油浸式变压器介损试验

合集下载

变压器油纸电容式套管介损试验及分析

变压器油纸电容式套管介损试验及分析

变压器油纸电容式套管介损试验及分析摘要:介绍了500kV主变220kV中压侧三只油纸电容式套管主绝缘的介损试验,分析了其介损测量值一个远小于交接值、一个为负值的异常现象。

分析表明:套管主绝缘介损测量值远小于真实值的原因是由于瓷套表面潮湿、污秽严重带来的杂散电容干扰所致。

关键词:油纸电容式套管;介损;杂散电容;污秽;干扰油纸电容式套管由电容分压原理卷制而成,用引线接头将变压器绕组引至外部和接入电网,由高压电缆纸和导电铝箔组成的电容芯子作为内部绝缘结构,瓷套作为外部绝缘,中间注入合格的变压器油以起到绝缘和散热作用,接地套管用于末屏接地。

其主绝缘是电容芯子,它是在套管的中心导管外包绕铝箔作为电容屏、油浸电缆纸作为屏间介质组成的串联同轴圆柱电容器,一端与中心导管相连,另一端由连接法兰的末屏接地套管测量端子引出。

通常所说的套管tanδ为套管主电容上的介损测量值,而不是末屏对地电容的tanδ。

在测量变压器套管tanδ时,与被试套管相连的所有绕组端连在一起加压,其余绕组端均接地,末屏接电桥,正接线测量。

用正接法测量套管主绝缘tanδ的接线方法如图1所示。

图1 套管主绝缘介损测量的接线方法1.套管介损试验结果2012年7月,广东省电力公司检修公司变电检修中心对所属某500kV主变220kV中压侧油纸电容式套管进行首检例行试验时,出现了套管介损测量值为负值的异常现象。

该500kV主变220kV中压侧油纸电容式套管用正接法及10kV测量电压测得的三相介损例行试验结果如表1所示。

从表1可以看出,中压侧三相套管的电容实测值均为合格。

但C相套管介损测量值为负值,这个测量值显然是异常的。

B相套管介损测量值虽然不是负值,但只有0.06%,远远小于交接试验值的0.19%,说明B相套管的介损测量值与介损实际值之间也有可能出现了极大的误差。

介损测量值为负值的原因可能有[4-9]:电桥标准电容器CN有损耗;电场干扰;空间构架(杂物、墙壁梯子等)构成空间干扰网络;套管法兰与地接触不良;瓷套表面潮湿、污秽严重。

介质损耗因数(tanδ)试验

介质损耗因数(tanδ)试验

align="center">图5-2 绝缘介质的等效电路表5-2 绝缘电阻测量结果绝缘电阻/MΩ(每隔60s测一次)tanδ与施加电压的关系决定于绝缘介质的性能、绝缘介质工艺处理的好坏和产品结构。

当绝缘介质工艺处理良好时,外施电压与tanδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tanδ值是基本重合的。

当施加电压达到某一极限值时,tanδ曲线开始向上弯曲,见图5-8曲线1。

如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tanδ比良好绝缘时要大。

另外,由于工艺处理不好的绝缘介质在极低电压下就会发生局部放电,所以,tanδ曲线就会较早地向上弯曲,且电压上升和下降时测得的tanδ值是不相重合的,见图5-8曲线2。

当绝缘老化时,绝缘介质的tanδ反而比良好绝缘时要小,但tanδ开始增长的电压较低,即tanδ曲线在较低电压下即向上弯曲,见图5-8曲线3。

另外,老化的绝缘比较容易吸潮,一旦吸潮,tanδ就会随着电压的上升迅速增大,且电压上升和下降时测得的tanδ 值不相重合,见图5-8曲线4。

2.2 温度特性图5-6 绝缘介质等值电流相量图I C—吸收电流的无功分量I R—吸收电流的有功分量—功率因数角δ—介质损失角图5-7 绝缘介质简化等效电路和等值电流相量图(a)等效电路(b)等值电流相量图C x—绝缘介质的总电容R x—绝缘介质的总泄漏电阻I Cx—绝缘介质的总电容电流I Rx—绝缘介质的总泄漏电流图5-8 绝缘介质tanδ的电压特性tanδ随温度的上升而增加,其与温度之间的关系与绝缘材料的种类、性能和产品的绝缘结构等有关,在同样材料、同样绝缘结构的情况下与绝缘介质的工艺干燥、吸潮和老化程度有关。

