的效果。

常见的传感器包括应变传感器、位移传感器、加速度传感器等,它们可以监测结构的变形、振动、应力等情况。

传感器的选型应综合考虑监测的参数、精度、稳定性、环境适应能力等因素。

2. 数据采集系统。

传感器采集到的数据需要进行实时、准确的采集和存储,因此需要一个高效稳定的数据采集系统。

数据采集系统的设计应考虑到传感器的种类和数量,数据的传输方式和容量等因素。

3. 信息处理技术。

监测系统采集到的数据需要进行处理和分析,提取出有用的信息,为后续的评估和决策提供支持。

桥梁健康监测系统的设计

桥梁健康监测系统的设计

桥梁健康监测系统的设计桥梁在现代社会中扮演着重要的角色,连接着城乡、沟通着交通、承载着重要的交通和物流。

由于桥梁长期的风吹雨打和车辆的频繁行驶,桥梁的健康状况一直备受关注。

为了保障桥梁的安全和可靠性,桥梁健康监测系统应运而生。

本文将对桥梁健康监测系统的设计进行详细介绍,从整体结构、传感器选择、数据采集与处理、监测方法以及应用实例等方面进行阐述,希望能够为相关领域的研究和实践提供一些参考。

一、桥梁健康监测系统的整体结构桥梁健康监测系统的整体结构通常包括传感器、数据采集系统、数据传输系统、数据处理与分析系统以及信息展示与应用系统等组成部分。

传感器是整个系统的核心,用于实时感知桥梁的结构变化和环境参数;数据采集系统负责将传感器采集到的数据进行实时采集和存储;数据传输系统将采集到的数据通过有线或无线通信方式传输到数据处理与分析系统;数据处理与分析系统对传感器采集到的数据进行处理、分析和挖掘,发现桥梁的结构健康状态;信息展示与应用系统则向工程师和用户展示监测结果,并为决策提供依据。

二、传感器的选择传感器是桥梁健康监测系统的核心部件,传感器选择的合理与否直接影响着桥梁监测系统的性能和精度。

在桥梁健康监测系统中,通常会采用应变传感器、加速度传感器、位移传感器、温度传感器等多种传感器来对桥梁进行全面监测。

应变传感器用于监测桥梁的受力情况,加速度传感器用于监测桥梁的振动情况,位移传感器用于监测桥梁的变形情况,温度传感器用于监测桥梁的温度情况。

传感器的选择应根据具体的监测需求和桥梁的特点来决定,既要考虑监测的全面性和准确性,也要考虑成本和维护的便捷性。

三、数据采集与处理数据采集系统负责将传感器采集到的数据进行实时采集和存储。

在数据采集过程中,需要考虑数据的实时性和准确性,特别是对于桥梁动态监测来说,数据的实时性至关重要。

数据处理与分析系统则负责对采集到的数据进行处理、分析和挖掘,发现桥梁的结构健康状态。

在数据处理与分析过程中,通常会采用信号处理、模式识别、统计分析等方法来对数据进行处理和分析,以发现桥梁的潜在问题和隐患。

大桥结构健康监测系统解决方案

大桥结构健康监测系统解决方案
深度学习技术
• 利用深度学习技术进行数据分析
• 提高数据分析准确性和效率
人工智能算法
• 应用人工智能算法进行结构健康状况评估
• 提高评估结果的可靠性和客观性
数据可视化
• 采用数据可视化技术展示监测结果
• 提高数据处理和管理的效率
大桥结构健康监测系统的智能化与自动化

智能化监测系统
• 自动识别桥梁结构异常行为
• 根据噪声特点,选择合适的去噪算法
02
数据滤波
• 采用低通滤波、高通滤波等方法对数据进行滤波处理
• 根据信号特点,选择合适的滤波器类型和参数
03
数据归一化
• 对数据进行归一化处理,消除量纲影响
• 选择合适的归一化方法,如最大最小归一化、Z-score归
一化等
监测数据的分析方法
01
统计分析方法
• 计算桥梁结构的平均值、方差等统计量
数据采集
• 数据采集设备按照设定的采样频率实时采集传感器数据
• 数据采集过程中进行数据校验,确保数据质量
数据处理
• 数据处理软件对采集到的数据进行去噪、滤波等预处理操作
• 根据需要,对数据进行特征提取和数据融合
03
大桥结构健康监测数据分析与评估
监测数据的预处理
01
数据去噪
• 采用中值滤波、均值滤波等方法去除数据中的噪声
• 选择加速度计或速度计
• 根据桥梁结构特点选择合适的传感器类型和规格
倾斜传感器
• 用于测量桥梁结构倾斜角度
• 选择水平仪或角度计
• 根据桥梁结构特点选择合适的传感器类型和规格
传感器部署策略

