专题13数列与概率2019年高考数学文走出题海之黄金100题系列

合集下载

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。

最可能考的30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

最可能考的30题-2019年高考数学走出题海之黄金30题系列(江苏版)(解析版)

2019年高考数学走出题海之黄金30题系列专题三最可能考的题30题一、填空题1.【集合的运算与简单不等式解法】已知集合,则__________.【答案】【解析】∵A={1,2,3,4},B={x|2<x<5,x∈R};∴A∩B={3,4}.故答案为:{3,4}.2.【复数的概念与四则运算】如果(表示虚数单位),那么 ________.【答案】1【解析】由于,结合题意可得:,由复数相等的充分必要条件可得:.故答案为:.3.【茎叶图与平均数】年月日晚,某校高一年级举行“校园歌手卡拉大奖赛”,邀请了七位评委为所有选手评分.某位选手演出结束后,评委们给他评分的茎叶图如图所示,按照比赛规则,需去掉一个最高分和一个最低分,则该选手最终所得分数的平均分为________.【答案】85【解析】该选手所得分数的平均分为,填.4.【传统文化与分层抽样】我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽__________人.【答案】60由题意可得,三乡共有人,从中抽取500人,因此抽样比为,所以北乡共抽取人;南乡共抽取人,所以北乡比南乡多抽人.故答案为5.【伪代码】执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_______.【答案】8【解析】输入,若,则,不合题意若,则,满足题意本题正确结果:6.【传统文化与程序框图】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为_____.(参考数据:,)【答案】24模拟执行程序,可得,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出的值为24.故答案为:24.7.【函数的定义域、对数函数的性质】函数的定义域是______.【答案】【解析】要使有意义,则,,的定义域是.故答案为:.8.【三角恒等变换】已知,,则__________.【答案】7【解析】解:∵∈(,),∴∈(,π),∵sin(),∴cos(),∴tan()=,则tan A=tan[()].故答案为:9.【几何概型】关于圆周率的近似值,数学发展史上出现过很多有创意的求法,其中可以通过随机数实验来估计的近似值.为此,李老师组织名同学进行数学实验教学,要求每位同学随机写下一个实数对,其中,,经统计数字、与可以构成钝角三角形三边的实数对为个,由此估计的近似值是_______(用分数表示).【答案】【解析】实数对落在区域的频率为,又设表示“实数对满足且能与构成钝角三角形”,则中对应的基本事件如图阴影部分所示:其面积为,故,所以,填.10.【古典概型】将一颗质地均匀的骰子它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,则的概率为______.【答案】【解析】解:将一颗质地均匀的骰子它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,基本事件总数,包含的基本事件有:,,,,,,,,,,,,,,共14个,的概率为.故答案为:.11.【双曲线的几何性质】若是双曲线的右焦点,过作该双曲线一条渐近线的垂线与两条渐近线相交于两点,为坐标原点,的面积为,则该双曲线的离心率为_______________________.【答案】【解析】如图所示:由题意可知:焦点的坐标为,双曲线的渐近线的方程为,它的斜率为,所以有,点到渐近线的距离=,而,,而,在中,,由于双曲线两条渐近线关于轴对称,所以有,在中,的面积为,所以有,,.12.【等差数列与三角函数的性质】已知,数列满足:对任意,,且,,则使得成立的最小正整数为 ________.【答案】298【解析】,由知:,又,.是以3为首项,1为公差的等差数列,,又,,从而,,令得,又,故的最小值为298.13.【几何体的体积与导数应用】已知正方体的棱长为分别为底面和的中心,记四棱锥和的公共部分的体积为,则体积的值为__________.【答案】【解析】画出图形:可知四棱锥和的公共部分为两个如图放置的正四棱锥,底面为正方形EFGH,在三角形中,F、G分别为的中点,所以FG=,所以体积为,故答案为.14.【函数与导数】已知函数且函数在内有且仅有两个不同的零点,则实数的取值范围是_____________________.【答案】【解析】函数在内有且仅有两个不同的零点,即函数与函数在内有且仅有两个不同的交点,表示过点,斜率为的直线,绘制函数的图像如图所示,考查临界情况:首先考查经过点且与相切的直线方程的斜率:由可得,故切点坐标为,切线的斜率,切线方程为:,切线过点,故,解得:,故切线的斜率,由可得,由可得,结合图形可得实数取值范围是.15.【集合新定义】已知集合,集合满足① 每个集合都恰有7个元素; ②.集合中元素的最大值与最小值之和称为集合的特征数,记为(),则的最大值与最小值的和为_______.【答案】132【解析】由题意得,集合中各包含7个元素,且互不相等,当取得最小值时,集合中的最小值分别为1,2,3,最大值分别为21,15,9,例如,,,此时最小,且为51. 当集合中最小值为1,7,13,最大值为19,20,21时,最大.例如,,,此时最大,且为81.故最大值与最小值之和为132.二、解答题16.【空间平行与垂直】如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.【答案】(1)见证明;(2)见证明【解析】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.17.【空间平行与垂直、几何体的体积】如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,E为棱AA1的中点,AB=2,AA1=3.(Ⅰ)求证:A1C∥平面BDE;(Ⅱ)求证:BD⊥A1C;(Ⅲ)求三棱锥A-BDE的体积.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)1【解析】(Ⅰ)证明:设AC∩BD=O,连接OE,在△ACA1中,∵O,E分别为AC,AA1的中点,∴OE∥A1C,∵A1C⊄平面BDE,OE⊂平面BDE,∴A1C∥平面BDE;(Ⅱ)证明:∵侧棱AA1⊥底面ABCD,BD⊂底面ABCD,∴AA1⊥BD,∵底面ABCD为正方形,∴AC⊥BD,∵AA1∩AC=A,∴BD⊥平面ACC1A1,∵A 1C⊂平面ACC1A1,∴BD⊥A1C;(Ⅲ)解:∵侧棱AA1⊥底面ABCD于A,E为棱DD1的中点,且AA1=3,∴AE=,即三棱锥E-ABD的高为.由底面正方形的边长为2,得.∴.18.【平面向量与三角恒等变换】设,已知向量,且. (1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,且.所以,所以,因为,所以,所以,所以.(2)由(1)得,因为,所以,所以,所以.19.【三角恒等变换与三角函数的图象和性质】已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)求方程在区间内的所有实根之和.【答案】(Ⅰ),.(Ⅱ).【解析】(Ⅰ),由单调递减可知,递增,故,,即.∴函数的单调递增区间是,.(Ⅱ)由,得.由在上递增,在上递减,且,得,方程在上有两不等实根,,且满足.∴.20.【解三角形与基本不等式】已知三角形中,角的对边分别是,且=.(Ⅰ)求角的大小及的值;(Ⅱ)若的面积为,求的最小值.【答案】(1),= ;(2).【解析】(1)由正弦可知:,代入中,得而,=(2)因为的面积为,所以由基本不等式可知(当且仅当时,等号成立),因此的最小值是.21.【三角函数应用问题】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内切在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设,.问:对于任意,上述设计方案是否均能符合要求?