2018-2019中考数学专题训练:圆的证明与计算题
中考数学压轴题专项练习:圆的证明与计算题及答案

题库:圆的证明与计算题1.如图,AB是⊙O的直径,点D是»AE上的一点,且∠BDE=∠CBE,BD与AE 交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长.第1题图(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠BDE=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)解:∵BD平分∠ABE,∴∠ABD=∠DBE,如解图,连接DO,第1题解图∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴PDPE=POPB,∵P A=AO,∴P A=AO=OB,∴POPB=23,∴PDPE=23,∴PDPD+DE=23,∵DE=2,∴PD=4.2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cos A=25,求DF的长.第2题图(1)证明:如解图,连接OD,第2题解图∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∵OD是⊙O的半径,G∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G ,∴AG =12AE =2.∵cos A =AG OA =2OA =25,∴OA =5,∴OG =OA 2-AG 2=21,∵∠ODF =∠DFG =∠OGF =90°,∴四边形OGFD 为矩形,∴DF =OG =21.3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD .(1)求证:AD =AN ;(2)若AB =42,ON =1,求⊙O 的半径.第3题图(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD ,∴∠BAM =∠BAD ,在△ANE 与△ADE 中,⎩⎪⎨⎪⎧∠BAM =∠BAD AE =AE∠AEN =∠AED, ∴△ANE ≌△ADE (ASA),∴AN =AD ; (2)解:∵AB=42,AE ⊥CD ,∴AE =12AB =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,如解图,连接AO ,则AO =OD =2x -1,第3题解图 ∵△AOE 是直角三角形,AE =22,OE =x -1,AO =2x -1,∴(22)2+(x-1)2=(2x-1)2,解得x1=2,x2=-43(舍),∴AO=2x-1=3,即⊙O的半径为3.4.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.(1)求证:∠1=∠F;(2)若sin B=55,EF=25,求CD的长.第4题图(1)证明:如解图,连接DE.第4题解图∵BD是⊙O的直径,∴∠DEB=90°.∵E是AB的中点,∴DA=DB,∴∠1=∠B. ∵∠B=∠F,∴∠1=∠F;(2)解:∵∠1=∠F,∴AE=EF=25,∴AB=2AE=4 5.在Rt△ABC中,AC=AB·sin B=4,∴BC=AB2-AC2=8.设CD=x,则AD=BD=8-x.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即42+x2=(8-x)2,解得x=3,∴CD=3.5.如图,直线DP和⊙O相切于点C,交直径AE的延长线于点P,过点C作AE 的垂线,交AE于点F,交⊙O于点B,作Y ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的度数.第5题图(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵CB ⊥AE ,∴AD ⊥AE ,∴∠DAO =90°,又∵直线DP 和⊙O 相切于点C ,∴DC ⊥OC ,∴∠DCO =90°,∴在Rt △DAO 和Rt △DCO 中,⎩⎨⎧DO =DO AO =CO, ∴Rt △DAO ≌Rt △DCO (HL),∴DA =DC ;(2)解:∵CB ⊥AE ,AE 是⊙O 的直径,∴CF =FB =12BC ,又∵四边形ABCD 是平行四边形,∴AD =BC ,∴CF =12AD ,又∵CF ∥DA ,∴△PCF ∽△PDA ,∴PC PD =CF AD =12,即PC =12PD ,DC =12PD .由(1)知DA =DC ,∴DA=12PD ,∴在Rt △DAP 中,∠P =30°.∵DP ∥AB ,∴∠F AB =∠P =30°,又∵∠ABE =90°,∴∠AEB =90°-30°=60°.6.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:∠ABD =∠ADE ;(2)若⊙O 的半径为256,AD =203,求CE 的长.第6题图(1)证明:如解图,连接OD .第6题解图∵DE 为⊙O 的切线,∴OD ⊥DE ,∴∠ADO +∠ADE =90°.∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°.∴∠ADE =∠ODB ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ABD =∠ADE ;(2)解:∵AB =AC =2×256=253,∠ADB =∠ADC =90°,∴∠ABC =∠C ,BD =CD .∵O 为AB 的中点,∴OD 为△ABC 的中位线,∴OD ∥AC ,∵OD ⊥DE ,∴AC ⊥DE ,在Rt △ACD 中,CD =AC 2-AD 2=(253)2-(203)2=5, ∵∠C =∠C ,∠DEC =∠ADC =90°, ∴△DEC ∽△ADC ,∴CEDC=DCAC,即CE5=5253,∴CE=3.7.如图,在△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB,点E是BC上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.第7题图(1)证明:如解图①,连接OD,第7题解图①则∠DOB=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,即OD ⊥AB ,又∵OD 是⊙O 的半径, ∴AB 是⊙O 的切线.(2)解:如解图②,过点O 作OM ⊥CD 于点M ,连接DE ,第7题解图②∵OD =OE =BE =12BO ,∠BDO =90°, ∴∠B =30°, ∴∠DOB =60°, ∴∠DCB =30°, ∴OC =2OM =2, ∴OD =2,∴BD =OD tan60°=2 3.8.如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接P A ,AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D . (1)求证:P A 是⊙O 的切线;(2)若cos ∠CAO =45,且OC =6,求PB 的长.第8题图1)证明:如解图,连接OB,(∵OA=OB,∴∠OAB=∠OBA,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴P A=PB,∴∠P AB=∠PBA,∴∠P AO=∠PBO.∵PB为⊙O的切线,∴∠OBP=90°,∴∠P AO=90°,∵OA 为⊙O 的半径, ∴P A 是⊙O 的切线; (2)解:∵cos ∠CAO =45,∴设AC =4k ,AO =5k ,由勾股定理可知OC =3k , ∴sin ∠CAO =35,tan ∠COA =43, ∴CO OA =35,即6OA =35,解得OA =10, ∵tan ∠POA =tan ∠COA =AP AO =43, ∴AP10=43,解得AP =403, ∵P A =PB , ∴PB =P A =403.9.如图,在△ABC 中,以BC 为直径的⊙O 交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =23,tan ∠AEC =53,求⊙O 的直径.第9题图(1)证明:∵BC 是⊙O 的直径, ∴∠BDC =90°, ∴∠ABC +∠DCB =90°, ∵∠ACD =∠ABC , ∴∠ACD +∠DCB =90°, ∴∠ACB =90°, 即BC ⊥CA ,又∵BC 是⊙O 的直径, ∴CA 是⊙O 的切线;(2)解:在Rt △AEC 中,tan ∠AEC =53, ∴AC EC =53,EC =35AC .在Rt △ABC 中,tan ∠ABC =23, ∴AC BC =23,BC =32AC . ∵BC -EC =BE =6,∴32AC -35AC =6,解得AC =203, ∴BC =32×203=10, 即⊙O 的直径为10.10.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:DE⊥AC;(2)若AB=10,AE=8,求BF的长.第10题图(1)证明:如解图,连接OD,AD,第10题解图∵DE与⊙O相切于点D,∴OD⊥DE.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴D为BC中点,又∵O为AB中点,∴OD∥AC,∴DE⊥AC;(2)解:∵AB=10,∴OB=OD=5.由(1)知OD∥AC,∴△ODF∽△AEF,∴ABBFOBBFAFOFAEOD++==,设BF=x,则有10585++=xx解得x=310,∴BF=310.11.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.第11题图(1)证明:如解图,连接OC.第11题解图∵AC 平分∠BAD ,∴∠OAC =∠CAD , 又∠OAC =∠OCA ,∴∠OCA =∠CAD , ∴CO ∥AD . 又CD ⊥AD , ∴CD ⊥OC ,又∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线;(2)解:在Rt △ADE 中,∵AD =6,DE =8, 根据勾股定理得:AE =10, ∵CO ∥AD , ∴△EOC ∽△EAD , ∴ADOCEA EO =. 设⊙O 的半径为r ,∴OE =10-r .∴61010rr -=, ∴r =415,∴BE =10-2r =25;(3)证明:如解图,过点C 作CG ⊥AB 于点G . ∵∠OAC =∠CAD ,AD ⊥CD , ∴CG =CD ,在Rt △AGC 和Rt △ADC 中, ∵CG =CD ,AC =AC ,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD.又∵∠BAC=∠CAD,∴BC=CF,在Rt△CGB和Rt△CDF中,∵BC=FC,CG=CD,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF.∵AG+GB=AB,∴AD+DF=AB,即AF+2DF=AB.12.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求BD︵的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB·EF.第12题图(1)解:如解图,连接OD,第12题解图∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,BC =10, ∴OB =5, ∴l BD ︵=72π×5180=2π;(2)解:DE 是⊙O 的切线;理由如下: ∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°, 又∵点E 是线段AC 中点, ∴DE =12AC =EC , 在△DOE 与△COE 中, ⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE, ∴△DOE ≌△COE (SSS). ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线;(3)证明:由(2)知,△DOE ≌△COE , ∴OE 是线段CD 的垂直平分线,∴点F 是线段CD 中点,∵点E 是线段AC 中点,则EF =12AD ,∵∠BAC =∠CAD ,∠ADC =∠ACB ,∴△ACD ∽△ABC ,则AC AB =AD AC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF ,∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .13.如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF .(1)求证:直线P A 为⊙O 的切线;(2)求证:EF 2=4OD ·OP ;(3)若BC =6,tan F =12,求AC 的长.第13题图(1)证明:如解图,连接OB ,第13题解图∵PB 是⊙O 的切线,∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D ,∴AD =BD ,∴点D 为AB 的中点,即OP 垂直平分AB ,∴∠APO =∠BPO ,∵∠ADP =∠BDP =90°,∴△APD ≌△BPD ,∴AP =BP ,在△P AO 和△PBO 中,⎩⎪⎨⎪⎧P A =PB ∠APO =∠BPO OP =OP,∴△P AO ≌△PBO (SAS ),∴∠P AO =∠PBO =90°,∵OA 为⊙O 的半径,∴直线P A 为⊙O 的切线;(2)证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴OA OP =OD OA ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∴tan F =AD DF =x DF =12,∴DF =2x ,∴OA =OF =2x -3,在Rt △AOD 中,由勾股定理得(2x -3)2=x 2+32,解得x 1=4或x 2=0(不合题意,舍去),∴OA =2x -3=5,∵AC 为⊙O 的直径,∴AC =2OA =10.14.