传感器部署原则
• 确保传感器在关键部位布置

( 工程文档)东莞水道特大桥施工组织设计方案

( 工程文档)东莞水道特大桥施工组织设计方案

五环路西环段)东莞水道特大桥工程施工组织设计前言为圆满完成东莞市五环路西环路)东莞水道特大桥工程,根据招标文件,在认真阅读和充分理解设计意图及对施工现场作详细调查的基础上,并结合我单位的施工经验,以信守合同、确保工期和质量、合理控制工程造价、优质高效文明施工为指导思想,编制本工程施工组织。

tkArhofbSG在编制过程中,我们立足于专业化、机械化、标准化、科学化施工,重点工序重点安排,特殊部位特殊考虑,并结合工期和工程实际进行统筹,尽量做到现场布置合理,方案切合实际,施工组织科学得当,以便为优质高效完成该项工程奠定基础。

tkArhofbSG第一章编制依据及原则第一节编制依据一、《东莞市五环路西环路)东莞水道特大桥工程招标文件》以及施工图纸。

二、规范与规程1、《公路桥涵设计规范》1989年版合订本)2、《公路工程技术标准》JTJ001-97)3、《公路工程抗震设计规范》JTJ004-89)4、《公路斜拉桥设计规范》试行)JTJ027-96)5、《公路桥涵施工技术规范》JTJ041-2000)6、《钢结构设计规范》CBJ17-88)7、《公路桥位勘测设计规范》JTJ062-91)8、《城市桥梁设计准则》CJJ11-93)9、《公路桥梁抗风设计指南》10、《钢管砼结构设计与施工规程》CECS28:90)11、《钢纤维砼结构设计与施工规程》CECS38:92)12、《铁路钢桥制造规范》TB10212-98)三、我单位类似工程的实绩和已有的装备。

第二节编制原则一、充分响应招标文件,严格执行技术规范。

二、实事求是,施工方案可行、适用、经济。

三、推行全面质量管理,执行ISO9002质量管理标准和程序。

四、采用工程法组织施工,推行标准化管理,达到安全、文明、高效。

五、坚持技术创新,推广和应用“四新”成果。

第二章工程概述第一节工程简况一、工程简介东莞市五环路西环段)东莞水道特大桥工程主要为东莞市五环过境路西环段工程中的一座特大桥,位于东莞水道上,起点桩号K5+158.6,终点桩号K5+960,全长801.4M。

桥梁健康监测系统的设计

桥梁健康监测系统的设计

桥梁健康监测系统的设计【摘要】本文介绍了桥梁健康监测系统的设计,主要包括系统整体设计、传感器选型、数据采集与处理、远程监测和预警以及系统应用场景等内容。

通过引出桥梁监测的重要性和需求。

系统整体设计部分介绍了桥梁监测系统的整体结构和组成,为后续内容奠定基础。

传感器选型部分详细介绍了不同传感器的特点和在监测系统中的应用。

数据采集与处理部分探讨了数据采集的方法和数据处理的技术。

远程监测和预警部分介绍了如何实现远程监测和预警功能,提高桥梁的安全性和稳定性。

系统应用场景部分列举了桥梁监测系统在不同场景下的应用案例,展示了其实用性和重要性。

结论部分总结了桥梁健康监测系统的设计过程,并展望了未来的发展方向。

通过本文的介绍,读者可以深入了解桥梁监测系统的设计原理和应用价值。

【关键词】桥梁健康监测系统、设计、引言、系统整体设计、传感器选型、数据采集与处理、远程监测和预警、系统应用场景、结论1. 引言1.1 引言在现代社会,桥梁作为交通运输的重要组成部分,承担着连接城市、促进经济发展的重要角色。