对于油浸式变压器,在10℃~40℃范围内,干燥产品的tanδ增长较慢;温度高于40℃,则tanδ的增长加快,温度特性曲线向上逐渐弯曲。

为了比较产品不同温度下的tanδ,GB/T6451—1999国家标准规定了不同温度t下测量的tanδ的换算公式。

变压器油介质损耗因数的测量方法及其影响因素

变压器油介质损耗因数的测量方法及其影响因素

变压器油介质损耗因数的测量方法及其影响因素摘要:变压器油在生产、运输及灌装过程中,多种因素会造成变压器油的介质损耗因数不合格,影响变压器油的生产及销售。

本文对变压器油介质损耗因数的影响因素进行分析,在实验的基础上提出变压器油介质损耗因数不合格时的处理方法,对变压器油生产运输及变压器的组装意义重大。

关键词:变压器油;介质损耗因数;方案在理想状态下,变压器的介质在交变电场作用下不会引起电能的损失,电压和电流的相位差是90°。

而实际介质(变压器油等)在交变电场下因介质中某些分子的扭动和位移引起电能的损失,损失的电能转变为热能而使油温升高。

这样导致电流和电压的相位差并不正好是90°,而不是90°小一个δ角,这个δ角的正切值就成为介质损耗因素,其数值表明在交变电场作用下在介质中电能损失的大小,一般要求变压器油的介质损耗因数不大于0.005。

作为变压器绝缘系统中的液体绝缘材料,变压器油的介质损耗因数直接影响变压器的绝缘电阻,所以研究变压器油介质损耗因数的影响因素及提出合理的解决方案,对变压器油生产运输及变压器的组装意义重大。

1实验部分1.1仪器及油品介质损耗因数测定仪采用瑞士哈佛莱公司介损测定仪,采用GB/T 5654方法进行测定。

采用两种市售变压器油进行实验。

1.2变压器油介质损耗因数影响因素变压器油的介质损耗因数主要是反映油中泄漏电流引起的功率损失。

当变压器油受到交流电压作用时,将引起部分电流的损失,并转变为热能,造成油温升高。

因这部分损失是由于电流通过介质所引起的,故称为介质损耗。

介质损耗因数的大小对判断变压器油的劣化与污染程度是很敏感的。

对未运行的变压器油而言,介质损耗因数只能反映出油中是否含有污染物质和极性杂质,一般来讲,未运行变压器油的极性杂质含量少,其介质损耗因数也很小。

但当油氧化或过热而引起劣化,或混入其他杂质时,随着油中极性杂质或充电的胶体物质含量增加,介质损耗因数也会随之增加。

变压器介质损耗讲义

变压器介质损耗讲义

精心整理变压器绕组连同套管介质损耗试验一、介质损耗的定义及意义电介质就是绝缘材料。

当研究绝缘物质在电场作用下所发生的物理现象时,把绝缘物质称为电介质;而从材料的使用观点出发,在工程上把绝缘物质称为绝设备之间进行比较。

当对一绝缘介质施加交流电压时,介质上将流过电容电流I1、吸收电流I2和电导电流I3,如图所示。

其中反映吸收过程的吸收电流,又可分解为有功分量和无功分量两部分。

电容电流和反映吸收过程的无功分量是不消耗能量的,只有电导电流和吸收电流中的有功分量才消耗能量。

为了讨论问题方便,可进一步将等值电路简化为由纯电容和纯电阻组成的并联和串联电路。

我们就采用它的并联电路来分析。

当绝缘物上加交流电压时,可以把介质看成为一个电阻和电容并联组成的等值电路,如图21(a )所示。

根据等值电路可以作出电流和电压的相量图,如图 产生,夹角大时,就越大,故称变压器整体是否受潮、绝缘油及纸是否劣化等严重的局部缺陷,以及绕组上是否附着油泥等杂质。

三、变压器介质损耗的测量方法常用的方法有QS1西林电桥测量法、数字式介质损耗测试仪等。

1. QS1西林电桥法R I R I西林电桥的两个高压桥臂,分别由试品ZN及无损耗的标准电容器CN组成;两个低压桥臂,分别由无感电阻R3及无感电阻R4与电容C4并联组成,如图2所示。

图中Cx,Rx为被测试样的等效并联电容与电阻,R3、R4表示电阻比例臂,CN为平衡试样电容Cx的标准,C4为平衡损耗角正切的可变电容。

图3 西林电桥测量原理图统通过标准侧R4和被试侧R3分别将流过标准电容器和被试品的电流信号进行高速同步采样,经模数(A/D)转换装置测量得到两组信号波形数据,再经计算处理中心分析,分别得出标准侧和被试侧正弦信号的幅值、相位关系,从而计算出被试品的电容量及介损值。