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交直径AB 于点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)求证:PC =PF ;(3)若tan ∠PCB =34,BE =52,求PF 的长.第14题图(1)证明:如解图,连接OC ,第14题解图 ∵OA =OC ,∴∠OAC =∠OCA ,∵PC 是⊙O 的切线,且AD ⊥CD ,∴∠OCP =∠D =90°,∴OC ∥AD ,∴∠CAD =∠OCA =∠OAC ,即AC 平分∠DAB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠PCB+∠ACD=90°,又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∵∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE,∴∠PFC=∠PCF,∴PC=PF;(3)解:如解图,连接AE,∵∠ACE=∠BCE,∴AE︵=BE︵,∴AE=BE,又∵AB是直径,∴∠AEB=90°,AB=2BE=10,∴OB=OC=5,∵∠PCB=∠P AC,∠P=∠P,∴△PCB∽△P AC,∴PBPC=BCCA,∵tan∠PCB=tan∠CAB=34,∴PBPC=BCCA=34,设PB=3x,则PC=4x,在Rt△POC中,根据勾股定理得,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307. ∵x >0,∴x =307,∴PF =PC =1207.15.如图,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且点C 是劣弧»AG 的中点,过点C 的直线CD ⊥BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .(1)求证:CD 是⊙O 的切线;(2)若ED =3DB ,求证:3OF =2DF ;(3)在(2)的条件下,连接AD ,若CD =3,求AD 的长.第15题图(1)证明:如解图①,连接OC 、AC 、CG ,∵AC ︵=CG ︵,∴AC =CG ,∴∠ABC =∠CBG ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∵OC 是⊙O 的半径,∴CD 是⊙O 的切线;第15题解图○1(2)证明:∵O C ∥BD ,∠CFO =∠DFB ,∴∠OCB =∠CBD ,∠EOC =∠EBD ,∴△OCF ∽△DBF ,△EOC ∽△EBD ,∴OC BD =OF DF ,OC BD =OE BE ,∴OF DF =OE BE ,∵ED =3DB ,∠EDB =90°,∴∠E =30°,∴OC =12OE ,∵OA =OC ,∴AE =OA =OC =OB ,∴OF DF =OE BE =2OA 3OA =23,即3OF =2DF ; (3)解:如解图②,过A 作AH ⊥DE ,交DE于点H ,∵∠E =30°,∴∠EBD =60°,∵∠ABC =∠CBD ,∴∠CBD =12∠EBD =30°,∵CD =3,∴BD =CD tan30°=33,∴BE =33sin30°=63,DE =3BD =9,∵AE =13BE ,AH ∥BD ,∴AH =13BD =3,DH =23DE =6,∴AD =(3)2+62=39.第15题解图○216.如图,在Rt △ABC 中,∠ACB =90°,AO 是△ABC 的角平分线.以O 为圆心,OC 长为半径作⊙O ,连接AO 交⊙O 于点E ,延长AO 交⊙O 于点D.(1)求证:AB 是⊙O 的切线;(2)若tan D=12,求AEAC的值;(3)设⊙O的半径为3,求AB的长.第16题图(1)证明:如解图,过O作OF⊥AB交AB于F,∵∠ACB=90°,∴AC⊥BC,∵AO是△ABC的角平分线,OF⊥AB,∴CO=FO,∴FO为⊙O的半径,∴AB是⊙O的切线;第16题解图(2)解:如解图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB =90°,∴∠ACE +∠ECO =90°,∴∠ACE =∠OCD ,∵OC =OD ,∴∠OCD =∠ODC ,∴∠ACE =∠ODC ,∵∠CAE =∠CAE ,∴△ACE ∽△ADC ,∴AE AC =CE DC ,∵tan D =CE CD =12,∴AE AC =12;(3)解:由(2)知AE AC =12,设AE =c ,则AC =2c ,在Rt △ACO 中,∴(2c )2+32=(c +3)2,解得c =2或c =0(舍去),∴AF =AC =2c =4,∵在△BFO 和△BCA 中,∠B =∠B ,∠BFO =∠BCA =90°, ∴△BFO ∽△BCA ,∴BF BC =FO CA =BO AB ,设BF=x,BO=y,∴x3+y=34=y4+x,解得x=727,y=757,∴AB=AF+BF=4+727=1007.17.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.第17题图(1)证明:∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°.如解图,连接OD.第17题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°.即OD⊥BC.∵PD∥BC,∴OD⊥PD.又OD是⊙O的半径,∴PD是⊙O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC.又∠ABC=∠ADC,∴∠P=∠ADC.∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD.∴△PBD∽△DCA;(3)解:∵△ABC是直角三角形,∴BC2=AB2+AC2=62+82=100.∴BC=10.∵OD垂直平分BC,∴DB=DC.∵BC是⊙O的直径,∴∠BDC=90°.在等腰直角三角形BDC中.DC=DB=5 2.∵△PBD∽△DCA,∴PBDC=BDCA,即PB=DC·BDCA=52×528=254.18.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D,连接OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求tan P的值.第18题图(1)证明:如解图,连接OC,第18题解图∴∠COB =2∠CAB , 又∵∠POE =2∠CAB , ∴∠COD =∠EOD , 又∵OC =OE , ∴CE ⊥AB ;(2)证明:∵CE ⊥AB ,∠P =∠E , ∴∠P +∠PCD =∠E +∠PCD =90°, 又∠OCD =∠E ,∴∠OCD +∠PCD =∠PCO =90°, ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线;(3)解:设⊙O 的半径为r ,OD =x ,则BD =2x ,r =3x , ∵CD ⊥OP ,OC ⊥PC , ∴Rt △OCD ∽Rt △OPC ,∴OC 2=OD ·OP ,即(3x )2=x (3x +9), 解得x =32或x =0(舍去), ∴⊙O 的半径r 为92,同理可得PC 2=PD ·PO =(PB +BD ) ·(PB +OB )=162, ∴PC =92,在Rt △OCP 中,tan P =OC PC =24.19.如图,AC 是⊙O 的直径,弦BE ⊥AC 于H ,F 为⊙O 上的一点,过点F 的直线与AC 的延长线交于点D ,与BE 的延长线交于点M ,连接AF 交BM 于G ,且MF =MG .(1)求证:MD 为⊙O 的切线;(2)求证:当MD ∥AB 时,FG 2=MF ·EG ;(3)在(2)的条件下,若cos M=45,FD =6,求AG 的长.第19题图(1)证明:∵MF =MG , ∴∠MFG =∠MGF =∠AGB , 如解图,连接FO , ∵OF =AO , ∴∠OF A =∠OAF , ∵BE ⊥AC ,∴∠AGH +∠OAF =∠MFG +∠OF A =90°, 即∠MFO =90°, ∵OF 为⊙O 的半径, ∴MD 为⊙O 的切线; (2) 证明:∵MD ∥AB , ∴∠M =∠ABM ,如解图,连接EF,∵∠EFG=∠ABM,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴FGMG=EGFG,又∵MG=MF,∴FG2=MF·EG;第19题解图:∵∠M=∠ABM,cos M=45,∴设AH=3k,AB=5k,HB=4k,如解图,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8-3k,∴OH 2+HB 2=OB2,∴(4k)2+(8-3k)2=82,(3)解解得k =4825或k =0(舍去), ∵MD ∥AB , ∴∠MFG =∠BAF , ∴∠BGA =∠BAG , ∴AB =GB =5k , ∴GH =k , ∴AG =10k , ∴AG =482510.20.如图①,AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)若AB =10,AC =6,求BD 的长;(3)如图②,若F 是OA 的中点,FG ⊥OA 交直线DE 于点G ,若FG =194,tan ∠BAD =34,求⊙O 的半径.图① 图②第20题图(1)证明:如解图①,连接OD ,第20题解图①∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如解图①,连接BC,交OD于点N,∵AB是⊙O的直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12AC,∴∠ONB =90°,且ON =3,OB =5,则BN =4,ND =2, ∴BD =42+22=25;(3)解:如解图②,设FG 与AD 交于点H ,第20题解图②根据题意,设AB =5x ,AD =4x ,则AF =54x ,FH =AF ·tan ∠BAD =54x ·34=1516x ,AH =AFcos ∠BAD =54x 45=2516x ,HD =AD -AH =4x -2516x =3916x , 由(1)可知,∠HDG +∠ODA =90°, 在Rt △HF A 中,∠F AH +∠FHA =90°, ∵∠OAD =∠ODA ,∠FHA =∠DHG , ∴∠DHG =∠HDG ,∴GH =GD ,过点G 作GM ⊥HD ,交HD 于点M , ∴MH =MD ,∴HM =12HD =12×3916x =3932x ,∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°, ∴∠F AH =∠HGM ,H在Rt △HGM 中,HG =HMsin ∠HGM =3932x 35=6532x ,∵FH +GH =194, ∴1516x +6532x =194, 解得x =85,∴此⊙O 的半径为52×85=4.中考数学压轴题专项练习:圆的证明与计算题及答案。
2018-2019年湖南省各市中考复习数学真题汇编解答题综合练:《圆》

2018-2019年湖南省各市中考复习数学真题汇编解答题综合练:《圆》1.(2019•永州)如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧上取一点D,使=,将△ADC沿AD对折,得到△ADE,连接CE.(1)求证:CE是⊙O的切线;(2)若CE=CD,劣弧的弧长为π,求⊙O的半径.2.(2019•邵阳)如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O 于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.3.(2019•张家界)如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.4.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD =6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.5.(2019•郴州)如图,已知AB是⊙O的直径,CD与⊙O相切于点D,且AD∥OC.(1)求证:BC是⊙O的切线;(2)延长CO交⊙O于点E.若∠CEB=30°,⊙O的半径为2,求的长.(结果保留π)6.(2019•常德)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.7.(2019•益阳)如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.(1)判断四边形AMCD的形状,并说明理由;(2)求证:ND=NE;(3)若DE=2,EC=3,求BC的长.8.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.10.(2019•怀化)如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM•BE.11.(2018•怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.12.(2018•郴州)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.13.(2018•湘潭)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.14.(2018•邵阳)如图所示,AB是⊙O的直径,点C为⊙O上一点,过点B作BD⊥CD,垂足为点D,连结BC.BC平分∠ABD.求证:CD为⊙O的切线.15.(2018•永州)如图,线段AB为⊙O的直径,点C,E在⊙O上,=,CD⊥AB,垂足为点D,连接BE,弦BE与线段CD相交于点F.(1)求证:CF=BF;(2)若cos∠ABE=,在AB的延长线上取一点M,使BM=4,⊙O的半径为6.求证:直线CM是⊙O的切线.16.(2018•衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)17.(2018•娄底)如图,C、D是以AB为直径的⊙O上的点,=,弦CD交AB于点E.(1)当PB是⊙O的切线时,求证:∠PBD=∠DAB;(2)求证:BC2﹣CE2=CE•DE;(3)已知OA=4,E是半径OA的中点,求线段DE的长.18.