随着桥梁使用年限的增长,桥梁的健康状况逐渐成为社会关注的焦点。

为了及时发现潜在的结构问题并采取相应的修复措施,桥梁健康监测系统应运而生。

桥梁健康监测系统是通过安装传感器和数据采集设备来实时监测桥梁的结构和运行情况,通过数据采集、处理和分析,实现对桥梁健康状况的评估。

这种系统可以帮助工程师及时了解桥梁的综合健康状况,预防事故的发生,延长桥梁的使用寿命。

本文将介绍桥梁健康监测系统的设计原则、传感器选型、数据采集和处理方法、远程监测和预警系统的搭建,以及系统在不同应用场景下的具体应用。

通过对桥梁健康监测系统的设计及应用进行深入探讨,旨在提高桥梁的安全性和可靠性,为保障交通运输安全和城市发展做出贡献。

2. 正文2.1 系统整体设计系统整体设计是桥梁健康监测系统的核心部分,它包括了系统的架构设计、功能模块设计、通信协议设计等方面。

在系统架构设计上,我们采用了分层结构,将系统分为传感器层、数据采集与处理层、远程监测与预警层和用户界面层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东莞某水道特大桥健康监测及诊断系统研究设计陈烁钊摘要:桥梁是重要的道路交通设施,也较容易产生安全隐患,一旦发生安全事故必将造成巨大人员伤亡和财产损失。

根据《城市桥梁养护技术规范(CJJ99-2003)》要求,为防患于未然,东莞市某水道特大桥计划实施健康监测及诊断系统。

由于可资参考项目不多,成熟经验较少,本文所介绍的系统基本思路和构成,对桥梁安全管理具有一定的现实指导意义。

关键字:城市桥梁健康监测及诊断系统研究设计引言:近年来,国内外桥梁频发安全事故,特别是大型桥梁,如美国明尼苏达州一座跨越密西西比河的大桥坍塌事故、我省九江大桥撞击事故、重庆綦江彩虹桥垮塌事故、湖南沱江凤凰城大桥事故等,都给广大人民群众造成巨大人员伤亡和财产损失。

根据美国桥梁管理和养护协会提供的不完全统计资料,桥梁的破坏呈早期与后期高危险的“盆”式曲线。

我国自上世纪八十年代以来,由于经济的高速发展,在短短二十年的时间内,一大批结构新颖、造型优美的超大、特大型现代化桥梁以极快的速度出现在各条国、省道干线公路和城市主干路跨越江、河、湖、海湾的咽喉控制部位。

相继建设完成世界上最大跨径的钢管拱桥(卢浦大桥、主跨550米)、世界上最大跨径斜拉桥(苏通大桥,主跨1088米)、世界上第二大跨径悬索桥(西堠门大桥、主跨1650米)等等世界顶级桥梁。

目前,中国桥梁设计和建设水平已跻身世界强国之列。

相对大桥的设计和建设水平,国内大型桥梁管理方式仍比较落后,诸多桥梁仍处于只建不养或养护管理不到位的现状,以致不少桥梁长期带病工作,甚至出现突发性破坏事故,造成了巨大的损失。

根据近年来我们所完成的桥梁检测工作,经分析研究,危及我市城市桥梁安全的病害及其成因主要有以下8类。

1、砌体结构开裂;2、梁板整体性差,单梁板受力现象突出;3、钢筋混凝土双曲拱、刚架拱、肋拱刚度偏小;4、大跨度连续箱梁、T 构跨中下挠、梁体开裂;5、地基基础软弱,桩基下沉;6、道路升级改造加大既有桥梁荷载;7、河道污水腐蚀桥梁下部结构;8、附属设施缺失,桥梁伸缩缝状况较差。

因此加强桥梁运营期间管理,对于重要的桥梁实施安全监控,及时掌握桥梁的安全状态,对保障道路通行安全具有十分重要的意义。

一、项目概况东莞市大汾北水道特大桥位于市区环城路,跨越大汾北水道三叉交汇口,主桥桥型为单孔128m下承式钢管混凝土系杆拱桥。

每幅桥设2片拱肋,全桥拱肋共46对92根吊杆。

桥面系由横梁、加劲纵梁和π型车行道板及桥面后浇层组成。

下部结构主墩墩身及承台设为两个分离式钢筋砼结构,主墩基础每墩8根φ180的钻孔灌注桩,墩身采用空心闭合箱型截面。

桥面按双向八车道外加人行道设计。

横桥向分为左右两幅完全独立且对称的桥,每幅桥面宽24m,具体组成为:3.75m(人行道)+0.5m(防撞护栏)+15.5m(车行道)+ 0.5m (防撞护栏)+ 3.75m(过桥水管和检修道)。