智能型电桥的测量回路还是一个桥体,如下图所示。

图4 智能型电桥原理图R3、R4两端的电压经过A/D采样送到计算机,求得:试品阻抗:进一步计算可得:介损值可通过测量Ux与Un之间的相位计算得出tgδ值。

油浸式电流互感器的基本结构与介损试验重点

油浸式电流互感器的基本结构与介损试验重点

的作用。作为重要的变电设备之一,电流互感器按照绝缘介质可分为干式、浇注式、油浸式和气体绝缘式。
油浸式电流互感器制造成本较低,在 35~500 kV 等级变电站内使用广泛。随着设备投运年限的增长,油浸式
电流互感器故障率也显著提升。电容量及介质损耗试验作为一种检测容性设备绝缘状态的试验方法,针对
不同结构的油浸式电流互感器也有不同的试验要点。本文对油浸式电流互感器的基,与线路串联 的一次绕组匝数较少,与继电保护装置相连的二次绕组 匝数较多,一次负荷电流通过一次绕组时,产生的交变磁 通感应产生按比例减小的二次电流。油浸式电流互感器 发展历史较长,种类较多,广泛应用于 35~500 kV 等级变 电站。油浸式电流互感器结构较为复杂,油浸式电流互 感器主要由油箱、储油柜及膨胀器、变压器油、一、二次绕
LIN Zhongli
(State Grid Fujian Electric Power Co., Ltd Maintenance Branch Company, Fuzhou Fujian 350000)
Abstract: In the power system, a current transformer converts a large current into a certain proportion of a small cur⁃ rent, which plays a role in current measurement, automatic control and relay protection. As one of the important sub⁃ station equipment, current transformers can be divided into dry type, pouring type, oil-immersed type and gas-insu⁃ lated type according to the insulating medium. Oil-immersed current transformers have low manufacturing costs and are widely used in 35~500 kV substations. With the increase in the operating life of the equipment, the failure rate of oil-immersed current transformers has also increased significantly. The capacitance and dielectric loss test is a test method for detecting the insulation state of capacitive equipment. There are also different test points for oil- im⁃ mersed current transformers of different structures. This article describes the basic structure of the oil- immersed cur- rent transformer, and puts forward the key points of the dielectric loss test. Keywords: dielectric loss test; oil- immersed current transformer; upright current transformer; inverted current trans- former

变压器介质损耗测试仪使用说明书

变压器介质损耗测试仪使用说明书

一、变压器介质损耗测试仪概说变压器介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx )。

它淘汰了QSI高压电桥,具有操作简单、中文显示、打印,使用方便、无需换算、自带高压,抗干扰能力强等优点。

JSY—03体积小、重量轻,是我厂的第三代智能化介质损耗测试仪。

二、变压器介质损耗测试仪技术指标1.环境温度:0~40℃(液晶屏应避免长时日照)2.相对湿度:30%~70%3.供电电源:电压:220V±10%,频率:50±1Hz5.输出功率:1KVA6.显示分辨率:4位7.测量范围:介质损耗(tgδ):0-50%电容容量(Cx)和加载电压:2.5KV档:≤300nF(300000pF)3KV档:≤200nF(200000pF)5KV档:≤76nF(76000pF)7.5KV档:≤34nF(34000pF)10KV档:≤20nF(20000pF)8.基本测量误差:介质损耗(tgδ):1%±0.07%(加载电流20μA~500mA)正接介质损耗(tgδ):2%±0.09%(加载电流5μA~20μA)反接电容容量(Cx):1.5%±1.5pF三、变压器介质损耗测试仪结构仪器为升压与测量一体化结构,输出电压2.5KV~10KV五档可调,以适应各种需要,在测量时无需任何外部设备。