【答案】能符合要求【解析】解:过作垂直于,垂足为.在直角三角形中,,,所以,因此.由图可知,点处观众离点处最远.在三角形中,由余弦定理可知.因为,所以当时,即时,,即.因为,所以观众席内每一个观众到舞台处的距离都不超过米.答:对于任意,上述设计方案均能符合要求.22.【直线与椭圆的位置关系】已知椭圆,点是长轴上的一个动点,过点的直线与交于两点,与轴交于点,弦的中点为.当为的右焦点且的倾斜角为时,重合,. (1)求椭圆的方程;(2)当均与原点不重合时,过点且垂直于的直线与轴交于点.求证:为定值.【答案】(1) (2)见证明【解析】(1)因为当为的右焦点,且的倾斜角为时,重合,.所以,因此,,所以椭圆的方程为.(2)设直线,,,将代入得:,所以,,所以,所以直线的方程为,所以点的坐标为,又因为点,所以为定值.23.【直线与椭圆的位置关系】已知椭圆的离心率为,,分别是它的左、右焦点,.(1)求椭圆的方程;(2)过椭圆的上顶点作斜率为,的两条直线,,两直线分别与椭圆交于,两点,当时,直线是否过定点?若是求出该定点,若不是请说明理由.【答案】(1);(2)【解析】(1)因为,所以,又,所以,椭圆的方程为;(2)因为,所以直线斜率存在设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点24.【导数的应用】函数.(1)若,在上递增,求的最大值;(2)若,存在,使得对任意,都有恒成立,求的取值范围. 【答案】(1)-2;(2)【解析】(1)当时,因为在上递增所以任意恒成立因为当时,;当时,,所以在单调递减,在单调递增所以当时最小所以,即所以最大值为-2(2)当时,依题意在有最大值点因为,且,①当,在递减,所以在,,上递增,不合题意②当,在上递增,且所以在上递减,在上递增,(i)当,,即在(上递减,所以,即在上递增,不合题意(ⅱ)当,在上递减,上递增且,,所以存在,使得且在上,递增;在上,递减;符合题意,所求(ⅲ)当时,在上递减,上递增且,,所以在上,递减,不合题意(ⅳ)当时,,所以在上递减,又因为(所以在上,递减,不合题意综上所述,当且仅当时,存在满足题意的25.【等比数列及数列的综合问题】已知数列的各项均不为零.设数列的前n项和为S n,数列的前n项和为T n,且.(1)求的值;(2)证明:数列是等比数列;(3)若对任意的恒成立,求实数的所有值.【答案】(1),;(2)数列是以1为首项,为公比的等比数列;(3)0【解析】(1)因为,.令,得,因为,所以.令,得,即,因为,所以.(2)因为,①所以,②②①得,,因为,所以,③所以,④当时,③④得,,即,因为,所以.又由(1)知,,,所以,所以数列是以1为首项,为公比的等比数列.(3)由(2)知,.因为对任意的,恒成立,所以的值介于和之间.因为对任意的恒成立,所以适合.若,当为奇数时,恒成立,从而有恒成立.记,因为,所以,即,所以(*),从而当时,有,所以不符.若,当为奇数时,恒成立,从而有恒成立.由(*)式知,当时,有,所以不符.综上,实数的所有值为0.26.【等比数列及其综合问题】已知数列满足对任意的,都有,且,其中,.记.(1)若,求的值;(2)设数列满足.① 求数列的通项公式;② 若数列满足,且当时,,是否存在正整数,使,,成等比数列?若存在,求出所有的值;若不存在,说明理由.【答案】(1)1011(2)①;②,满足题意【解析】(1)当时,由,得,又,所以,又,所以.(2)由,得,又,所以,又因为,所以,所以,,所以.②由题意,得,,因为,,成等比数列,所以,即,所以,即.由于,所以,即.当时,,得.当时,由(*),得为奇数,所以,即,代入(*)得,即,此时无正整数解.综上,,.27.【等差数列、等比数列及其综合问题】设等比数列{}的公比为 q(q > 0,q =1),前 n 项和为 Sn,且 2a1a3 = a4,数列{}的前 n 项和 Tn 满足2Tn = n(bn - 1),n ∈N*,b2 = 1.(1) 求数列{},{}的通项公式;(2) 是否存在常数 t,使得 {Sn+ } 为等比数列?说明理由;(3) 设 c n =,对于任意给定的正整数k(k ≥2), 是否存在正整数 l,m(k < l < m), 使得 c k,c1,c m成等差数列?若存在,求出 l,m(用 k 表示),若不存在,说明理由.【答案】(1);(2)存在,使得是公比为的等比数列;(3)存在符合题意.【解析】(1)等比数列{a n}的公比为q(q>0,q=1),∵2a1a3=a4,∴,可得a1.∴a n q n﹣1.数列{b n}的前n项和Tn满足2T n=n(b n﹣1),n∈N*,b2=1.∴n≥2时,2b n=2(T n﹣T n﹣1)=n(b n﹣1)﹣(n﹣1)(b n﹣1﹣1),化为:(n﹣2)b n=(n﹣1)b n﹣1+1,当n≥3时,两边同除以(n﹣2)(n﹣1),可得:,利用累加求和可得:b2+1,化为:b n=2n﹣3(n≥3),当n=1时,2b1=b1﹣1,解得b1=﹣1,经过验证n=1,2时也满足.∴b n=2n﹣3.(2)由(1)可知:a n,q>0,q≠1.∴S n.①若t时,则S n,∴q.即数列{S n}是公比为q的等比数列.②若t时,则S n.设A,B.(其中A,B≠0).则q不为常数.综上:存在t时,使得数列{S n}是公比为q的等比数列.(3)由(1)可知:b n=2n﹣3.,假设对于任意给定的正整数k(k≥2),存在正整数l,m(k<l<m),使得c k,c1,c m成等差数列.则,整理得:2m+1,取l=2k,则2m+1=(4k+1)(2k+1),解得m=4k2+3k.即存在l=2k,m=4k2+3k.符合题意.28.【导数的应用】已知函数.(1)若曲线在点处的切线方程是,求函数在上的值域;(2)当时,记函数,若函数有三个零点,求实数的取值范围.【答案】(1);(2).【解析】(1)因为,所以,所以,所以,即.,,,所以在上的值域为.(2)(i)当时,,由,得,此时函数有三个零点,符合题意.(ii)当时,.由,得.当时,;当时,.若函数有三个零点,则需满足且,解得.(iii)当时,.由,得,.①当,即时,因为,此时函数至多有一个零点,不符合题意;②当,即时,因为,此时函数至多有两个零点,不符合题意;③当,即时,若,函数至多有两个零点,不符题意;若,得,因为,所以,此时函数有三个零点,符合题意;若,得,由,记,则,所以,此时函数有四个零点,不符合题意.综上所述:满足条件的实数.29.【空间的角与空间点线面关系】已知多面体中,,,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求异面直线和所成角的余弦值;(Ⅲ)求直线与平面所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】(Ⅰ)取CE中点F,连接BF,OF,∵O为CD的中点,∴OF∥DE,且OF=DE,∵AB//DE,AC=AD=CD=DE=2,AB=1,∴OF∥AB,OF=AB,则四边形ABFO为平行四边形,∴AO//BF,BF⊆平面BCE,AO⊊平面BCE,∴AO//平面BCE;(Ⅱ)取DE中点M,连接AF,∵AB∥DE,AB=1,DE=2,∴AB∥ME,AB=ME,∴ABEM为平行四边形.∴AM//BE.∴∠CAM或其补角为AC与BE所成的角.∵DE⊥平面ACD,AD,CD⊆平面ACD,∴DE⊥CD,DE⊥AD,在中,CD=2,DM=1,,在中,AD=2,DM=1,,.所以异面直线AC和BE所成角的余弦值为. (Ⅲ)由题意可得BF//AO,∵AO⊥平面CDE,∴BF⊥平面CDE,∴BF⊥DF. ∵CD=DE,∴DF⊥CE,∵BF∩CE=F,∴DF⊥平面CBE;∴∠DBF就是直线BD与平面BEC所成角.在△BDF中,,.30.【空间的角与空间向量】如图所示,在多面体中,四边形为平行四边形,平面平面,,,,,,,点是棱上的动点.(Ⅰ)当时,求证平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角所成角的余弦值为,求线段的长.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)【解析】(Ⅰ)由已知得且,则四边形为平行四边形四边形为平行四边形又平面,平面平面(Ⅱ)过点作交于点,过点作交于点平面平面,平面平面,平面平面以为原点建立如图的空间直角坐标系则,,,,,设平面的法向量为,,,即令,又直线与平面所成角的正弦值为(Ⅲ),设平面的法向量为,,,即,令,又可取平面的法向量解得。