(2018•常德)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.参考答案1.解:(1)∵=,∴∠CAD=∠BCA=α=∠EAD,设:∠DCA=∠DEA=β,∠DCE=∠DEC=γ,则△ACE中,根据三角形内角和为180°,∴2α+2β+2γ=180°,∴α+β+γ=90°,∴CE是⊙O的切线;(2)过点A作AM⊥BC,延长AD交CE于点N,则DN⊥CE,∴四边形AMCN为矩形,设:AB=CD=x,则CE=x,则CN=CE=x=AM,而AB=x,则sin∠ABM=,∴∠ABM=60°,∴△OAB为等边三角形,即∠AOB=60°,==×2πr=π,解得:r=3,故圆的半径为3.2.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=3.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.4.解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC ﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.5.(1)证明:连接OD,∵CD与⊙O相切于点D,∴∠ODC=90°,∵OD=OA,∴∠OAD=∠ODA,∵AD∥OC,∴∠COB=∠OAD,∠COD=∠ODA,∴∠COB=∠COD,在△COD和△COB中,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴BC是⊙O的切线;(2)解:∵∠CEB=30°,∴∠COB=60°,∵∠COB=∠COD,∴∠BOD=120°,∴的长:=π.6.(1)证明:连接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.7.(1)解:四边形AMCD是菱形,理由如下:∵M是Rt△ABC中AB的中点,∴CM=AM,∵CM为⊙O的直径,∴∠CNM=90°,∴MD⊥AC,∴AN=CN,∵ND=MN,∴四边形AMCD是菱形.(2)∵四边形CENM为⊙O的内接四边形,∴∠CEN+∠CMN=180°,∵∠CEN+∠DEN=180°,∴∠CMN=∠DEN,∵四边形AMCD是菱形,∴CD=CM,∴∠CDM=∠CMN,∴∠DEN=∠CDM,∴ND=NE.(3)∵∠CMN=∠DEN,∠MDC=∠EDN,∴△MDC∽△EDN,∴,设DN=x,则MD=2x,由此得,解得:x=或x=﹣(不合题意,舍去),∴,∵MN为△ABC的中位线,∴BC=2MN,∴BC=2.8.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD ∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=9.(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OAC=30°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.10.解:(1)∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°∴∠COD=72°∵∠COD=2∠CAD∴∠CAD=36°(2)连接AE∵A、B、C、D、E是⊙O上的5等分点,∴∴∠CAD=∠DAE=∠AEB=36°∴∠CAE=72°,且∠AEB=36°∴∠AME=72°∴∠AME=∠CAE∴AE=ME(3)连接AB∵∴∠ABE=∠DAE,且∠AEB=∠AEB∴△AEN∽△BEA∴∴AE2=BE•NE,且AE=ME∴ME2=BE•NE∵∴AE=AB,∠CAB=∠CAD=∠DAE=∠BEA=∠ABE=36°∴∠BAD=∠BNA=72°∴BA=BN,且AE=ME∴BN=ME∴BM=NE∴ME2=BE•NE=BM•BE11.解:(1)∵AB=4,∴OB=2∵∠COB=60°,==∴S扇形OBC(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线12.解:(1)如图,∵∠AEC=30°,∴∠ABC=30°,∵AB=AD,∴∠D=∠ABC=30°,根据三角形的内角和定理得,∠BAD=120°,连接OA,∴OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∴OA⊥AD,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.13.解:(1)①当∠AOM=60°时,∵OM=OA,∴△AMO是等边三角形,∴∠A=∠MOA=60°,∴∠MOD=30°,∠D=30°,∴DM=OM=10②过点M作MF⊥OA于点F,设AF=x,∴OF=10﹣x,∵AM=12,OA=OM=10,由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=,∴AF=,∵MF∥OD,∴△AMF∽△ADO,∴,∴,∴AD=∴MD=AD﹣AM=(2)当点M位于之间时,连接BC,∵C是的中点,∴∠B=45°,∵四边形AMCB是圆内接四边形,此时∠CMD=∠B=45°,当点M位于之间时,连接BC,由圆周角定理可知:∠CMD=∠B=45°综上所述,∠CMD=45°14.证明:∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.15.证明:(1)延长CD交⊙O于G,如图,∵CD⊥AB,∴=,∵=,∴=,∴∠CBE=∠GCB,∴CF=BF;(2)连接OC交BE于H,如图,∵=,∴OC⊥BE,在Rt△OBH中,cos∠OBH==,∴BH=×6=,∴OH==,∵==,==,∴=,而∠HOB=∠COM,∴△OHB∽△OCM,∴∠OCM=∠OHB=90°,∴OC⊥CM,∴直线CM是⊙O的切线.16.解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.17.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴=,即DE•CE=AE•BE,如图,连接OC,设圆的半径为r,则OA=OB=OC=r,则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2,∵=,∴∠AOC=∠BOC=90°,∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2,则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2,∴BC2﹣CE2=DE•CE;(3)∵OA=4,∴OB=OC=OA=4,∴BC==4,又∵E是半径OA的中点,∴AE=OE=2,则CE===2,∵BC2﹣CE2=DE•CE,∴(4)2﹣(2)2=DE•2,解得:DE=.18.证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.。
2018届中考数学复习专题三圆的证明与计算试题(含答案)

专题三 圆的证明与计算类型一 切线的判定判定某直线是圆的切线.首先看是否有圆的半径过直线与圆的交点.有半径则证垂直;没有半径.则连接圆心与切点.构造半径证垂直.(2016·黄石)如图.⊙O 的直径为AB.点C 在圆周上(异于A.B).AD⊥CD . (1)若BC =3.AB =5.求AC 的值;(2)若AC 是∠DAB 的平分线.求证:直线CD 是⊙O 的切线.【分析】 (1)根据直径所对的圆周角为直角.利用勾股定理求AC 的长;(2)连接OC.利用AC 是∠DAB 的平分线.证得∠OAC=∠CAD .再结合半径相等.可得OC∥AD .进而结论得证.1.(2016·六盘水)如图.在⊙O 中.AB 为直径.D.E 为圆上两点.C 为圆外一点.且∠E+∠C=90°. (1)求证:BC 为⊙O 的切线;(2)若sin A =35.BC =6.求⊙O 的半径.2.(2017·济宁)如图.已知⊙O 的直径AB =12.弦AC =10.D 是BC ︵的中点.过点D 作DE⊥AC .交AC 的延长线于点E.(1)求证:DE 是⊙O 的切线; (2)求AE 的长.类型二 切线的性质已知某条直线是圆的切线.当圆心与切点有线段连接时.直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时.则作辅助线连接圆心与切点.再利用切线的性质解题.(2016·资阳)如图.在⊙O 中.点C 是直径AB 延长线上一点.过点C 作⊙O 的切线.切点为D.连接BD.(1)求证:∠A=∠BDC;(2)若CM 平分∠ACD .且分别交AD.BD 于点M.N.当DM =1时.求MN 的长.【分析】 (1)连接OD.由切线的性质可得∠CDB+∠ODB=90°.由AB 是直径.可得∠ADB=90°.进而可得∠A +∠ABD=90°.进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM .即∠DMN=∠DNM .再根据勾股定理求得MN 的长.3.(2016·南平)如图.PA.PB 是⊙O 切线.A.B 为切点.点C 在PB 上.OC∥AP .CD⊥AP 于点D. (1)求证:OC =AD ;(2)若∠P=50°.⊙O 的半径为 4.求四边形AOCD 的周长(精确到0.1.参考数据sin 50°≈0.77.cos 50°≈0.64.t an 50°≈1.19).4.(2017·长沙)如图.AB 与⊙O 相切于点C.OA.OB 分别交⊙O 于点D.E.CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =4 3.OA =4.求阴影部分的面积.类型三 圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合.一般结合切线的判定及性质综合考查.求线段长或半径.一般的解题思路是利用切线的性质构造角相等.进而构造相似三角形.利用相似三角形对应边成比例求出所求线段或半径.(2016·荆门)如图.AB 是⊙O 的直径.AD 是⊙O 的弦.点F 是DA 延长线的一点.AC 平分∠FAB 交⊙O 于点C.过点C 作CE⊥DF .垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1.CE=2.求⊙O的半径.【分析】 (1)连接CO.证得∠OCA=∠CAE.由平行线的判定得到OC∥FD.再证得OC⊥CE即可;(2)连接BC.由圆周角定理得到∠BCA=90°.再证得△ABC∽△ACE.根据相似三角形的性质即可求得半径.5.(2017·德州)如图.已知Rt△ABC.∠C=90°.D为BC的中点.以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE∶EB=1∶2.BC=6.求AE的长.6.(2017·黄冈)如图.已知MN为⊙O的直径.ME是⊙O的弦.MD垂直于过点E的直线DE.垂足为点D.且ME 平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD·MN.7.(2016·丹东)如图.AB是⊙O的直径.点C在AB的延长线上.CD与⊙O相切于点D.CE⊥AD.交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4.DE=2.求AD的长.参考答案【例1】 (1)∵AB 是⊙O 的直径.点C 在⊙O 上. ∴∠ACB=90°. ∴AC=AB 2-BC 2=4. (2)如图.连接OC.∵AC 平分∠DAB . ∴∠OAC=∠CAD.∵OA=OC.∴∠OAC=∠OCA . ∴∠OCA=∠CAD . ∴OC∥AD.∵AD⊥CD .∴OC⊥CD.∵OC 是⊙O 的半径.∴直线CD 是⊙O 的切线. 【变式训练】1.(1)证明:∵∠A 与∠E 所对的弧都是BD ︵. ∴∠A=∠E.∵∠E+∠C=90°.∴∠A+∠C=90°.∴∠ABC=180°-∠A-∠C=90°.即AB⊥BC. ∵AB 是直径.∴BC 为⊙O 的切线. (2)解:∵sin A =BC AC =35.BC =6.∴AC=10.在Rt △ABC 中.AB =AC 2-BC 2=8.∴AO=12AB =4.即⊙O 的半径是4.2.(1)证明:如图.连接OD.∵D 是BC ︵的中点.∴BD ︵=DC ︵. ∴∠BOD=∠BAE .∴OD∥AE.∵DE⊥AC .∴∠AED=90°.∴∠ODE=90°. ∴OD⊥DE .∴DE 是⊙O 的切线.(2)解:如图.过点O 作OF⊥AC 于点F.∵AC=10.∴AF=CF =12AC =12×10=5.∵∠OFE=∠DEF=∠ODE=90°.∴四边形OFED 是矩形. ∴FE=OD =12AB =6.∴AE=AF +FE =5+6=11. 【例2】 (1)如图.连接OD.∵CD 是⊙O 的切线. ∴∠ODC=90°.∴∠BDC+∠ODB=90°. ∵AB 是⊙O 的直径. ∴∠ADB=90°.∴∠A+∠ABD=90°. ∵OB=OD.∴∠OBD=∠ODB .∴∠A+∠ODB=90°.∴∠A=∠BDC. (2)∵CM 平分∠ACD .∴∠DCM=∠ACM. ∵∠A=∠BDC .∴∠A+∠ACM=∠BDC+∠DCM. 即∠DMN=∠DNM.∵∠ADB=90°.DM =1.∴DN=DM =1.∴MN=DM 2+DN 2= 2. 【变式训练】3.(1)证明:∵PA 是⊙O 的切线.A 为切点. ∴OA⊥PA .即∠OAD=90°. ∵OC∥AP .∴∠COA=180°-∠OAD=180°-90°=90°. ∵CD⊥PA .∴∠CDA=∠OAD=∠COA=90°. ∴四边形AOCD 是矩形.∴OC=AD.(2)解:∵PB 切⊙O 于点B.∴∠OBP=90°. ∵OC∥AP .∴∠BCO=∠P=50°. 在Rt △OBC 中.sin ∠BCO=OBOC .OB =4.∴OC=4sin 50°≈5.22.∴矩形OADC 的周长为2(OA +OC)=2×(4+5.22)≈18.4. 4.(1)证明:如图.连接OC.∵AB 与⊙O 相切于点C. ∴∠ACO =90°. ∵CD ︵=CE ︵.∴∠AOC=∠BOC . ∴∠A=∠B . ∴OA=OB.(2)解:由(1)可知△OAB 是等腰三角形. ∴BC=12AB =2 3.∴sin ∠COB=BC OB =32.∴∠COB=60°.∴∠B=30°.∴OC=12OB =2.∴S 扇形OCE =60π×4360=2π3.S △OCB =12×23×2=2 3.∴S 阴影=S △OCB -S 扇形OCE =23-2π3. 【例3】 (1)如图.连接CO. ∵OA=OC.∴∠OCA=∠OAC.