接线与QSI电桥相似,但比其方便。

图一为仪器操作面板图,图二为仪器接线端面图。

⑴显示窗————————液晶显示屏。

⑵试验电压选择开关———当开关置于“关”时,仪器无高压输出。

⑶操作键盘———————选择测量方式、起动、停止、打印等操作。

⑷电源插座———————保险丝用5A。

⑸电源开关———————电源通断。

⑹起动灯————————指示高压输出。

⑺打印机————————打印测试结果。

变压器试验之绕组介质损耗试验

变压器试验之绕组介质损耗试验变压器之绕组介质损耗试验绕组介质损耗试验试验目的测试变压器绕组连同套管的介质损耗角正切值的目的主要是检查变压器整体是否受潮、绝缘油及纸是否劣化、绕组上是否附着油泥及存在严重局部缺陷等。

它是判断变压器绝缘状态的一种较有效的手段,近年来随着变压器绕组变形测试的开展,测量变压器绕组的及电容量可以作为绕组变形判断的辅助手段之一。

试验仪器选择全自动抗干扰介质损耗测试仪。

试验试验步骤及接线图(1)变压器绕组连同套管tgδ和电容量的测量1) 首先将介损测试仪接地。

2) 将高压侧A、B、C三绕组短接起来。

3) 将其他非被试绕组三相及中性点短接起来,并接地(2#)。

4) 将红色高压线一端芯线插入测试仪“高压输出”插座上,注意要将红色高压线的外端接地屏蔽线接地。

5) 红色高压线另一端接高压绕组的短接线(1#)。

6) 连接好电源输入线。

7) 检查试验接线正确,操作人员征得试验负责人许可后方可加压试验。

8) 打开电源,仪器进入自检。

9) 自检完毕后选择反接线测量方式。

10) 预置试验电压为10KV。

11) 接通高压允许开关。

12) 按下启动键开始测量。

注意:加压过程中试验负责人履行监护制度。

13) 测试完成后自动降压到零测量结束。

14) 关闭高压允许开关后,记录所测量电容器及介损值。

15) 打印完实验数据后,关闭总电源。

16) 用专用放电棒将被试绕组接地并充分放电,变更试验接线,同理的方法测量变压器低压绕组连同套管tgδ值和电容量。

17) 首先断开仪器总电源。

18) 在高压端短接线上挂接地线。

19) 拆除高压测试线。

20) 拆除高压套管短接线。

21) 拆除其他非被试绕组的接地线及短接线。

22) 最后拆除仪器其它试验线及地线。

23) 试验完毕后,填写试验表格。

(2)变压器电容型套管tgδ和电容量的测量1) 首先将介损测试仪接地。

2) 将高压侧A、B、C三绕组短接起来。

3) 将非测试的其他绕组中压侧三相及中性点短接起来,并接地。

介质损耗因数(tanδ)试验

align="center">图5-2 绝缘介质的等效电路表5-2 绝缘电阻测量结果绝缘电阻/MΩ(每隔60s测一次)tanδ与施加电压的关系决定于绝缘介质的性能、绝缘介质工艺处理的好坏和产品结构。

当绝缘介质工艺处理良好时,外施电压与tanδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tanδ值是基本重合的。

当施加电压达到某一极限值时,tanδ曲线开始向上弯曲,见图5-8曲线1。

如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tanδ比良好绝缘时要大。

另外,由于工艺处理不好的绝缘介质在极低电压下就会发生局部放电,所以,tanδ曲线就会较早地向上弯曲,且电压上升和下降时测得的tanδ值是不相重合的,见图5-8曲线2。

当绝缘老化时,绝缘介质的tanδ反而比良好绝缘时要小,但tanδ开始增长的电压较低,即tanδ曲线在较低电压下即向上弯曲,见图5-8曲线3。

另外,老化的绝缘比较容易吸潮,一旦吸潮,tanδ就会随着电压的上升迅速增大,且电压上升和下降时测得的tanδ 值不相重合,见图5-8曲线4。

2.2 温度特性图5-6 绝缘介质等值电流相量图I C—吸收电流的无功分量I R—吸收电流的有功分量—功率因数角δ—介质损失角图5-7 绝缘介质简化等效电路和等值电流相量图(a)等效电路(b)等值电流相量图C x—绝缘介质的总电容R x—绝缘介质的总泄漏电阻I Cx—绝缘介质的总电容电流I Rx—绝缘介质的总泄漏电流图5-8 绝缘介质tanδ的电压特性tanδ随温度的上升而增加,其与温度之间的关系与绝缘材料的种类、性能和产品的绝缘结构等有关,在同样材料、同样绝缘结构的情况下与绝缘介质的工艺干燥、吸潮和老化程度有关。