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)

2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。

若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。

从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。

在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。

2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。

专题03数列与概率专题篇2019年高考数学理走出题海之黄金100题系列

专题03数列与概率专题篇2019年高考数学理走出题海之黄金100题系列

专题3 数列与概率一、单选题1.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年增加了4750元,则该教师2018年的家庭总收入为()A.100000元B.95000元C.90000元D.85000元【答案】D【解析】由已知得,2017年的就医费用为元,故2018年的就医费用为12750元,所以该教师2018年的家庭总收入为元.故选D2.下图为国家统计局发布的2018年上半年全国居民消费价格指数(CPI)数据折线图,(注:同比是今年第n个月与去年第n个月之比,环比是现在的统计周期和上一个统计周期之比)下列说法错误的是()A.2018年6月CPI环比下降0.1%,同比上涨1.9%B.2018年3月CPI环比下降1.1%,同比上涨2.1%C.2018年2月CPI环比上涨0.6%,同比上涨1.4%D.2018年6月CPI同比涨幅比上月略微扩大0.1个百分点【答案】C【解析】观察表中数据知A,B,D正确,对选项C,2018年2月CPI环比上涨2.9%,同比上涨1.2%,故C错误故选:C3.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为()A.B.C.D.【答案】B【解析】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选:B.4.在等比数列中,已知,且,,成等差数列则的前5项和为A.31 B.62 C.64 D.128【答案】B【解析】设等比数列的公比为q,,,,解得.又,,成等差数列,,,解得的前5项和为,故选:B.5. 设为等差数列的前项和,若,,则的最小值为()A.-343 B.-324 C.-320 D.-243【答案】A【解析】∵解得∴设当0<x<7时,当x>7时,,故的最小值为f(7)=-343.故选:A.6.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为分,学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为分,则的值为()A.B.C.D.【答案】A【解析】设学生答对题的个数为,则得分(分),,,所以,同理设学生答对题的个数为,可知,,所以,所以.故选A.二、填空题7.在递增的等比数列中,,,则__________.【答案】【解析】由等比数列的性质可得,所以,,又因为为递增的等比数列,所以,即,所以又,所以,所以8.的展开式中的系数为__________.【答案】40【解析】(2x﹣y)5展开式的通项公式为:T r+1=•(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,得r=3;令5﹣r=3,得r=2;∴(x+y)(2x﹣y)5的展开式中x3y3系数为:22×(﹣1)3×+23×(﹣1)2×=40.故答案为:40.9.若已知随机变量,则____.【答案】【解析】随机变量,则.故答案为:.10. 设等差数列的前项和为.若,则______.【答案】65【解析】在等差数列中,由,可得,即,即,,故答案为65.11.体育课上定点投篮项目测试规则:每位同学有次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投次为止.每次投中与否相互独立,某同学一次投篮投中的概率为,若该同学本次测试合格的概率为,则_______.【答案】【解析】由题意可得:,整理可得:,即,该方程存在唯一的实数根.故答案为: 0.412.已知数列的首项为数列的前项和若恒成立,则的最小值为______.【答案】【解析】数列的首项,则:常数故数列是以为首项,3为公差的等差数列.则:首项符合通项.故:,,,由于数列的前n项和恒成立,故:,则:t的最小值为,故答案为:.三、解答题13. 已知数列的前项和为,且.(1)求,;(2)若,的前项和为,求.【答案】(1);(2)【解析】(1)令,得,,得,所以,即.当时,,当时,适合上式,所以.(2)当为偶数时,,当为奇数时,,综上所述,14.已知正数数列{a n}的前n项和为Sn,满足,. (1)求数列{a n}的通项公式;(2)设,若是递增数列,求实数a的取值范围.【答案】(1)a n=n;(2)(-1,+∞).【解析】解:(1),=S n-1+S n-2,(n≥3).相减可得:,∵a n>0,a n-1>0,∴a n-a n-1=1,(n≥3).n=2时,=a1+a2+a1,∴=2+a2,a2>0,∴a2=2.因此n=2时,a n-a n-1=1成立.∴数列{a n}是等差数列,公差为1.∴a n=1+n-1=n.(2)=(n-1)2+a(n-1),∵{b n}是递增数列,∴b n+1-b n=n2+an-(n-1)2-a(n-1)=2n+a-1>0,即a>1-2n恒成立,∴a>-1.∴实数a的取值范围是(-1,+∞).15.已知数列的前项和为,且,(其中为常数),又. (1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)由得,,解得,即,----①当时, ----②①-②得,即,∵ 不满足上式,∴(2)依题意得当时,,当时,两式相减得:.显然当时,符合上式∴16.高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.(1)求小明物理成绩的最后得分;(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.【答案】(1)70分 (2) (3)【解析】(1),此次考试物理成绩落在内的频率依次为,概率之和为小明的物理成绩为分,大于分.小明物理成绩的最后得分为分.(2)因为40名学生中,赋分分的有人,这六人成绩分别为89,91,92,93,93,96;赋分分的有人,其中包含80多分的共10人,70多分的有4人,分数分别为;因为小明的化学成绩最后得分为分,且小明化学多分,所以小明的原始成绩的可能值为;(3)记物理、化学、生物、历史、地理、政治依次为,小明的所有可能选法有:共种,其中包括化学的有共种,若小明必选物理,其他两科在剩下的五科中任选,所选科目包括化学的概率为.17.某中学共有名学生,为调查该校学生每周平均参加体育运动的时间,按性别采用分层抽样的方法,收集了名学生每周平均参加体育运动的时间(单位:小时),分组如下:,,,,,,得到的频率分布直方图如图所示:(Ⅰ)已知这名学生中,有的女生每周平均参加体育运动的时间不足小时,且每周平均参加体育运动的时间不足小时的男生人数与女生人数之比为.请将下面的列联表补充完整,并判断是否有的把握认为“该校学生每周平均参加体育运动的时间与性别有关”;男生女生合计每周平均参加体育运动的时间不足小时每周平均参加体育运动的时间不低于小时合计(Ⅱ)该校决定从每周平均参加体育运动的时间在和内的学生中,采用分层抽样的方法抽取名学生进行问卷调查,然后再从这名学生中随机抽取名学生进行面谈,用表示抽取的名学生中每周平均参加体育运动的时间在内的学生人数,求随机变量的分布列和数学期望.参考公式及数据:,.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】(Ⅰ)由题可得,这名学生中,有名学生每周平均参加体育运动的时间不足小时,其中男生有名,女生有名,每周平均参加体育运动的时间不低于小时的女生有名,由此可得补充完整的列联表如下:男生女生合计每周平均参加体育运动的时间不足小时每周平均参加体育运动的时间不低于小时合计所以的观测值.所以没有的把握认为“该校学生每周平均参加体育运动的时间与性别有关”.(Ⅱ)由题意可知,每周平均参加体育运动的时间在内的有名学生,在内的有名学生,则在内的学生中应抽取名,在内的学生中应抽取名,所以的所有可能取值为,,,因为,,,所以的分布列为所以.18.近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图x 50 100 150 200 300 400t 90 65 45 30 20 20(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;(2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准)参考数据:【答案】(1)见证明;(2)(3)最大值约为元【解析】(1)的所有可能取值为.则,的分布列(2)由散点图可知更适合于此模型.其中,所求的回归方程为(3)令若一年按天计算,当收费标准约为元/日时,年销售额最大,最大值约为元.19.今有9所省级示范学校参加联考,参加人数约5000人,考完后经计算得数学平均分为113分.已知本次联考的成绩服从正态分布,且标准差为12.(1)计算联考成绩在137分以上的人数.(2)从所有试卷中任意抽取1份,已知分数不超过123分的概率为0.8.①求分数低于103分的概率.②从所有试卷中任意抽取5份,由于试卷数量较大,可以把每份试卷被抽到的概率视为相同,表示抽到成绩低于103分的试卷的份数,写出的分布列,并求出数学期望.参考数据:,,.【答案】(1)114人;(2)①② .【解析】(1)设本次联考成绩为,由题意知在正态分布中,,,因为,所以,故所求人数为(人).(2)①.②由题意易知故,,,,,,0 1 2 3 4 5.20.随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200 800第1次通过科目二人数960 600第1次未通过科目二人数240 200若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.【答案】(1);(2)见解析.【解析】事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中).(1)事件表示这对夫妻考科目二都不需要交补考费..(2)的可能取值为400,600,800,1000,1200.,,,,.则的分布列为:400 600 800 1000 1200故 (元).。

(完整word版)2019高考概率真题解析概率问题中的递推数列

(完整word版)2019高考概率真题解析概率问题中的递推数列

概率问题中的递推数列一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是12,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是13,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是35,出现绿灯的概率是25,记开关第n 次闭合后出现红灯的概率为P n 。

(1)求:P 2;(2)求证:P n <12 (n ≥2) ;(3)求lim n n P →∞。

解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。

于是P 2=P 1·13+(1-P 1)·35=715。

(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·13+(1-P n -1)·35=-415P n -1+35,再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919∴{P n -919}为首项为(P 1-919)、公比为(-415)的等比数列P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1∴当n ≥2时,P n <919+138=12(3)由(2)得lim n n P →∞=919。