∵AC 平分∠FAB .∴∠OAC=∠FAC . ∴∠OCA=∠FAC .∴OC∥FD.∵CE⊥FD .∴CE⊥OC.∵OC 是⊙O 的半径.∴CE 是⊙O 的切线. (2)如图.连接BC.在Rt △ACE 中.AC =AE 2+EC 2= 5. ∵AB 是⊙O 的直径.∴∠BCA=90°. ∴∠BCA=∠CEA.∵∠CAE=∠BAC .∴△ACE∽△ABC . ∴CA AB =AE AC .即5AB =15.∴AB=5. ∴AO=12AB =2.5即⊙O 的半径是2.5.【变式训练】5.(1)证明:如图.连接OE.CE.∵AC 是⊙O 的直径.∴∠AEC=∠BEC=90°.∴ED=12BC =DC.∴∠1=∠2.∵OE=OC.∴∠3=∠4.∴∠1+∠3=∠2+∠4.即∠OED=∠ACD. ∵∠ACD=90°.∴∠OED=90°.即OE⊥DE. 又∵E 是⊙O 上一点. ∴DE 是⊙O 的切线.(2)解:由(1)知∠BEC=90°.在Rt △BEC 与Rt △BCA 中.∠B 为公共角. ∴△BEC∽△BCA . ∴BE BC =BC BA. 即BC 2=BE·BA.∵AE∶EB=1∶2.设AE =x.则BE =2x.BA =3x. 又∵BC=6.∴62=2x·3x.∴x= 6.即AE = 6. 6.证明:(1)∵ME 平分∠DMN .∴∠OME=∠DME. ∵OM=OE.∴∠OME=∠OEM . ∴∠DME=∠OEM .∴OE∥DM. ∵DM⊥DE .∴OE⊥DE.∵OE 是⊙O 的半径.∴DE 是⊙O 的切线. (2)如图.连接EN.∵DM⊥DE .MN 为⊙O 的直径. ∴∠MDE=∠MEN=90°. ∵∠NME=∠DME . ∴△MDE∽△MEN . ∴ME MD =MN ME. ∴ME 2=MD·MN.7.(1)证明:如图.连接OD.∴∠ODC=90°.即∠ODB+∠BDC=90°.∵AB为⊙O的直径.∴∠ADB=90°.即∠ODB+∠ADO=90°.∴∠BDC=∠ADO.∵OA=OD.∴∠ADO=∠A.∴∠BDC=∠A.(2)解:∵CE⊥AE.∴∠E=90°.∴DB∥EC.∴∠DCE=∠BDC.∵∠BDC=∠A.∴∠A=∠DCE.又∵∠E=∠E.∴△AEC∽△CED.∴CEDE=AECE.∴CE2=DE·AE.即16=2(2+AD).∴AD=6.。
2018圆证明---(-含答案)

圆证明1.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当DF:DE=2:1时,∠BAC的度数为多少?说明理由;2如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(Ⅰ)求证:直线BF是⊙O的切线;(Ⅱ)若AB=5,sin∠CBF=,求BC和BF的长.3.四边形ABCD是 O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与求则图中阴影部分面积(结果保留π和根号)4.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D。
(1)求证:AC=CD;(2)若AC=2,AO=,求OD的长度。
CD(1)求证:AD=CD ;(2)若AB=10,cos ∠ABC=53,求tan ∠DBC 的值.. 6如图,OC 平分∠MON ,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM相切与点B ,连接BA 并延长交⊙A 于点D ,交ON 于点E .(1)求证:ON 是⊙A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.8如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧上取一点E使∠EBC=∠DEC,延长BE 依次交AC于G,交⊙O于H。
(1)求证:AC⊥BH;(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长。
2018-2019学年中考数学专题复习:圆

2018-2019学年中考数学专题复习:圆一、选择题。
1. 如图,在⊙O中,直径CD垂直于弦AB,若∠C=25∘,则∠BOD的度数是( )A.25∘B.30∘C.40∘D.50∘2. 如图,四边形ABCD是⊙O的内接四边形,∠B=70∘,则∠D的度数是( )A.110∘B.90∘C.70∘D.50∘3. 如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20∘,则∠C的大小等于()A.20∘B.25∘C.40∘D.50∘4. 如图,AB是⊙O的直径,C,D是⊙O上的点,∠DCB=30∘,过点D作⊙O的切线交AB的延长线于点E,若AB=4,则DE的长为( )A.2B.4C.4√3D.2√35. 如图,正方形ABCD四个顶点都在⊙O上,点P是劣弧AB上的一点,则∠CPD的度数是( )A.35∘B.40∘C.45∘D.60∘6. 如图,在△ABC中,AB=AC,∠A=40∘,延长AC到点D,使CD=BC,点P是△ABD的内心,则∠BPC=( )A.105∘B.110∘C.130∘D.145∘7. 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30∘,CD=2√3,则阴影部分的面积为()A.2πB.πC.π3D.2π38. 已知圆的半径是2√3,则该圆的内接正六边形的面积是()A.3√3B.9√3C.18√3D.36√3二、填空题。
如图,AB是⊙O的直径,AC,BC是⊙O的弦,直径DE⊥BC于点M.若点E在优弧CAB 上,AC=8,BC=6,则EM=________.如图,⊙O是△ABC的外接圆,∠AOB=70∘,AB=AC则∠ABC________.如图,在⊙O中,CD⊥AB于点E,若∠BAD=30∘,且BE=2,则CD=________.如图Rt△ABC中,∠C=90∘,以BC为直径的⊙O交AB于点E,OD⊥BC交⊙O于点D,DE交BC于点F,点P为CB延长线上的一点,延长PE交AC于点G,PE=PF.下列4个结论:①GE=GC;②AG=GE;③OG // BE;∠A=∠P.其中正确的结论是________.(填写所有正确结论的序号)如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB d的长为半径的扇形(忽略铁丝的粗细),则所得扇形FAB(阴影部分)的面积为________.如图,在圆心角为90∘的扇形OAB中,半径OA=4,C为AB^的中点,D,E分别为OA,OB的中点,则图中阴影部分的面积为________.三、解答题。
2019届中考数学复习《圆的相关证明及计算》专题训练题含答案

2019届初三数学中考复习 圆的相关证明及计算 专题训练题1. 若扇形面积为3π,圆心角为60°,则该扇形的半径为( ) A .3 B .9 C .2 3 D .3 22. 如图,在矩形ABCD 中,CD =1,∠DBC =30°.若将BD 绕点B 旋转后,点D 落在DC 延长线上的点E 处,点D 经过的路径DE ︵,则图中阴影部分的面积是( )A.π3- 3B.π3-32C.π2- 3D.π2-323. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π4. 如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为( )A .288°B .144°C .216°D .120°5. 如图,用一张半径为24 cm 的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10 cm ,那么这张扇形纸板的面积是( )A .240πcm 2B .480πcm 2C .1200πcm 2D .2400πcm 26. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D.若OA =2,则阴影部分的面积为__________.7. 如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于______.8. 如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD ,弧DE 、弧EF 的圆心依次是A ,B ,C ,如果AB =1,那么曲线CDEF 的长是_________.9. 在半径为6的⊙O 中,60°圆心角所对的弧长是10. 已知圆内接正三角形的边心距为1,则这个三角形的面积为11. 如图,用一个半径为30 cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为 cm.12. 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别于与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1) 求证:DF是⊙O的切线;(2) 若⊙O的半径为2,BC=22,求DF的长.13. 如图,BD是汽车挡风玻璃前的刮雨刷.如果BO=65 cm,DO=15 cm,当BD绕点O旋转90°时,求刮雨刷BD扫过的面积14. 如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1) 求证:BC是⊙O的切线;(2) 若⊙O的半径为6,BC=8,求弦BD的长.15. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1) 求证:DE 是⊙O 的切线; (2) 若OF =2,求AC 的长度.16. 如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB,BD 是⊙O 的切线,AD 与BC 相交于点E (1) 求证:BD =BE ;(2) 若DE =2,BD =5,求CE 的长.17. 如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1) 求证:PO平分∠APC;(2) 连接DB,若∠C=30°,求证:DB∥A C.18. 如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.(1) 求证:DE⊥AC;(2) 若AB=10,AE=8,求BF的长.19. 现有30%圆周的一个扇形彩纸片,该扇形的半径为40 cm ,小红同学为了在六一儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10 cm 的圆锥形纸帽(接缝处不重叠),求剪去的扇形纸片的圆心角度数.参考答案: 1---5 DBBAA 6. π12+327. 5π 8. 4π 9. 2π 10. 3 3 11. 1012.(1) 证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB,∵AB =AC ,∴∠ABC=∠ACB, ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD , ∴DF 是⊙O 的切线;(2) 解:连接AD ,如解图,∵AB 是⊙O 的直径,∴AD ⊥BC ,又∵AB=AC ,∴BD =DC =2, ∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC∽△DFC, ∴AD DF =AC DC ,∴14DF =42,∴DF =72. 13. 解:在△AOC 和△BOD 中,∵OC =OD ,AC =BD ,OA =OB ,∴△AOC ≌△BOD ,∴阴影部分的面积为扇环的面积,即S 阴影=S 扇形AOB -S 扇形COD =14π(OA 2-OC 2)=14π×(652-152)=1000π(cm 2)14. (1) 证明:连接OB ,如解图所示,∵E 是弦BD 的中点,∴BE =DE ,OE ⊥BD ,BF ︵=DF ︵=12BD ︵,∴∠BOE =∠BAD,∠OBE +∠BOE=90°,∵∠DBC =∠BAD,∴∠BOE =∠DBC, ∴∠OBE +∠DBC=90°,∴∠OBC =90°, 即BC⊥OB,∴BC 是⊙O 的切线;(2) 解:∵OB=6,BC =8,BC ⊥OB ,∴OC =OB 2+BC 2=10, ∵S △OBC =12OC·BE=12OB·BC,∴BE =OB·BC OC =6×810=4.8,∴BD =2BE =9.6,即弦BD 的长为9.6. 15.图①(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DA C , ∵OA =OD ,∴∠DAO =∠ODA, ∴∠DAC =∠ODA,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE=90°, ∴OD ⊥DE ,∴DE 是⊙O 的切线;图②(2) 解:如解图②,连接BC ,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.16. (1) 证明:设∠BAD=α,∵AD平分∠BAC,∴∠CAD=∠BAD=α,∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°,∴∠ABC=90°-2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°-α,∴∠D=180°-∠DBE-∠BED=90°-α,∴∠D=∠BED,∴BD=BE;(2) 解:设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2,∵∠BAD +∠D=90°,∠D +∠FBD=90°,∴∠FBD=∠BAD=α,∴tan α=FD BF =12, ∴AB =BF sin α=255=25, 在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2,∴解得x =-5(舍去)或x =355,∴CE =355. 17. 证明:(1) 如解图,连接OB ,∵PA ,PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,又OA =OB ,∴PO 平分∠APC;(2) ∵OA⊥AP,OB ⊥BP ,∴∠CAP =∠OBP=90°,∵∠C =30°,∴∠APC =90°-30°=60°,∵PO 平分∠APC,∴∠OPC =12∠APC=12×60°=30°,∴∠POB =90°-∠OPC=90°-30°=60°,又∵OD=OB ,∴△ODB 是等边三角形,∴∠OBD =60°,∴∠DBP =∠OBP-∠OBD=90°-60°=30°,∴∠DBP =∠C,∴DB ∥AC.18. 解:(1) 如解图,连接OD 、AD ,∵DE 切⊙O 于点D ,∴OD ⊥DE ,∵AB 是直径,∴∠ADB =90°,∵AB =AC ,∴D 是BC 的中点,又∵O 是AB 中点,∴OD ∥AC ,∴DE ⊥AC ;(2) ∵AB=10,∴OB =OD =5,由(1)得OD∥AC,∴△ODE ∽△AEF ,∴OD AE =OF AF =BF +OB BF +AB ,设BF =x ,AE =8,∴58=x +5x +10,解得:x =103,经检验x =103是原分式方程的根,且符合题意,∴BF =10319. 解:∵圆锥的母线长为40,底面半径为10,∴圆锥展开图的圆心角=2040×180°=90°,∴剪去扇形纸片的圆心角度数=360°×30%-90°=108°-90°=18°。