对于油浸式变压器,在10℃~40℃范围内,干燥产品的tanδ增长较慢;温度高于40℃,则tanδ的增长加快,温度特性曲线向上逐渐弯曲。

为了比较产品不同温度下的tanδ,GB/T6451—1999国家标准规定了不同温度t下测量的tanδ的换算公式。

变压器介损试验方法

变压器介损试验方法嘿,变压器介损试验方法,这可是个得好好琢磨的事儿呢!要是想知道变压器好不好,这介损试验可不能少。

先得准备好工具哇。

要有介损测试仪、高压线、接地线啥的。

这些东西可不能马虎,得选质量好的,不然测试结果可不准。

就像你做饭得有好的锅碗瓢盆一样。

然后把变压器停了电。

这可重要啦,不能带电做试验,那可危险得很。

把开关拉下来,挂上警示牌,告诉别人别乱动。

这就像你睡觉前得把灯关了,不然睡不着。

接着把测试仪接好。

高压线接在变压器的高压侧,接地线接在变压器的外壳上。

接的时候要接得牢固点,不能松松垮垮的。

就像你系鞋带得系紧点,不然会散开。

接好之后,打开测试仪。

按照说明书上的步骤设置好参数,什么电压啊、频率啊啥的。

这就像你调电视的频道一样,得调对了才能看。

然后开始测试。

看着测试仪上的数字变化,心里有点小紧张呢。

等测试完了,把结果记下来。

看看介损值是多少,要是超过了标准,那就得好好检查一下变压器了。

测试的时候要注意安全哦。

不能随便乱动测试仪,也不能靠近变压器。

就像你在路上走得小心点,不能乱闯红灯。

我给你讲个事儿哈。

有一次我们单位做变压器介损试验,有个新来的小伙子不懂,差点出了危险。

后来老师傅给他讲了注意事项,他才知道这事儿可不能马虎。

从那以后,他就知道了,变压器介损试验得认真,不能瞎弄。

所以啊,变压器介损试验方法其实不难,只要准备好工具,注意安全,按照步骤来,肯定能做好。

大家要是做变压器介损试验,可别大意哦。

让我们一起把变压器检查得好好的,保证电力供应安全。

变压器介损试验操作规程

第Ⅰ级第3-3 页第Ⅱ级第4-8页文件编码:CZGC-TLM-YQSCJSB-DLCSD-005-2007版本更新记录版本号日期再版原因试验目的:检测变压器内部绝缘状况。

试验原理:采用高压电桥原理,分别对标准回路和被试回路的电流信号进行采样,求得两回路的“相角差”和“模之比”,从而得到介质损耗值tgδ和被测电容值Cx。

试验对象:三圈变压器(带套管)试验设备:M-8000型变频介质侧试仪技术指标:1、介损测量范围:0—100%2、电容测量范围:2kV:15PF—0.2μF ,10kV:3P—40000PF3、电压输出:2—10KV变频频率:47.5HZ,52.5HZ4、温湿度测量范围:温度:±2℃,湿度:±5%RH测试参数:高压侧对地C1,中压侧对地C2,低压侧对地C3,高压对低中压侧C12,中压对低压侧C23,低压对高压侧C13如图所示:C12C13C2C23C3三圈变压器Ⅰ级状态描述100 变压器做符合试验所需条件的操作110 试验设备与试验接线准备200变压器介损试验300 拆除试验接线和整理试验设备Ⅱ级动作执行和确认防范措施:1、工作中正确穿戴劳保用品。