【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为1236P n -1;② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-1236)(1-P n -1)。

第13题 概率(文)-2019年高考数学23题试题分析与考题集训含答案

第13题 概率(文)-2019年高考数学23题试题分析与考题集训含答案

第13题 概率(文)【考法】本主题考题形式为选择题或填空题,与函数、不等式、统计等知识结合考查古典概型、几何概型及互斥事件、对立事件的概率求法,考查应用意识、运算求解能力,难度为容易题或中档试题,分值为5至10分.【考前回扣】1.古典概型的概率(1)公式P (A )=m n =A 中所含的基本事件数基本事件总数. (2)古典概型的两个特点:所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等. 2.几何概型的概率(1)P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).(2)几何概型应满足两个条件:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.3.概率的性质及互斥事件的概率 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0.(4)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),特别地P (A )+P (A -)=1.【易错点提醒】1.应用互斥事件的概率加法公式,一定要注意确定各事件是否彼此互斥,并且注意对立事件是互斥事件的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.几何概型的概率计算中,几何“测度”确定不准而导致计算错误3.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数,两点注意:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.4..利用古典概型计算事件A 的概率应注意的问题:①本试验是否是等可能的;②本试验的基本事件有多少个;③事件A 是什么,它包含的基本事件有多少个,回答好这三个方面的问题,解题才不会出错.【考向】考向一 古典概型【解决法宝】1.求古典概型的概率的关键是正确列举出基本事件的总数和待求事件包含的基本事件数.2..基本事件数的探求方法:①列举法:适合于较简单的试验;②树状图法:适合于较为复杂的问题中的基本事件的探求.③列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.例1.【2019届四川省宜宾市二诊】一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A.B.C.D.【分析】先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率【解析】一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,6.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},{5,6}共9个,这2个球中有白球的概率是,故选B.考向二几何概型【解决法宝】1.当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;2.利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.例2【2019届广西柳州市3月模拟】在区间上随机取一个数,使直线与圆相交的概率为()A.B.C.D.【分析】先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【解析】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为,故选C.考向三互斥事件和对立事件【解决法宝】1.注意区分互斥事件和对立事件,互斥事件是在同一试验中不可能同时发生的两个或多个事件,对立事件是同一试验中不可能同时发生的两个事件,且其和事件为必然事件;2.一个事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”、“至多”等问题往往用这种方法求解;例3.【河北沧州市2018届一模】甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为.【分析】利用互斥事件的概率公式进行求解.【解析】因为甲获胜的概率,甲、乙下和棋的概率以及乙获胜的概率三者之和为1,所以乙获胜的概率为.【集训】1.【江西省上饶市2018届二模】欧阳修的《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm 的圆面,中间有边长为1cm的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A.49πB.14πC.19πD.116π【答案】B2. 【2019届辽宁省丹东市质测(一)】从甲乙丙丁4人中随机选出2人参加志愿活动,则甲被选中且乙未被选中的概率是()A.B.C.D.【答案】B【解析】个人中选人,基本事件有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁六种,其中甲被选中且乙未被选中的事件有甲丙、甲丁两种,故概率为.故选B.3.【山西省2018届一模】甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙分钟的概率是()A. B. C. D.【答案】C【解析】建立直角坐标系如图,分别表示甲,乙二人到达的时刻,则坐标系中每个点可对应甲,乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是,其构成的区域为如图阴影部分,则所求的概率为,故选C4. 【2019届安徽省安庆市二模】“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示.在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.若直角三角形中较小的锐角满足,则从图中随机取一点,则此点落在阴影部分的概率是()A.B.C.D.【答案】D【解析】设大正方形边长为,由知直角三角形中较小的直角边长为,较长的直角边长为,所以小正方形的边长为且面积,大正方形的面积为25,则则此点落在阴影部分的概率是,故选D.5.【四川省凉山州2018届第二次诊断】在区间[]02,上任取两个数,则这两个数之和大于3的概率是( )A.18 B. 14 C. 78 D. 34【答案】A【解析】如图:不妨设两个数为x y ,,故3x y +>,如图所示,其概率为,故选A6.【2019届安徽省蚌埠市一质检】一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为 A .4 B .5C .8D .9【答案】B【解析】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B . 7.【河南省濮阳市2018届二模】在内任取一个实数,设,则函数的图象与轴有公共点的概率等于( )A.B.C. D.【答案】D【解析】的图象与轴有公共点,或在内取一个实数,函数的图象与轴有公共点的概率等于,故选D.8.【2019届安徽省六安市毛坦厂中学3月联考】若是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,则点在圆:内的概率为()A.B.C.D.【答案】C【解析】因为是从区间内任意选取的一个实数,也是从区间内任意选取的一个实数,所以点的所有取值构成边长为4的正方形区域,且正方形面积为;如图所示,作出满足题意的正方形和圆,在圆:内,由可得,所以,所以;因此,所以阴影部分面积为,所以点在圆:内的概率为,故选C9.【湖南省衡阳市2018届一模】2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行为此发行了以此为主题的金质纪念币,如图所示,该圆形金质纪念币,直径22mm.为了测算图中军旗部分的面积,现用1粒芝麻(将芝麻近似看作一个点)向硬币内随机投掷220次,其中恰有60次落在军旗内,据此可估计军旗的面积大约是A. 32B. 33C. 132D. 133【答案】B【解析】设军旗的面积为s ,由题知,圆的半径为11mm ,由几何概型公式知,,解得233mm s π=,故选B.10.【2019届湖南省怀化市一模】《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为( ) A . B .C .D .【答案】B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B .11.【广东省2018届一模】下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A. B. C. D.【答案】A【解析】根据圆的面积公式以及几何概型概率公式可得,此点取自黑色部分的概率是,故选A.12.【2019届河北省石家庄市3月质检】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。