2019中考数学专题汇编全集 圆的证明与计算题

圆的证明与计算题类型一与全等三角形有关1.如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE 于点F.(1)求证:CD为⊙O的切线;(2)若BC=10,AB=16,求OF的长.第1题图(1)证明:∵OC⊥AB,AB∥CD,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:如解图,连接BO.设OB=x,∵AB=16,OC⊥AB,∴HA=BH=8,∵BC=10,∴CH=6,∴OH=x-6.在Rt△BHO中,∵OH 2+BH 2=OB 2,∴(x -6)2+82=x 2,解得x =253, ∵CB ∥AE ,∴∠CBH =∠F AH , 在△CHB 和△FHA 中,∴△CHB ≌△FHA ,∴CH =HF , ∴CF =2CH =12,∴OF =CF -OC =12-253=113.第1题解图2.已知,在四边形ABCD 中,E 是对角线AC 上一点,DE =EC ,以AE 为直径的⊙O 与边CD 相切于点D ,B 点在⊙O 上,连接OB . (1)求证:DE =OE ;(2)若CD ∥AB ,求证:四边形ABCD 是菱形.第2题图证明:(1)如解图,连接OD ,第2题解图∵CD 是⊙O 的切线,∴OD ⊥CD , ∴∠2+∠3=∠1+∠COD =90°, 又∵DE =EC ,∴∠1=∠2, ∴∠3=∠COD ,∴DE =OE ; (2)∵OD =OE ,∴OD =DE =OE , ∴∠3=∠COD =∠DEO =60°, ∴∠2=∠1=30°,∵OA =OB =OE ,OE =DE =EC , ∴OA =OB =DE =EC , ∵CD ∥AB ,∴∠4=∠1, ∴∠1=∠2=∠4=∠OBA =30°, ∴△ABO ≌△CDE (AAS), ∴AB =CD ,∴四边形ABCD 是平行四边形. ∵∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴四边形ABCD 是菱形.3.如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F . (1)若∠BCD =36°,BC =10,求BD ︵的长; (2)判断直线DE 与⊙O 的位置关系,并说明理由; (3)求证:2CE 2=AB ·EF .第3题图(1)解:如解图,连接OD ,∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,且BC =10,∴l BD ︵=72π×5180=2π.第3题解图(2)解:DE 是⊙O 的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =∠BDC =90°, 又∵点E 是线段AC 的中点,∴DE =AE =EC =12AC ,在△DOE 与△COE 中,∵∴△DOE ≌△COE (SSS) ,∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径,∴DE 是⊙O 的切线; (3)证明:∵△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,DE =CE , ∴点F 是线段CD 的中点,∵点E 是线段AC 的中点,则EF =12AD , 在△ACD 与△ABC 中,== ∴△ACD ∽△ABC ,则AC AB =ADAC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF , ∴(2CE )2=AB ·2EF , 即4CE 2=AB ·2EF , ∴2CE 2=AB ·EF .类型二 与相似三角形有关4.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE=23,DE=2,求AD的长.第4题图(1)证明:如解图,连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;第4题解图(2)解:∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴CEDE =AECE,∴EC2=DE·AE,∴(23)2=2(2+AD),∴AD=4.5.如图,AB是⊙O的直径,点C在⊙O上,AD平分∠CAB,BD 是⊙O的切线,AD与BC相交于点E.第5题图(1)求证:BD=BE;(2)若DE=2,BD=5,求CE的长.(1)证明:∵BD是⊙O的切线,∴∠ABD=90°,∴∠DAB+∠D=90°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAE+∠CEA=90°,∵AD平分∠CAB,∴∠CAE=∠DAB,∴∠CEA=∠D.∵∠CEA=∠DEB,∴∠D=∠DEB,∴BD =BE ;(2)解:如解图,设AD 与⊙O 交于点F ,连接BF ,第5题解图∵BD =BE ,BF ⊥AD , ∴DF =EF =1,BE =BD =5, 在Rt △BDF 中,由勾股定理得BF =2. ∵∠DFB =90°, ∴∠D +∠DBF =90°, ∵∠D +∠DAB =90°, ∴∠DBF =∠DAB , ∵∠D =∠D , ∴△DBF ∽△DAB , ∴DB DF =DA DB , ∴DB 2=DF ·DA ,即(5)2=1·DA ,解得DA =5, ∴AE =DA -DE =3.∵∠C =∠BFE ,∠AEC =∠BEF , ∴△AEC ∽△BEF ,∴AE BE =CE FE ,即35=CE 1,解得CE =355.6.如图,P A 与以AC 为直径的圆相切于点A ,PBC 为割线,∠APC 的平分线交AB 于点D ,交AC 于点E . 求证:(1)AD =AE ; (2) AB ·AE =AC ·DB .第6题图证明:(1)∵P A 为圆的切线,AC 为直径, ∴∠P AE =∠ABC=90°,∴∠P AD+∠BAC=∠C+∠BAC=90°, ∴∠P AD =∠C , ∵PE 平分∠APC , ∴∠APD =∠CPE ,∵∠ADE =∠APD +∠P AD ,∠AED =∠CPE +∠C , ∴∠ADE =∠AED ,∴AD =AE ; (2)∵∠APB =∠CP A ,∠P AB =∠C , ∴△APB ∽△CP A ,得AB CA =PB P A .∵∠APE =∠BPD , ∠AED =∠ADE =∠PDB , ∴△PBD ∽△P AE , 得PB P A =DB EA . ∴AB AC =DB AE . ∴AB ·AE =AC ·DB .7.如图,AB 是⊙O 的直径,点D 是AE ︵上一点,且∠BDE =∠CBE ,BD 与AE 交于点F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED 、BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, ∴∠EAB +∠EBA =90°, ∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠EBA +∠CBE =90°,∴CB ⊥AB , ∴BC 是⊙O 的切线;(2)证明:∵BD 平分∠ABE ,∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD =∠DEA , ∴∠DEA =∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE , ∴DE DB =DF DE , ∴DE 2=DF ·DB ;(3)解:如解图,连接DO ,第7题解图∵OD =OB ,∴∠ODB =∠OBD , ∵∠EBD =∠OBD , ∴∠EBD =∠ODB , ∴OD ∥BE ,∴PD PE =PO PB ,∵P A =AO ,∴P A =AO =OB , ∴PO PB =23,∴PD PE =23, ∴PD PD +DE=23, ∵DE =2,∴PD =4.类型三 与锐角三角函数有关8.如图,已知在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 与AC 交于点D ,点E 是BC 的中点,连接BD 、DE . (1)若AD AB =13,求sin C ; (2)求证:DE 是⊙O 的切线.第8题图(1) 解:∵AB 是圆O 的直径,∴∠ADB =90°, 又∵∠ABC =90°,∠A 为公共角, ∴△ABD ∽△ACB , ∴AB AC =AD AB =13,在Rt △ABC 中,sin C =AB AC =13;(2)证明:如解图,连接OD ,由(1)知,∠ADB =90°, ∴∠CDB =90°,∴△BCD 是直角三角形.∵E是△BCD斜边BC的中点,∴DE是斜边BC上的中线,∴BE=DE=CE,∴∠DBE=∠BDE,又∵OB=OD,∴∠OBD=∠ODB,∴∠OBD+∠DBE=∠ODB+∠BDE,即∠OBC=∠ODE.∵∠ABC=90°,∴∠ODE=90°,∵OD为圆O的半径,∴DE是圆O的切线.第8题解图9.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC 于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.第9题图(1)求证:BD 是⊙O 的切线; (2)求证:CE 2=EH ·EA ;(3)若⊙O 的半径为52,sin A =35,求BH 的长. (1)证明:∵∠ODB =∠AEC , ∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC ,∴∠BFD =90°, ∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°,∴BD ⊥OB , ∵OB 是⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:如解图①,连接AC ,第9题解图①∵OF ⊥BC ,∴BE ︵=CE ︵, ∴∠CAE =∠ECB , ∵∠CEA =∠HEC ,∴△CEH ∽△AEC , ∴CE AE =EH EC , ∴CE 2=EH ·EA ;(3)解:如解图②,连接BE ,第9题解图②∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为52,sin ∠BAE =35, ∴AB =5,BE =AB ·sin ∠BAE =5×35=3, ∴在Rt △ABE 中,EA =AB 2-BE 2=4,∵BE ︵=CE ︵,∴BE =CE =3, ∵CE 2=EH ·EA ,∴EH =94,∴在Rt △BEH 中,BH =BE 2+EH 2=32+(94)2=154.10.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过BD ︵上一点E 作EG ∥AC 交CD 的延长线于点G ,连接AE 交CD 于点F ,且EG =FG ,连接CE . (1)求证:△ECF ∽△GCE ; (2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tan G =34,AH =33,求EM 的值.第10题图(1) 证明:∵AC ∥EG , ∴∠G =∠ACG , ∵AB ⊥CD ,∴AD ︵=AC ︵, ∴∠CEF =∠ACD , ∴∠G =∠CEF , ∵∠ECF =∠ECG , ∴△ECF ∽△GCE ; (2)证明:如解图,连接OE , ∵FG =EG ,∴∠GFE =∠GEF =∠AFH , ∵OA =OE ,∴∠OAE =∠OEA ,∵∠AFH +∠F AH =90°, ∴∠GEF +∠AEO =90°, ∴∠GEO =90°,即GE ⊥OE , 又∵OE 是⊙O 的半径, ∴EG 是⊙O 的切线;第10题解图(3)解:如解图,连接OC ,设⊙O 的半径为r .在Rt △AHC 中,AH =33,tan ∠ACH =tan ∠G =AH HC =34, ∴HC =43,在Rt △HOC 中,OC =r , OH =r -33,∴(r -33)2+(43)2=r 2, 解得r =2536,∵EG ∥AC ,∴∠CAH =∠M , ∵∠OEM =∠AHC , ∴△AHC ∽△MEO , ∴AH EM =HC OE ,∴33EM =432536,253∴EM=8.。
中考数学专题复习演练:圆的有关计算与证明(含答案)