2、在2m以上的变压器平台上工作须正确使用安全带。

3、试验时与高压挂钩保持至少0.7m的安全距离。

紧急停机:在出现危害人身,设备安全的紧急情况时,可以迅速关闭仪器电源开关或切断仪器电源。

操作100变压器做符合试验所需条件的操作101I [ ] -给待测试品做安全措施102I ()-安全措施正确无误103I ()-变压器已与高压线路隔离104I ()-通知P接好放电棒的接地线105I [ ] -通知P用接地的放电棒给各侧线圈放电106I [ ] -通知P给各侧线圈验电107P ()-各侧线圈确无电压110试验设备与试验接线准备111I [ ]-准备M-8000型变频介质侧试仪112I [ ]-将透明双色接地线一端夹在地网上113I [ ]-将双色线的另一端可靠的接于控制箱面板的接地螺栓上114I [ ]-将红色测量线插入面板的测量插座115I [ ]-将蓝色屏蔽线插入面板的屏蔽插座116I [ ]-将高压电缆头一端插入箱体侧面的高压插座内并锁住117I [ ]-将控制箱的过流开关置于“ON”118I [ ]-插好220V交流电源插头119I [ ]-通知P做试验监护200变压器介损试验201I [ ]-准备测量高压侧对地绝缘介质参数202I [ ]-通知P将中压侧和低压侧线圈三相相互短接203P [ ]-将屏蔽线的鳄鱼夹夹在中低压线圈的短接线上204P [ ]-将测量线的鳄鱼夹可靠夹在地网上205P [ ]-将高压挂钩挂于高压线圈的出线端上206I [ ]-通知P做实验监护207I ()- P试验监护到位208I ()-控制面板上的过流开关在“ON”位置209I [ ]-开启仪器电源开关210I ()-仪器显示正常211I [ ]-按“工作方式”键选择“内接”方式212I [ ]-按“接线方式”键选择“工频反接”方式213I [ ]-按“电压设置”键选择10kV试验电压214I [ ]-按“测量/换页”键进行测量215I [ ]-测量结束后记录测试数据216I [ ]-按“测量/换页”键翻页记录数据217I [ ]-准备测量中压侧对地绝缘介质参数218I [ ]-将过流开关置于“0ff”位置219I [ ]-按“工作方式”键退回测量前设置菜单220I [ ]-通知P用放电棒给各侧线圈放电221I [ ]-通知P给各侧线圈验电222P ()-各侧线圈确无电压223P [ ]-解下中低压线圈的短接线224P [ ]-将高压侧和低压侧线圈三相相互短接225P [ ]-将屏蔽线的鳄鱼夹夹在高低压线圈的短接线上226P [ ]-将测量线的鳄鱼夹可靠夹在地网上227P [ ]-将高压挂钩挂于中压线圈的出线端上228I [ ]-通知P做实验监护229I ()- P试验监护到位230I ()-控制面板上的过流开关在“ON”位置231I [ ]-重复211-216步操作232I [ ]-准备测量低压侧对地绝缘介质参数233I [ ]-将过流开关置于“0ff”位置234I [ ]-按“工作方式”键退回测量前设置菜单235I [ ]-通知P用放电棒给各侧线圈放电236I [ ]-通知P给各侧线圈验电237P ()-各侧线圈确无电压238P [ ]-解下高低压线圈的短接线239P [ ]-将高压侧和中压侧线圈三相相互短接240P [ ]-将屏蔽线的鳄鱼夹夹在高中压线圈的短接线上241P [ ]-将测量线的鳄鱼夹可靠夹在地网上242P [ ]-将高压挂钩挂于低压线圈的出线端上243I [ ]-通知P做实验监护244I ()- P试验监护到位245I ()-控制面板上的过流开关在“ON”位置246I [ ]-重复211-216步操作247I [ ]-准备测量高压侧对中压侧绝缘介质参数248I [ ]-将过流开关置于“0ff”位置249I [ ]-按“工作方式”键退回测量前设置菜单250I [ ]-通知P用放电棒给各侧线圈放电251I [ ]-通知P给各侧线圈验电252P ()-各侧线圈确无电压253P [ ]-解下高中压线圈的短接线254P [ ]-将透明双色接地线可靠夹在低压线圈的出线端上255P [ ]-将测量线的鳄鱼夹可靠夹在中压线圈的出线端上256P [ ]-将高压挂钩挂于高压线圈的出线端上257I [ ]-通知P做实验监护258I ()- P试验监护到位259I ()-控制面板上的过流开关在“ON”位置260I [ ]-按“工作方式”键选择“内接”方式261I [ ]-按“接线方式”键选择“工频正接”方式262I [ ]-按“电压设置”键选择10kV试验电压263I [ ]-按“测量/换页”键进行测量264I [ ]-测量结束后记录测试数据265I [ ]-按“测量/换页”键翻页记录数据266I [ ]-准备测量中压侧对低压侧绝缘介质参数267I [ ]-将过流开关置于“0ff”位置268I [ ]-按“工作方式”键退回测量前设置菜单269I [ ]-通知P用放电棒给各侧线圈放电270I [ ]-通知P给各侧线圈验电271P ()-各侧线圈确无电压272P [ ]-将透明双色接地线可靠夹在高压线圈的出线端上273P [ ]-将测量线的鳄鱼夹可靠夹在低压线圈的出线端上274P [ ]-将高压挂钩挂于中压线圈的出线端上275I [ ]-通知P做实验监护276I ()- P试验监护到位277I ()-控制面板上的过流开关在“ON”位置278I ()-重复260-265步设置和操作279I [ ]-准备测量低压侧对高压侧绝缘介质参数280I [ ]-将过流开关置于“0ff”位置281I [ ]-按“工作方式”键退回测量前设置菜单282I [ ]-通知P用放电棒给各侧线圈放电283I [ ]-通知P给各侧线圈验电284P ()-各侧线圈确无电压285P [ ]-将透明双色接地线可靠夹在中压线圈的出线端上286P [ ]-将测量线的鳄鱼夹可靠夹在高压线圈的出线端上287P [ ]-将高压挂钩挂于低压线圈的出线端上288I [ ]-通知P做实验监护289I ()- P试验监护到位290I ()-控制面板上的过流开关在“ON”位置291I ()-重复260-265步设置和操作292I [ ]-将过流开关置于“0ff”位置293I [ ]-按“工作方式”键退回测量前设置菜单300拆除试验接线和整理试验设备301I [ ]-关闭仪器电源开关302I [ ]-断开仪器220V交流电源303I [ ]-通知P用放电棒给各侧线圈放电304P ()-验明各侧线圈无残余电压305P [ ]-拆除变压器上所有试验接线306P [ ]-依次拆除和整理仪器上高压电缆线,测量线,屏蔽线307P [ ]-最后拆除和整理双色接地线308P [ ]-整理试验设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油浸式变压器介损试验
一、使用仪器:AI-6000E自动抗干扰精密介质损耗测量仪一体机
二、使用说明:
高压输出插座(0.5-10KV,最大200mA)
安装位置:箱体前侧面,外设保护门,如图所示。