高考数学概率真题训练100题含参考答案

高考数学概率真题训练100题含参考答案

高考数学概率真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.在区间(0,1)随机取一个数,则取到的数小于13的概率为( )A .34B .23C .13D .162.向边长为4的正三角形区域投飞镖,则飞镖落在离三个顶点距离都不小于2的区域内的概率为( )A .1B .34C D .143.某公交车站的末班车在19:0019-:30间随机驶离该站,小明在19:1519-:30间随机到达该站,则小明赶上末班车的概率是( )A .18B .14C .12D .344.从1,2,3,4四个数字中任取两个不同数字,则这两个数字之积小于5的概率为 A .13B .12C .23D .565.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,则3m n =的概率为( ) A .118B .112 C .19D .166.如图,先画一个正方形ABCD ,再将这个正方形各边的中点相连得到第2个正方形,依此类推,得到第4个正方形EFGH ,在正方形ABCD 内随机取一点,则此点取自正方形EFGH 内的概率是A .14B .16C .18D .1167.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A .12B .14C .13D .168.在区间[0,2]上随机取一个实数x ,则事件“3x -1<0”发生的概率为A.12B.13C.14D.169.在等腰直角三角形ABC中,角C为直角.在ACB∠内部任意作一条射线CM,与线段AB交于点M,则AM AC<的概率().A2B.12C.34D.1410.《孙子算经》是中国古代重要的数学著作,据书中记载,中国古代诸侯的等级从低到高分为五级:男、子、伯、侯、公.现有每个级别的诸侯各一人,共5人,要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“子”恰好分得13个橘子的概率是()A.18B.17C.16D.1511.某公司安排甲、乙、丙3人到,A B两个城市出差,每人只去1个城市,且每个城市必须有人去,则A城市恰好只有甲去的概率为()A.15B.16C.13D.1412.从装有20个红球和30个白球的罐子里任取两个球,下列情况中是互斥而不是对立的两个事件是A.至少有一个红球,至少有一个白球B.恰有一个红球,都是白球C.至少有一个红球,都是白球D.至多有一个红球,都是红球13.写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算8965⨯,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出648345⨯的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是()A.518B.13C.1318D.2314.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A.4π81B.81-4π81C.127D.82715.五行学说最早出现在黄老、道家学说中,据《尚书·洪范》记载:“五行:一曰水,二曰火,三曰木,四曰金,五曰土.水曰润下,火曰炎上,木曰曲直,金曰从革,土曰稼穑.润下作咸,炎上作苦,曲直作酸,从革作辛,稼穑作甘.”后人根据对五行的认识,又创造了木、火、土、金、水五行相生相克理论,如金与木、金与火、水与火、水与土、土与木相克,若从5大类元素中任选2类,则2类元素相克的概率是()A.34B.25C.35D.1216.“垃圾分类”已成为当下最热议的话题,我们每个公民都应该认真履行,逐步养成“减量、循环、自觉、自治”的行为规范,某小区设置了“可回收垃圾”、“不可回收垃圾”、“厨余垃圾”、“其他垃圾”四种垃圾桶.一天,小区住户李四提着属于4个不同种类垃圾桶的4袋垃圾进行投放,发现每个桶只能再投一袋垃圾就满了,作为一个意识不到位份子,李四随机把4袋垃圾投放到了4个桶中,则有且仅有一袋垃圾投放正确的概率为()A.16B.23C.13D.1217.中国古代的贵族教育体系,开始于公元前1046年的周王朝,周王官学要求学生掌握的六种基本才能礼、乐、射、御、书、数.某中学为了传承古典文化,开设了六种选修课程,要求每位学生从中选择3门课程,扎西同学从中随机选择3门课程,则他选中“御”的概率为()A.16B.13C.12D.2318.不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为()A.314B.37C.67D.132819.同时投掷两个质地均匀的骰子,两个骰子的点数至少有一个是奇数的概率为()A.736B.1136C.1112D.3420.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过两次而接通电话的概率为A.910B.310C.15D.11021.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是()A.112B.110C.325D.1212522.据人口普查统计,育龄妇女生男生女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是A.12B.13C.14D.1523.若x A∈,则1Ax∈,就称集合A是“和谐集合”.任选集合111,,,1,3,423M⎧⎫=-⎨⎬⎩⎭的一个非空子集是“和谐集合”的概率为()A.110B.19C.731D.73224.张先生知道清晨从甲地到乙地有好、中、差三个班次的客车.但不知道具体谁先谁后.他打算:第一辆看后一定不坐,若第二辆比第一辆舒服,则乘第二辆;否则坐第三辆.问张先生坐到好车的概率和坐到差车的概率分别是A.、B.、C.、D.、25.在右图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是A.B.C.D.26.如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点,这一点落在小正方形内的概率为15, 若直角三角形的两条直角边的长分别为(),a b a b >,则b a=A .13B .12C D 27.不定项选择题是高中物理选择题中必考题型之一,正确答案为A 、B 、C 、D 四个选项中的一个或多个,假设某考生对A 、B 、C 、D 选项正确与否完全不知道,则该考生猜对答案概率是( ) A .16B .114C .115D .11628.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则“4X >”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚为5或6点,第二枚为1点 C .第一枚为6点,第二枚为1点D .第一枚为1点,第二枚为6点29.2021年湖北省新高考将实行“3+1+2”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式,现有甲、乙、丙、丁4名学生都准备选物理与化学,并且他们都对政治、地理、生物三科没有偏好,则甲、乙、丙、丁4人中恰有2人选课相同的概率为( ) A .16B .512 C .58D .4930.《周髀算经》中对圆周率π有“径一而周三”的记载,已知两周率π小数点后20位数字分别为14159 26535 89793 23846.若从这20个数字的前10个数字和后10个数字中各随机抽取一个数字,则这两个数字均为奇数的概率为( )A .35B .3395C .21100D .72031.费马小定理:若p 是质数,且a ,p 互质,那么a 的()1p -次方除以p 所得的余数恒等于1.依此定理,若在数集{}2,3,5,6中任取两个数,其中一个作为p ,另一个作为a ,则所取的两个数符合费马小定理的概率为( )A .712 B .34C .23D .1232.一个矩形,如果从中截去一个最大的正方形,剩下的矩形的宽与长之比,与原矩形的一样(即剩下的矩形与原矩形相似)0.618≈,称为黄金比,称该矩形为黄金矩形.黄金矩形可以用上述方法无限地分割下去.已知ABCD 是黄金矩形,按上述方法分割若干次以后,得如图所示图形.