桥梁整体布置图见下图。

设计荷载:汽车—超20,挂车—120。

人群荷载3.5KN/m2(按人行道净宽2.85m布载)。

该桥2005年4月28日建成通车,目前车流量约每天约10万车次。

由于车流量密集,重型车辆多,一旦发生事故,后果将非常严重。

为及时掌握桥梁运行状况,防患于未然,根据《城市桥梁养护技术规范(CJJ99-2003)》要求计划在该桥实施安全监控系统。

大汾北水道特大桥主桥平立面布置图(单位:cm)二、系统需求及设计原则影响桥梁安全运行有各种各样因素,其中危害最大的主要是结构内力状态改变、结构损伤及两种因素综合作用。

由于桥梁所处环境各异,在分析产生以上因素时,必须充分考虑周围环境及交通荷载等动态状况的影响。

(一)本系统具体包括如下几个方面内容:1、对交通荷载状况进行监测,确定桥梁实际运营荷载水平及其对今后可能增长的交通荷载的承受适应能力,控制超限运输对桥梁结构造成的不利影响;2、对桥梁运营状态下应力、变形以及变位等响应进行监测,掌握桥梁的实际受力状态和使用工作状况,评估不同应力和变形变位水准下结构的安全可靠度,并通过疲劳分析等理论确定构件或结构的使用寿命,预报可能存在的隐患或质量衰退;3、对桥梁的振动响应进行监测分析,掌握其动力性能,判断是否有对大桥有害的振动,并为损伤识别、抗风抗震性能评估提供依据;4、纪录大桥可能经历的重大荷载及事故历程,如地震、超重交通荷载以及被车、船等撞击情况下的状况,并判断大桥是否因此而损伤;5、对大桥所处环境及关键部位长期变化进行监测,通过时间序列分析,及时查明大桥关键部位的变化趋势与变化规律,进而判断大桥可能存在的质量隐患、可能发展态势及其对结构安全运营造成的潜在威胁,为大桥评估、养护以及维修加固提供科学依据;6、设定大桥安全预警值,提供等级预警信息。

大桥在运营中若某种响应超过预警值,会及时给出警报,提示出现非正常荷载或大桥某部位性能退化,以便加强大桥检查或加固维修。

(二)根据以上需求,确定东莞市大汾北水道特大桥安全监控系统的设计原则:1、根据桥梁的结构特点,把握影响结构安全的主要因素,建立一套功能齐备、性能完善、经济合理的健康监测及诊断系统;2、采用技术成熟的系统配套产品,保证系统的准确性、稳定性;3、采用模块化设计,保证系统的可替换性、经济性;4、采用开放式系统设计,保证系统具有良好的升级、远程数据共享及监控功能;5、设置适度冗余的传感器及相关设备,保证系统的可靠性,并满足系统改进、扩展和完善的需求;6、采用日常监测和定期监测相结合的办法,减少数据采集量和后处理难度;7、设计强大、合理、易用的前、后处理模块,以有效处理、分析和管理采集的数据。

(三)根据以上原则,监控系统要达到如下目标要求:1、为大桥运营期科学有序的监测巡检养护运营管理提供一个平台;2、尽早发现桥梁结构自身及行车所面临的危险状况,能够在桥梁结构危险萌芽阶段发出预警;3、有效的掌控运营期大桥的结构使用状态,在结构安全及行车安全受到威胁的情况下采取适当的措施实现主动安全控制,切实提高结构的全寿命安全度;4、制定合理的预防性养护措施,有效降低大桥运营成本,为桥梁结构的科学养护维修提供依据;5、建立损伤及内力状态管理机制,追踪其演变过程,推测其预期的发展,并为制定相应的大桥管养对策提供技术支持;6、为桥梁管理者提供桥梁的巡检养护手册以指导并规范其养护行为,有效提高和保障桥梁运营的检测、养护和管理水平;7、辅助大桥管养者制定高效、经济、合理的运营管养措施,最大限度延长桥梁的安全使用年限。

三、系统设计总体框架桥梁结构健康监测及诊断系统是一个系统工程,其核心任务是获得环境荷载以及结构的响应、局部损伤等信息,在对监测信息进行综合评估的基础上获得行车和结构的双重安全状态信息。

为了更好地完成上述目标要求,系统主要包括以下内容:1、传感器监测子系统。

用于信号监测,主要将各类监测信号转换为电(光)信号作为监测评估的依据,为结构安全、高效、经济运营提供技术支持。

2、电子化人工巡检养护管理子系统。

用于制订桥梁的巡检体制以及巡检养护手册,并要求运营期根据手册设定的结构巡检任务,安排人员设备进行定时、定量、程序化的系统巡检,完成巡检的管理、记录、归档、分析和评估等工作;3、数据采集与远程传输子系统。