中考数学习题精选:圆的有关计算与证明解答题1.△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?2.如图,在4×4 的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB 的弧长,周长和面积.(结果保留根号及π).3.如图,直线y=与x轴、y 轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P 与y轴相切于点O.若将圆P沿x 轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.4.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF 的中点,AD⊥BC于点D,求证:AD= BF.5.如图,△在ABC中,BE 是它的角平分线,∠C=90°,点D 在AB边上,以DB为直径的半圆O 经过点E,交BC于点F(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为3,求图中阴影部分的面积6.如图,已知是△的外角的平分线,交的延长线于点,延长交△的外接圆于点,连接,.(1)求证:.(2)已知,若△是外接圆的直径,,求的长.7.已知:如图,△在ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD 的长;(3)在(2)的条件下,△求DPE的面积.8.如图,AB是半圆O的直径,AD 为弦,∠DBC=∠A.(1)求证:BC是半圆O 的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD 的长.9.如图1,在正方形ABCD 中,以BC为直径的正方形内,作半圆O,AE切半圆于点F交CD 于点E,连接OA、OE.(1)求证:AO⊥EO;(2)如图2,连接DF 并延长交BC于点M,求的值.10.如图,AD 是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD 于点D.连接AO并延长交BC 于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC 与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.11.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP 交⊙O于点D,作AB⊥OP于点C,交⊙O 于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;12.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC 于E,连接AD.(1)求证△:CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.13.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC 交⊙O 于点E,连接BE 交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(2,8),且与x 轴相切于点B.图①图②(1)当x>0,y=5时,求x的值;(2)当x =6 时,求⊙P的半径;(3)求y关于x的函数表达式,请判断此函数图象的形状,并在图②中画出此函数的图象(不必列表,画草图即可).15.如图△,OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA 的中点,阴影部分的面积为,求⊙O的半径r.16.如图,△在ABC中,∠C=90°,∠ABC 的平分线交AC于点E,过点E 作BE的垂线交AB 于点F,⊙O△是BEF 的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF 及AF长.17.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB 的长;(2)求⊙O的半径.18.如图,△在ABC中,∠ABC=90°,以AB的中点O为圆心,OA 为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE 与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE 的长.19.如图,AB 为⊙O的直径,点C在⊙O上,过点C作⊙O 的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O 上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.20.如图,在 △R t ABC 中,∠C=90°,点 D ,E ,F 分别在 AC ,BC ,AB 边上,以 AF 为直径的⊙O 恰好经过 D , E ,且 DE=EF .(1)求证:BC 为⊙O 的切线;(2)若∠B=40°,求∠CDE 的度数;(3)若 CD=2,CE=4,求⊙O 的半径及线段 BE 的长.21.如图,⊙的圆心在反比例函数的图像上,且与轴、轴相切于点、 ,一次函数的图像经过点 ,且与轴交于点,与⊙的另一个交点为点.(1)求(2)求的值及点长及的坐标;的大小;(3)若将⊙沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.参考答案解答题1.解:∵△ABC 的内切圆⊙O 与 BC ,CA ,AB 分别相切于点 D 、E 、F , ∴AF=AE ,BF=BD ,CD=CE .设 AF=AE=x ,则 BF=BD=11﹣x ,EC=DC=15﹣x .根据题意得 11﹣x+15﹣x=16.解得;x=5cm .∴AF=5cm .BD=11﹣x=11﹣5=6cm ,EC=15﹣x=10cm .∴AF=5cm ,BD=6cm ,EC=10cm .2.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴= =,扇形 OAB 的面积= =2π.弧 AB 的长是:= π∴周长=弧 AB 的长+2OA=π+4综上所述,扇形 OAB 的弧长是.π,周长是π+4,面积是 2π.3.解:∵直线 y=与 x 轴、y 轴分别相交于 A,B 两点,∴A 点的坐标为(-3,0),B 点的坐标为(0,),∴AB=2.如图,将圆 P 沿 x 轴向左移动,当圆 P 与该直线相切于 C 时,连结 P C ,则 P C =1,易 △知AP C ∽△ABO,∴=,∴AP =2,∴P 的坐标为(-1,0),同理可得 P 的坐标为(-5,0).-5 与-1 之间的整数(不含-5 和-1)有:-4,-3,-2,故满足题意的点 P 的个数是 31 1 1 1 1 1 1 1 1 24.证明:连接OA,交BF 于点E,∵A是弧BF 的中点,O为圆心,∴OA⊥BF,∴BE=BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD△与OBE中,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD=BF5. (1)证明:连结OE,[MISSING IMAGE:,]∵BE平分∠ABC,∴∠ABC=2∠ABE,∵OB=OE,∴∠OBE=∠OEB,∴∠AOE=∠OEB+∠OBE=2∠ABE,∴∠ABC=∠AOE,又∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+∠AOE=90°,∵∠AEO=90°,即OE⊥AC,∴AC为⊙O 的切线.,(2)解:连结 OF , ∵sinA= ,∴∠A=30°,由(1)知 OE ⊥AC ,∴∠AOE=∠ABC=60°, ∵⊙O 半径为 3,∴OD=OE=OF=OB=BF=3,∴∠BOF=∠EOF=∠ABC=60°, ∴S= 扇形在 △R t AOE 中,,∴AO=6,AE=3在 △R tACB 中,,∴AB=9,BC= , AC=∴CE=AC-AE=-3,, CF=BC-BF= -3= ,∴S= ==梯形,∴S =S-S=阴梯形扇形6.(1)解:∵四边形 ∴∵-.内接于圆,,,∴∵△是,的外角平分线,∴∴又∵∴,,,,(2)解:由( )得,OEFOFCEOFCE OEF又∵,∴△∴∽△,,∴,∴又∵∴∵,,,是直径,,∴,∴BD=又∵∠D=∠D,∴△DBF∽△DAC,,∴∴,CD=24,解得:CD=.7.(1)解:∵AB 是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O 中,AD与DE分别是∠ABD与∠CBD 所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴∵AB=BC=10,CE=2,D是AC的中点,,∴CD=;(3)解:延长EF交⊙O于M,在 △R tABD 中,AD=,AB=10,∴BD=3,∵EM ⊥AB ,AB 是⊙O 的直径,∴ ,∴∠BEP=∠EDB ,∴△BPE ∽△BED ,∴ ∴BP=,,∴DP=BD-BP=,∴ : =DP :BP=13:32,∵ △S BCD= × ×3 =15, :=BE :BC=4:5,∴ △S BDE=12,∴ △S DPE=.8.(1)证明:∵AB 是半圆 O 的直径∴∠D=90°∴∠A+∠DBA=90°∵∠DBC=∠A∴∠DBC+∠DBA=90°∴BC ⊥AB∴BC 是半圆 O 的切线(2)解:∠BEC=∠D=90∘,∵BD ⊥AD ,BD=6,∴BE=DE=3, △S DPE △S BPE△S BDE △S BCD∵∠DBC=∠A,∴△BCE∽△BAD,∴,即∴AD=4.59.(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB∥CD,∴AB和CD 为⊙O的切线,∵AE切半圆于点F,∴OA平分∠BAE,OE平分∠AEC,而AB∥CD,∴∠BAE+∠AEC=180°,∴∠OAE+∠OEA=90°,∴∠AOE=90°,∴OA⊥OE(2)解:作FH⊥CD于H,如图,设正方形ABCD的边长为4a,则AF=AB=4a,OB=OC=2a,∵∠AOE=90°,∴∠AOB+∠COE=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠EOC,∴△R tABO∽△R t OCE,∴AB:OC=OB:CE,即4a:2a=2a:CE,解得CE=a,∴EF=EC=a,∴EA=5a,ED=3a,∵FH∥AD,∴△EFH∽△EAD,∴==,即==,∴FH=a,EH=a,∴DH=3a﹣∴CH=4a﹣∵FH∥CM,a=a,a=a,∴==.10.(1)解:PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)解:∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在△R tAMC 中,AM==6,设⊙O 的半径为r,则OC=r,OM=AM﹣r=6﹣r,在△R t OCM中,2,即32+(6﹣r)2=r2,解得r=,OM2+CM2=OC∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴△R t PCM∽△R t CEB,∴=,即=,∴PC=.11.(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O 上,∴PB与⊙O相切于点B;(2)解:如图1,∵OP⊥AB,OP经过圆心O,∴BC=AB=3,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC,∴△PBC∽△BOC,∴∴OC===3,∴在△R t OCB中,OB=∴∠COB=60°,==6,tan∠COB==,∴△SOPB=×OP×BC=×=18,S扇DOB==6π,∴S阴影△=SOPB﹣S扇DOB=18﹣6π;②若点E 是⊙O上一点,连接AE,BE,当AE=6时,BE=.3﹣3或3 +312.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O 的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD(2)解:∵AB=2,∴OA=1,在△R t AOC 中,AC=2∴OC=,=3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴,即=.∴CE=∴AE=AC﹣CE=2﹣==,.13.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE//BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC(2)解:∵BD 是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD.∴OD=2,14.(1)解: 由y=5,得到P(x,5),连接AP,PB,∵圆P与x 轴相切,∴PB⊥x轴,即PB=5,由AP=PB,由勾股定理得,x=2+=2+4=6,∴x=6(2)解: 由x=6,得到P(6,y),连接AP,PB,∵圆P 与x 轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=5,则圆P的半径为5(3)解:同(2),由AP=PB,得到(x﹣2)2+(8﹣y)2=y2 ,整理得:=,即图象为抛物线,画出函数图象,如图②所示;15.(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=∴∠AOB=120°,AB=2r ,r ,∴S 阴影部分 △=S OAB﹣S 扇形 ODE •OC •AB ﹣=﹣ , ∴•r •2 r ﹣ r 2=﹣ , ∴r=1,即⊙O 的半径 r 为 116. (1)证明:如图,连接OE . ∵BE ⊥EF ,∴∠BEF=90°,∴BF 是圆 O 的直径.∵BE 平分∠ABC ,∴∠CBE=∠OBE ,∵OB=OE ,∴∠OBE=∠OEB ,∴∠OEB=∠CBE ,∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线;(2)证明:如图,连结 DE .∵∠CBE=∠OBE ,EC ⊥BC 于 C ,EH ⊥AB 于 H , ∴EC=EH .∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°, ∴∠CDE=∠HFE . =在△CDE△与HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF(3)由(2)得CD=HF,又CD=1,∴HF=1,在△R t HFE 中,EF=∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,=,∴=,即=,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴△R tOHE中,cos∠EOA=∴△R t EOA 中,cos∠EOA=,=,∴∴OA=∴AF==,,﹣5=17.(1)解:∵∴,在中∴∴∵,∴∵是∴∴(2)解:∵∴∵,∴∵的直径,是,.,的半径,,∴又∵∴∴即的半径是18.