若在ABCD 内任取一点,则该点取自阴影内部的概率为( )A .4⎝⎭B .6⎝⎭C .7⎝⎭D .8⎝⎭33.现有三张识字卡片,分别写有“中”、“国”、“梦”这三个字.将这三张卡片随机排序,则能组成“中国梦”的概率是( ) A .13B .16C .19D .11234.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是A .14B .13C .532D .31635.在正方体1111ABCD A B C D -中,从1,,,A B C B 四个点中任取两个点,这两点连线平行于平面11AC D 的概率为( ) A .23B .12C .13D .5636.同时抛掷两枚硬币,“向上面都是正面”为事件M ,“至少有一枚的向上面是正面”为事件N ,则有( ) A .M N ⊆B .M N ⊇C .M ND .M N <37.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,正方形ABCD 外部四个阴影部分的三角形称为“风叶”.现从该“数学风车”的8个顶点中任取2个顶点,则2个顶点取自同一片“风叶”的概率为( )A .37B .47C .314D .111438.抛一枚均匀硬币,正,反面出现的概率都是12,反复投掷,数列{}n a 定义如下:1({-1(n n a n =第次投掷出现正面)第次投掷出现反面),若*12()n n S a a a n N =+++∈,则事件40S >的概率为A .516B .14C .116D .1239.在区间[]0,1上任取两个数,则这两个数之和小于65的概率是( )A .1225B .1625C .1725D .182540.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫ ⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定41.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X ,已知16(1)45P X ==,且该产品的次品率不超过40%,则这10件产品的次品数为( ) A .2件 B .4件 C .6件 D .8件42.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是 A .310B .23C .35D .4543.设k 是一个正整数,在(1+)k x k的展开式中,第四项的系数为116,记函数2yx 与y kx =的图象所围成的阴影部分面积为S ,任取[0,4]x ∈,[0,16]y ∈,则点(,)x y 恰好落在阴影区域S 内的概率是( ) A .23B .13C .25D .1644.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手,若从中任选2人,则选出的火炬手的编号不相连的概率为 A .310 B .35C .710 D .2545.《世界数学史简编》的封面有一图案(如图),该图案的正方形内有一内切圆,圆内有一内接正三角形,在此图案内随机取一点,则此点取自阴影部分的概率为A .2πB .4πC .4πD .2π46.将长为1的小捧随机拆成3小段,则这3小段能构成三角形的概率为 A .12 B .13C .14D .1547.已知函数,若在[1,8]上任取一个实数,则不等式成立的概率是A .B .C .D .48.由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是( ) A .120B .112C .110 D .16二、填空题49.(理)一盒中装有12个同样大小的球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,则取出的1个球是红球或黑球或白球的概率为__________. 50.已知某市的1路公交车每5分钟发车一次,小明到达起点站乘车的时刻是随机的,则他候车时间不超过2分钟的概率是______.51.已知某运动员在一次射击中,射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13,则该运动员在一次射击中,至少射中8环的概率是_______. 52.如图,靶子由一个中心圆面I 和两个同心圆环Ⅱ、Ⅱ构成,射手命中I 、Ⅱ、Ⅱ的概率分别为0.33、0.29、0.26,则脱靶的概率是______.53.下列命题中,正确的是______.(填序号)Ⅱ事件A 发生的概率()P A 等于事件A 发生的频率()n f A ;Ⅱ一颗质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点;Ⅱ掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =;54.袋子中有四个小球,分别写有“四”“校”“联”“考”四个字,有放回地从中任取一个小球,取到“联”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“四”“校”“联”“考”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 23 34据此估计,直到第二次就停止的概率为______.55.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.56.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则正确命题的序号是______.Ⅱ事件A 发生的概率为12;Ⅱ事件A B 发生的概率为1120; Ⅱ事件A B 发生的概率为25;Ⅱ从甲罐中抽到标号为2的小球的概率为15.57.随机抽取10个同学中至少有2个同学在同一月份生日的概率为__(精确到0.001). 58..从分别写上数字1,2,3,9,的9张卡片中,任意取出两张,观察上面的数字,则两数积是完全平方数的概率为________________59.如图,有四根木棒穿过一堵墙,两人分别站在墙的左、右两边,各选该边的一根木棒.若每边每根木棒被选中的机会相等,则两人选到同一根木棒的概率为__________.60.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A 为“向上的为奇数点”,事件B 为“向上的为4点”,则()P A B =______.61.盒子里装有大小质量完全相同且分别标有数字1、2、3、4、5的五个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和不小于5”的概率是______.62.已知向量(2,1),(,)a b x y ==,若{}{}1,0,1,2,1,0,1x y ∈-∈-,则向量//a b 的概率为_______.63.某微信群中四人同时抢3个红包(金额不同),假设每人抢到的几率相同且每人最多抢一个,则其中甲、乙都抢到红包的概率为 _____.64.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.65.如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为_______66.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为12,丙购买到冰墩墩的概率为13,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.67.设a ,b 随机取自集合{}1,2,3,则直线30ax by ++=与圆221x y +=有公共点的概率是________. 三、解答题68.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n .求(1)用列举法,列出所有结果; (2)求事件2n m <+的概率.69.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;70.为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.