功能:内高压输出;检测反接线试品电流;内部标准电容器的高压端。

接线方法:插座接高压线芯线(红夹子)并将地线接“测量接地”。

正接线时,高压线芯线(红夹子)和屏蔽“黑夹子”都可以做加压线;反接线时只能用芯线对试品高压端加压。

如果试品高压端有屏蔽极(如高压端的屏蔽极)可接高压屏蔽,无屏蔽时高压屏蔽悬空。

试品输入Cx插座(10µA-5A)
功能:正接线时输入试品电流,如图所示。

接线方法:正接线时芯线(红夹子)接试品低压信号端,如果试品低压端有屏蔽极(如低压端的屏蔽极)可接屏蔽,试品无屏蔽极时屏蔽悬空。

三、试验方法
1.变压器高压绕组对低压绕组及地(反接法、内标准电容、内高压)
高压侧与中性点短接,低压侧短接接地,仪器高压输出接高压侧引出线。

2.低压绕组对高压绕组及地(反接法、内标准电容、内高压)
低压侧短连,高压侧与中性点短连接地,仪器高压输出接低压侧引出线。

3.整体对地(反接法、内标准电容、内高压)
高压侧绕组、中性点与低压侧绕组短连,仪器高压输出接高压或低压侧引出线都可。

4.高压侧套管(正接法、内标准电容、内高压)
高压侧与中性点短连。

A相套管:仪器高压输出接高压侧A相引出线,Cx接A相末屏
B相套管:仪器高压输出接高压侧B相引出线,Cx接B相末屏
C相套管:仪器高压输出接高压侧C相引出线,Cx接C相末屏
O相套管:仪器高压输出接高压侧O相引出线,Cx接O相末屏。

相关文档
最新文档