采集准确、可靠、具有代表性、如实反映结构状态的各种特征信息,并通过网络传输到数据处理中心直接关系到桥梁健康监测系统能否对桥梁结构的健康状态作出正确的评估,能否为验证设计和桥梁管养提供科学的依据。

4、数据处理与控制子系统。

对数据采集系统收集到的数据进行筛选与挖掘,将有效数据通过远程传输到远程监控中心数据处理与控制服务器。

5、综合安全评估子系统。

根据监测数据进行结构状态与损伤识别,并综合识别的结果以及人工巡检结果对桥梁结构的安全使用状况进行评估。

包括结构评估识别子系统和结构安全控制辅助决策子系统。

6、中心数据库子系统。

各子系统数据的支撑系统,完成数据的归档、查询、存储等工作。

桥梁结构健康监测及诊断系统总体框架系统安全的信息来源于两个主要途径,一是利用自动传感测试系统获得力学指标的监测结果,二是利用人工巡检获得损伤的直接监测结果。

对于损伤信息,系统可以直接进行记录与简单的分析;对于力学监测指标则通过状态识别、损伤识别及无模型预警获得相关的信息。

最后利用综合评估模块对以上损伤及状态信息进行综合评估从而获得直观、简洁、易懂、对养护管理具有现实指导意义的桥梁结构综合评估报告,具体框图如下。

结构健康监测及安全监控预警系统总体结构四、传感器监测子系统传感器模块的核心任务是获得环境荷载以及结构的响应、局部损伤等信息,主要将各类监测信号转换为电(光)信号作为监测评估的依据,为结构安全、高效、经济运营提供技术支持。

(一)监测内容及测点布置桥梁的工作环境包括风力风向、环境温度湿度、车辆荷载等多方面的因素,这些因素对结构的影响都是直接且重要的。

根据东莞大汾北水道特大桥的具体情况,主要监测内容包括:环境风、温度、湿度监测;结构几何状态,包括主拱肋线形监测、主梁线形监测及基础沉降监测;结构响应与损伤,包括应力监测及吊杆索力监测;动态特性与振动响应,包括结构的频率、振型和阻尼特性,振动响应监测;交通荷载源,包括超重、超限、超速车辆特征、运营车辆荷载的统计特性等。

具体测点及监测项目详见下表。

大汾北水道特大桥监测项目及测点布置(单幅)(二)设备选型设备选型直接影响到系统运行的可靠度、维护及工程造价。

无疑设备选型是系统建设的重要环节。

本系统设备选型遵循如下原则。

1、传感器测试元件以及监测仪表的好坏从根本上决定了整个系统中自动化测试数据采集传输是否有效。

由于国内外生产、销售可用于土木工程结构监测、监测设备很多,各厂家生产的传感器性能及价格千差万别,即便是同一类型的传感器,不同型号技术性能和价格亦不尽相同,因此在进行系统监测仪器的选择上宜以可靠、精确、耐久、简便、经济实用、自动化程度及可更换性等为原则。

具体如下:(1)选择合适的传感器精度,根据桥型及环境状况选择合适的传感器布设位置;(2)传感器应能保证长期稳定工作,须选用国内外知名品牌以满足长期健康监测服务的需要,寿命要至少在10年以上;(3)传感器应具有较适合的频响范围以满足指定时间的实时监测的需要,应能够较容易满足组网使用的要求,主要传感器尽量选用相同类型;(4)采用高质量数据传输线,以保障使用寿命及数据可靠性。

2、索力测试设备对于桥梁索结构的索力监测,目前国内外尚无经过长期工程实践传感器,业界基本采用直接测力法、振动频率法和磁通量法。

(1)直接测力法,主要是指通过监测应变方式或采用油压方式直接获得索力,如直接安装在拉索锚头端的压力环式整体索力计、直接在拉索中布设光纤光栅传感器等,采用此方法测试精度高,但其仍处于研发阶段,其使用性能、耐久性和可靠性均没有得到工程的长期考验,而且其安装复杂,不可更换,因直接参与受力,对结构的安全性影响有待于长时间考证,尽管在大桥结构的监测系统中部分已使用,但是仍需慎重考虑。

相关文档
最新文档