(1)求这组数据的众数和平均数;(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.71.共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.图1共享单车用户年龄等级分布图2共享单车使用频率分布(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表:(2)现从不常使用共享单车的人中分层抽样抽出4人跟踪调查,若从这4人中随机抽取2人,求2人都是年轻人的概率. 参考数据:独立性检验界值表:其中,()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.72.为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):(1)求高一、高二两个年级各有多少人?(2)设某学生跳绳m 个/分钟,踢毽n 个/分钟.当175m ≥,且75n ≥时,称该学生为“运动达人”.Ⅱ从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;Ⅱ从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数ξ的分布列和数学期望.73.若养殖场每个月生猪的死亡率不超过1%,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y (十万元)关于月养殖量x (千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程ˆˆˆya bx =+中斜率和截距用最小二乘法估计计算公式如下:1221ˆni ii nii x ynx ybxnx ==-=-∑∑,ˆˆay bx =- 参考数据:88211460,379.5ii i i i x x y ====∑∑.74.某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查.参加活动的甲、乙两班的人数之比为5Ⅱ3,其中甲班中女生占35,乙班中女生占13.求该社区居民遇到一位进行民意调查的同学恰好是女生的概率. 75.设袋中有5个黄球,3个红球,2个绿球,试按:(1)有放回摸球三次,每次摸一球,求第三次才摸到绿球的概率; (2)不放回摸球三次,每次摸一球,求第三次才摸到绿球的概率.76.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y ,用(),x y 表示一个基本事件. (1)求满足条件“xy为整数”的事件的概率; (2)求满足条件“2x y -<”的事件的概率.77.投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.78.如今我们的互联网生活日益丰富,网购开始成为不少人日常生活中不可或缺的一部分,某校学生管理机构为了了解学生网购消费情况,从全校学生中抽取了100人进行分析,得到如下表格(单位:人)参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++参考数据如下:(1)根据表中数据,能否在犯错误的概率不超过0.05的前提下认为学生网购的情况与性别有关?(2)现从所调查的女生中利用分层抽样的方法抽取了5人,其中经常网购的女生分别是:,,A B C,偶尔或从不网购的女生分别是,a b,从这5人中随机选出2人,求选出的2人中至少有1人经常网购的概率79.已知甲袋中有4个白球2个黑球,乙袋中有3个白球2个黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取1个球.(1)求甲袋中任取出的2个球为同色球的概率;(2)求乙袋中任取出1球为白球的概率.80.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数()AQI,数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出,n m的值,并完成频率分布直方图:(2)由频率分布直方图,求该组数据的平均数与中位数;-的监测数据中,用分层抽样的方法抽取5 (3)在空气质量指数分别为51100-和151200天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.81.甲、乙两人参加一次考试.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从各选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率.82.某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为100分.上个月该医院对100名患者进行了回访调查,将他们按所打分数分成以下几组:第一组[0,20),第二组[20,40),第三组[40,60),第四组80,100,得到频率分布直方图,如图所示.[60,80),第五组[](1)求所打分数不低于60分的患者人数;(2)该医院在第二、三组患者中按分层抽样的方法抽取6名患者进行深入调查,之后将从这6人中随机抽取2人聘为医院行风监督员,求行风监督员来自不同组的概率. 83.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话;(2)拨号不超过3次而接通电话.84.浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7 门科目中自选 3 门参加考试.下面是某校高一200 名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20 分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60 百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率.85.某学校在学校内招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如茎叶图所示(单位:cm),若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(Ⅱ)根据数据分别写出男、女两组身高的中位数;(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?(Ⅱ)在(Ⅱ)的基础上,从这5人中选2人,那么至少有一人是“高个子”的概率是多少?86.2020年江西省旅游产业发展大会于6月12日至6月13日在赣州顺利召开.为让广学生子解赣州旅游文化,赣州市旅游局在赣州市各中小学校开展“赣州市旅游知识网络竞赛”活动.为了更好地分析中学生和小学生对赣州市旅游知识掌握情况,将中学组和小学组的所有参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.(1)若将一般和良好等级合称为合格等级,根据已知条件完成下面的22⨯列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?(2)若某县参赛选手共80人,用频率估计概率,试估计该县参赛选手中优秀等级的人数;(3)如果在优秀等级的选手中取3名,在良好等级的选手中取2名,再从这5人中任选3人组成一个比赛团队,求所选团队中恰有2名选手的等级为优秀的概率.注:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的排名来划分等级并以此打分得到最后得分.假定 省规定:选考科目按考生成绩从高到低排列,按照占
总体
的,以此赋分 分、 分、 分、 分.为了让学生们体验“赋分制”计算成绩的方
法, 省某高中高一( )班(共 人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选
C.
D.
【答案】B 【解析】
设正方形 DEFC 的边长为 ,则
,因此所求概率为
,选 B.
6.已知等差数列 中,
A.10
B.9
【答案】A
【解析】
因为在等差数列 中,
所以
,前 10 项的和等于前 5 的和,若
C.8
D.2
, ,
,则
(),