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在△R tBDC中,E为斜边BC的中点,∴CE=DE=BE=∴∠C=∠CDE,BC,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD 为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB 的中点,∴OE△是ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE(3)解:∵cos∠BAD=∴sin∠BAC==,,又∵BE=∴AC=,E是BC的中点,即BC=.,又∵AC=2OE,∴OE=AC=19.(1)解:连接OC,∵CD切⊙O于点C∴∠OCD=90°∵∠D=30°∴∠COD=60°∵OA=OC∴∠A=∠ACO=30°;(2)解:∵CF ⊥直径 AB ,CF=4∴CE=2∴在 △R t OCE 中,tan ∠COE=,OE=∴OC=2OE=4=2,∴S =扇形, △S EOC ×2×2 =2 ∴S =S 阴影 扇形 BOC △-S EOC-2 .20.(1)证明:连接 OD 、OE 、DF ,如图,∵AF 为直径,∴∠ADF=90°,而∠C=90°,∴DF ∥BC ,∵DE=EF ,∴=∴OE ⊥DF ,∴OE ⊥BC ,∴BC 为⊙O 的切线(2)解:∵∠OEB=90°,∠B=40°,∴∠BOE=90°﹣40°=50°,BOC = =∴∠OFE=(180°﹣50°)=65°,∴∠CDE=∠AFE=65°(3)解:易得四边形CDHE为矩形,∴HE=CD=2,DH=CE=4,设⊙O 的半径为r,则OH=OE﹣HE=r﹣2,OD=r,在△R tOHD中,(r﹣2)2,解得r=5,2+42=r∵OH⊥DF,∴HF=DH=4,∵HF∥BE,∴△OHF∽△OEB,∴HF:BE=OH:OE,即4:BE=3:5,∴BE=21.(1)解:如图1中,连接AC、AB.∵⊙A 与x轴、y轴相切于点B、C,∴AC⊥OC,AB⊥OB,AC=AB,四边形ABOC是正方形,设A(m,m),∵点A在y=上,∴m2=3,∵m>0,∴点A坐标(,),∴OC=,∴点C坐标(0,),∵一次函数y=x+b的图象经过点C,∴b=,∴一次函数的解析式为y=,令y=0得x=-3,∴D(-3,0),b=(2)解:如图2中,连接BC、BE,作AM⊥CE于M.在△R t DOC 中,∵tan∠CDO=,∴∠CDO=30°,∵AC∥BD,∴∠ECA=∠CDO=30°,∠CAM=60°,∵AM⊥CE,∴∠CAM=∠EAM=60°,∴∠CAE=120°,在△R tAMC 中,CM=AC•cos30°=(3)解:如图3中,,∴CE=2CM=3,∴∠CBE=∠CAE=60°①当⊙A″与直线y=∵AB∥OC,相切于点E,AB与直线CD交于点K,∴∠A″KE=∠DKB=∠DCO=60°,在△R tA″EK中,A″E= AK=CA•tan30°=1,∴AA″=A″K+AK=1+2=3,∴⊙A 向上平移3的单位⊙A与y轴及直线y=,A″K=A″E÷cos30°=2,在△R tCKA中,均相切.②同理可得⊙A 向下平移1个单位⊙A与y轴及直线y=均相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题库:圆的证明与计算题1.如图,AB是⊙O的直径,点D是AE上的一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长.第1题图(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠BDE=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)解:∵BD平分∠ABE,∴∠ABD=∠DBE,如解图,连接DO,第1题解图∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴PDPE=POPB,∵P A=AO,∴P A=AO=OB,∴POPB=23,∴PDPE=23,∴PDPD+DE=23,∵DE=2,∴PD=4.2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC 分别交于D,E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cos A=25,求DF的长.第2题图(1)证明:如解图,连接OD ,第2题解图∵OB =OD ,∴∠ODB =∠B ,又∵AB =AC ,∴∠C =∠B ,∴∠ODB =∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴∠DFC =90°,∴∠ODF =∠DFC =90°,∵OD 是⊙O 的半径,∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G ,∴AG =12AE =2.G∵cos A =AG OA =2OA =25,∴OA =5,∴OG =OA 2-AG 2=21,∵∠ODF =∠DFG =∠OGF =90°,∴四边形OGFD 为矩形,∴DF =OG =21.3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD .(1)求证:AD =AN ;(2)若AB =42,ON =1,求⊙O 的半径.第3题图(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD ,∴∠BAM =∠BAD ,在△ANE 与△ADE 中,⎩⎪⎨⎪⎧∠BAM =∠BAD AE =AE∠AEN =∠AED, ∴△ANE ≌△ADE (ASA),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =12AB =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,如解图,连接AO ,则AO =OD =2x -1,第3题解图∵△AOE是直角三角形,AE=22,OE=x-1,AO=2x-1,∴(22)2+(x-1)2=(2x-1)2,解得x1=2,x2=-43(舍),∴AO=2x-1=3,即⊙O的半径为3.4.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.(1)求证:∠1=∠F;(2)若sin B=55,EF=25,求CD的长.第4题图(1)证明:如解图,连接DE.第4题解图∵BD是⊙O的直径,∴∠DEB=90°.∵E是AB的中点,∴DA=DB,∴∠1=∠B.∵∠B=∠F,∴∠1=∠F;(2)解:∵∠1=∠F,∴AE=EF=25,∴AB=2AE=4 5.在Rt△ABC中,AC=AB·sin B=4,∴BC=AB2-AC2=8.设CD=x,则AD=BD=8-x.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即42+x2=(8-x)2,解得x=3,∴CD=3.5.如图,直线DP和⊙O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交⊙O于点B,作ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的度数.第5题图(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵CB⊥AE,∴AD ⊥AE ,∴∠DAO =90°,又∵直线DP 和⊙O 相切于点C , ∴DC ⊥OC ,∴∠DCO =90°,∴在Rt △DAO 和Rt △DCO 中, ⎩⎨⎧DO =DO AO =CO, ∴Rt △DAO ≌Rt △DCO (HL), ∴DA =DC ;(2)解:∵CB ⊥AE ,AE 是⊙O 的直径,∴CF =FB =12BC ,又∵四边形ABCD 是平行四边形, ∴AD =BC ,∴CF =12AD ,又∵CF ∥DA ,∴△PCF ∽△PDA ,∴PC PD =CF AD =12,即PC =12PD ,DC =12PD .由(1)知DA =DC ,∴DA =12PD ,∴在Rt △DAP 中,∠P =30°.∵DP ∥AB ,∴∠F AB =∠P =30°,又∵∠ABE =90°,∴∠AEB =90°-30°=60°.6.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:∠ABD =∠ADE ;(2)若⊙O 的半径为256,AD =203,求CE 的长.第6题图(1)证明:如解图,连接OD .第6题解图∵DE 为⊙O 的切线,∴OD ⊥DE ,∴∠ADO +∠ADE =90°.∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°.∴∠ADE =∠ODB ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ABD =∠ADE ;(2)解:∵AB =AC =2×256=253,∠ADB =∠ADC =90°,∴∠ABC =∠C ,BD =CD .∵O 为AB 的中点,∴OD 为△ABC 的中位线,∴OD ∥AC ,∵OD ⊥DE ,∴AC ⊥DE ,在Rt △ACD 中,CD =AC 2-AD 2=(253)2-(203)2=5,∵∠C =∠C ,∠DEC =∠ADC =90°,∴△DEC ∽△ADC ,∴CE DC =DC AC ,即CE 5=5253,∴CE =3.7.如图,在△ABC 中,∠ACB =90°,D 是边AB 上的一点,且∠A =2∠DCB ,点E 是BC 上的一点,以EC 为直径的⊙O 经过点D .(1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE =EO ,求BD 的长.第7题图(1)证明:如解图①,连接OD,第7题解图①则∠DOB=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,即OD⊥AB,又∵OD是⊙O的半径,∴AB是⊙O的切线.(2)解:如解图②,过点O作OM⊥CD于点M,连接DE,第7题解图②∵OD =OE =BE =12BO ,∠BDO =90°,∴∠B =30°,∴∠DOB =60°,∴∠DCB =30°,∴OC =2OM =2,∴OD =2,∴BD =OD tan60°=2 3.8.如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接P A ,AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:P A 是⊙O 的切线;(2)若cos ∠CAO =45,且OC =6,求PB 的长.第8题图(1)证明:如解图,连接OB,第8题解图∵OA=OB,∴∠OAB=∠OBA,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴P A=PB,∴∠P AB=∠PBA,∴∠P AO=∠PBO.∵PB为⊙O的切线,∴∠OBP=90°,∴∠P AO=90°,∵OA为⊙O的半径,∴P A 是⊙O 的切线;(2)解:∵cos ∠CAO =45,∴设AC =4k ,AO =5k ,由勾股定理可知OC =3k ,∴sin ∠CAO =35,tan ∠COA =43,∴CO OA =35,即6OA =35,解得OA =10,∵tan ∠POA =tan ∠COA =AP AO =43, ∴AP 10=43,解得AP =403, ∵P A =PB ,∴PB =P A =403.9.如图,在△ABC 中,以BC 为直径的⊙O 交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =23,tan ∠AEC =53,求⊙O 的直径.第9题图(1)证明:∵BC 是⊙O 的直径,∴∠BDC =90°,∴∠ABC +∠DCB =90°,∵∠ACD =∠ABC ,∴∠ACD +∠DCB =90°,∴∠ACB =90°,即BC ⊥CA ,又∵BC 是⊙O 的直径,∴CA 是⊙O 的切线;(2)解:在Rt △AEC 中,tan ∠AEC =53,∴AC EC =53,EC =35AC .在Rt △ABC 中,tan ∠ABC =23,∴AC BC =23,BC =32AC .∵BC -EC =BE =6,∴32AC -35AC =6,解得AC =203,∴BC =32×203=10,即⊙O 的直径为10.10.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:DE ⊥AC ;(2)若AB =10,AE =8,求BF 的长.第10题图(1)证明:如解图,连接OD ,AD ,第10题解图 ∵DE 与⊙O 相切于点D , ∴OD ⊥DE .∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴D 为BC 中点, 又∵O 为AB 中点,∴OD ∥AC ,∴DE ⊥AC ;(2)解:∵AB =10, ∴OB =OD =5.由(1)知OD ∥AC , ∴△ODF ∽△AEF , ∴AB BF OBBF AF OFAE OD++==,设BF =x , 则有10585++=x x 解得x =310, ∴BF =310. 11.如图,已知AB 为⊙O 的直径,F 为⊙O 上一点,AC 平分∠BAF 且交⊙O 于点C ,过点C 作CD ⊥AF 于点D ,延长AB 、DC 交于点E ,连接BC 、CF .(1)求证:CD 是⊙O 的切线;(2)若AD =6,DE =8,求BE 的长;(3)求证:AF +2DF =AB .第11题图(1)证明:如解图,连接OC .第11题解图∵AC 平分∠BAD ,∴∠OAC =∠CAD ,又∠OAC =∠OCA ,∴∠OCA =∠CAD ,∴CO ∥AD .又CD ⊥AD ,∴CD ⊥OC ,又∵OC 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:在Rt △ADE 中,∵AD =6,DE =8,根据勾股定理得:AE =10,∵CO ∥AD ,∴△EOC ∽△EAD ,∴ADOC EA EO =. 设⊙O 的半径为r ,∴OE =10-r . ∴61010r r -=,15,∴r=45;∴BE=10-2r=2(3)证明:如解图,过点C作CG⊥AB于点G.∵∠OAC=∠CAD,AD⊥CD,∴CG=CD,在Rt△AGC和Rt△ADC中,∵CG=CD,AC=AC,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD.又∵∠BAC=∠CAD,∴BC=CF,在Rt△CGB和Rt△CDF中,∵BC=FC,CG=CD,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF.∵AG+GB=AB,∴AD+DF=AB,即AF+2DF=AB.12.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB 于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求BD︵的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB·EF.第12题图(1)解:如解图,连接OD,第12题解图∵∠BCD=36°,∴∠BOD=2∠BCD=2×36°=72°,∵BC是⊙O的直径,BC=10,∴OB=5,∴l BD︵=72π×5180=2π;(2)解:DE是⊙O的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°,又∵点E 是线段AC 中点,∴DE =12AC =EC ,在△DOE 与△COE 中,⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE,∴△DOE ≌△COE (SSS).∵∠ACB =90°,∴∠ODE =∠OCE =90°,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(3)证明:由(2)知,△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,∴点F 是线段CD 中点,∵点E 是线段AC 中点,则EF =12AD ,∵∠BAC =∠CAD ,∠ADC =∠ACB ,∴△ACD ∽△ABC , 则AC AB =AD AC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF ,∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .13.如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF .(1)求证:直线P A 为⊙O 的切线;(2)求证:EF 2=4OD ·OP ;(3)若BC =6,tan F =12,求AC 的长.第13题图(1)证明:如解图,连接OB ,第13题解图∵PB 是⊙O 的切线,∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D ,∴AD =BD ,∴点D 为AB 的中点,即OP 垂直平分AB ,∴∠APO =∠BPO ,∵∠ADP =∠BDP =90°,∴△APD ≌△BPD ,∴AP =BP ,在△P AO 和△PBO 中,⎩⎪⎨⎪⎧P A =PB ∠APO =∠BPO OP =OP,∴△P AO ≌△PBO (SAS ),∴∠P AO =∠PBO =90°,∵OA 为⊙O 的半径,∴直线P A 为⊙O 的切线;(2)证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴OA OP =OD OA ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∴tan F =AD DF =x DF =12,∴DF =2x ,∴OA =OF =2x -3,在Rt △AOD 中,由勾股定理得(2x -3)2=x 2+32,解得x 1=4或x 2=0(不合题意,舍去),∴OA =2x -3=5,∵AC 为⊙O 的直径,∴AC =2OA =10.14.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交直径AB 于点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)求证:PC =PF ;(3)若tan ∠PCB =34,BE =52,求PF 的长.第14题图(1)证明:如解图,连接OC ,第14题解图∵OA=OC,∴∠OAC=∠OCA,∵PC是⊙O的切线,且AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD,∴∠CAD=∠OCA=∠OAC,即AC平分∠DAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°,又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∵∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE,∴∠PFC=∠PCF,∴PC=PF;(3)解:如解图,连接AE,∵∠ACE=∠BCE,∴AE︵=BE︵,∴AE=BE,又∵AB是直径,∴∠AEB=90°,AB=2BE=10,∴OB=OC=5,∵∠PCB=∠P AC,∠P=∠P,∴△PCB∽△P AC,∴PBPC=BCCA,∵tan∠PCB=tan∠CAB=34,∴PBPC=BCCA=34,设PB=3x,则PC=4x,在Rt△POC中,根据勾股定理得,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307. ∵x >0,∴x =307,∴PF =PC =1207.15.如图,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且点C 是劣弧AG 的中点,过点C 的直线CD ⊥BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .(1)求证:CD 是⊙O 的切线;(2)若ED =3DB ,求证:3OF =2DF ;(3)在(2)的条件下,连接AD ,若CD =3,求AD 的长.第15题图(1)证明:如解图①,连接OC 、AC 、CG ,∵AC ︵=CG ︵,∴AC =CG ,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;第15题解图○1(2)证明:∵O C∥BD,∠CFO=∠DFB,∴∠OCB=∠CBD,∠EOC=∠EBD,∴△OCF ∽△DBF,△EOC ∽△EBD,∴OCBD=OFDF,OCBD=OEBE,∴OF DF =OE BE ,∵ED =3DB ,∠EDB =90°,∴∠E =30°,∴OC =12OE ,∵OA =OC ,∴AE =OA =OC =OB ,∴OF DF =OE BE =2OA 3OA =23,即3OF =2DF ;(3)解:如解图②,过A 作AH ⊥DE ,交DE 于点H ,∵∠E =30°,∴∠EBD =60°,∵∠ABC =∠CBD ,∴∠CBD =12∠EBD =30°,∵CD =3,∴BD =CD tan30°=33,∴BE =33sin30°=63,DE =3BD =9,∵AE =13BE ,AH ∥BD ,∴AH =13BD =3,DH =23DE =6,∴AD =(3)2+62=39.第15题解图○216.如图,在Rt △ABC 中,∠ACB =90°,AO 是△ABC 的角平分线.以O 为圆心,OC 长为半径作⊙O ,连接AO 交⊙O 于点E ,延长AO 交⊙O 于点D.(1)求证:AB 是⊙O 的切线;(2)若tan D =12,求AE AC 的值;(3)设⊙O 的半径为3,求AB 的长.第16题图(1)证明:如解图,过O作OF⊥AB交AB于F,∵∠ACB=90°,∴AC⊥BC,∵AO是△ABC的角平分线,OF⊥AB,∴CO=FO,∴FO为⊙O的半径,∴AB是⊙O的切线;第16题解图(2)解:如解图,连接CE,∵ED是⊙O的直径,∴∠ECD =90°,∴∠ECO +∠OCD =90°,∵∠ACB =90°,∴∠ACE +∠ECO =90°,∴∠ACE =∠OCD ,∵OC =OD ,∴∠OCD =∠ODC ,∴∠ACE =∠ODC ,∵∠CAE =∠CAE ,∴△ACE ∽△ADC ,∴AE AC =CE DC ,∵tan D =CE CD =12,∴AE AC =12;(3)解:由(2)知AE AC =12,设AE =c ,则AC =2c ,在Rt △ACO 中,∴(2c )2+32=(c +3)2,解得c =2或c =0(舍去),∴AF =AC =2c =4,∵在△BFO 和△BCA 中,∠B =∠B ,∠BFO =∠BCA =90°, ∴△BFO ∽△BCA ,∴BF BC =FO CA =BO AB ,设BF =x ,BO =y ,∴x 3+y =34=y 4+x, 解得x =727,y =757,∴AB =AF +BF =4+727=1007.17.如图,⊙O 是△ABC 的外接圆,O 点在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD ,CD .过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是⊙O 的切线;(2)求证:△PBD ∽△DCA ;(3)当AB =6,AC =8时,求线段PB 的长.第17题图(1)证明:∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°.如解图,连接OD.第17题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°.即OD⊥BC.∵PD∥BC,∴OD⊥PD.又OD是⊙O的半径,∴PD是⊙O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC.又∠ABC=∠ADC,∴∠P=∠ADC.∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD.∴△PBD∽△DCA;(3)解:∵△ABC是直角三角形,∴BC2=AB2+AC2=62+82=100.∴BC=10.∵OD垂直平分BC,∴DB=DC.∵BC是⊙O的直径,∴∠BDC=90°.在等腰直角三角形BDC中.DC=DB=5 2. ∵△PBD∽△DCA,∴PBDC=BDCA,即PB=DC·BDCA =52×528=254.18.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB 于点D,连接OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求tan P的值.第18题图(1)证明:如解图,连接OC,第18题解图∴∠COB=2∠CAB,又∵∠POE=2∠CAB,∴∠COD=∠EOD,又∵OC=OE,∴CE⊥AB;(2)证明:∵CE⊥AB,∠P=∠E,∴∠P+∠PCD=∠E+∠PCD=90°,又∠OCD=∠E,∴∠OCD+∠PCD=∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(3)解:设⊙O的半径为r,OD=x,则BD=2x,r=3x,∵CD⊥OP,OC⊥PC,∴Rt△OCD∽Rt△OPC,∴OC2=OD·OP,即(3x)2=x(3x+9),或x=0(舍去),解得x=32∴⊙O 的半径r 为92,同理可得PC 2=PD ·PO =(PB +BD ) ·(PB +OB )=162, ∴PC =92,在Rt △OCP 中,tan P =OC PC =24.19.如图,AC 是⊙O 的直径,弦BE ⊥AC 于H ,F 为⊙O 上的一点,过点F 的直线与AC 的延长线交于点D ,与BE 的延长线交于点M ,连接AF 交BM 于G ,且MF =MG . (1)求证:MD 为⊙O 的切线;(2)求证:当MD ∥AB 时,FG 2=MF ·EG ;(3)在(2)的条件下,若cos M =45,FD =6,求AG 的长.第19题图(1)证明:∵MF =MG , ∴∠MFG =∠MGF =∠AGB ,如解图,连接FO,∵OF=AO,∴∠OF A=∠OAF,∵BE⊥AC,∴∠AGH+∠OAF=∠MFG+∠OF A=90°,即∠MFO=90°,∵OF为⊙O的半径,∴MD为⊙O的切线;(2) 证明:∵MD∥AB,∴∠M=∠ABM,如解图,连接EF,∵∠EFG=∠ABM,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴FGMG=EGFG,又∵MG=MF,∴FG2=MF·EG;第19题解图(3)解,:∵∠M=∠ABM,cos M=45∴设AH=3k,AB=5k,HB=4k,如解图,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8-3k,∴OH 2+HB 2=OB2,∴(4k)2+(8-3k)2=82,或k=0(舍去),解得k=4825∵MD∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH =k , ∴AG =10k , ∴AG =482510.20.如图①,AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)若AB =10,AC =6,求BD 的长;(3)如图②,若F 是OA 的中点,FG ⊥OA 交直线DE 于点G ,若FG =194,tan ∠BAD =34,求⊙O 的半径.图① 图②第20题图(1)证明:如解图①,连接OD ,第20题解图①∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如解图①,连接BC,交OD于点N,∵AB是⊙O的直径,∴∠BCA =90°,∵OD ∥AE ,O 是AB 的中点, ∴ON ∥AC ,且ON =12AC ,∴∠ONB =90°,且ON =3,OB =5,则BN =4,ND =2, ∴BD =42+22=25;(3)解:如解图②,设FG 与AD 交于点H ,第20题解图②根据题意,设AB =5x ,AD =4x ,则AF =54x ,FH =AF ·tan ∠BAD =54x ·34=1516x ,AH =AFcos ∠BAD =54x 45=2516x ,HD =AD -AH =4x -2516x =3916x , 由(1)可知,∠HDG +∠ODA =90°, 在Rt △HF A 中,∠F AH +∠FHA =90°,H∵∠OAD =∠ODA ,∠FHA =∠DHG , ∴∠DHG =∠HDG ,∴GH =GD ,过点G 作GM ⊥HD ,交HD 于点M , ∴MH =MD ,∴HM =12HD =12×3916x =3932x ,∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°, ∴∠F AH =∠HGM ,在Rt △HGM 中,HG =HMsin ∠HGM =3932x 35=6532x ,∵FH +GH =194, ∴1516x +6532x =194, 解得x =85,∴此⊙O 的半径为52×85=4.。