故选 【解析】 设公差为 d, ∵3a3=7a7,项 a1=1, ∴3(1+2d)=7(1+6d), 解得 d=- ,
∴an=1- (n-1)=

令 an≥0,解得 n=10,
∴数列{an}的前 n 项和的最大值为 S10=10+
故答案为:5
三、解答题
13. 已知数列 的前 项和为 ,满足
参考公式:线性回归方程
,其中


【答案】(1) ;(2)
【解析】






则从 5 名学生中,任取 2 名学生的所有取法为 、 、 、 、 、 、 、 、 、
,共有 10 种情况,
其中至少有一人的物理成绩高于 90 分的情况是 、 、 、 、 、 、 ,共计 7
种,因此选中的学生中至少有一人的物理成绩高于 90 分的概率为 ;
【答案】(1)
(2)
【解析】
(1)由

,可得


,解得
,故
,即

当 时,



当 时,
符合上式,
故数列 的通项公式为

(2)由(1)可得


易知
,所以


, , ,
12
故当

时, 取得最大值 110.
(方法二)由
,得
则当

时, 取得最大值,
且最大值为
17.在数列 中,

(1)若 是等差数列,且
(2)对任意的
有:
,前 项之和为 . ,求 的值;
,且
.试证明:数列
是等比数列.
【答案】(1) 【解析】
(2)见证明
(1)设 的公差为 ,则由已知可得:
解得

(2)由
得:数列 的奇数项和偶数对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中, 对仿制的 重量(单位: )数据如下表:
件工艺品测得
分组
频数
频率
合计
(1)求出频率分布表中实数 , 的值;
(2)若从仿制的 件工艺品重量范围在
范围
中的概率.
【答案】(1)
,
;(2) .
【解析】
三科计算成绩),已知这次摸底考试中的物理成绩(满分 分)频率分布直方图 ,化学成绩(满分 分)
茎叶图如下图所示,小明同学在这次考试中物理 分,化学 多分.
(1)求小明物理成绩的最后得分; (2)若小明的化学成绩最后得分为 分,求小明的原始成绩的可能值; (3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.
;因为小明的化
学成绩最后得分为 分,且小明化学 多分,所以小明的原始成绩的可能值为

(3)记物理、化学、生物、历史、地理、政治依次为
,小明的所有可能选法有:
共 种,其中包括化学的有
共 种,
若小明必选物理,其他两科在剩下的五科中任选,所选科1.70
(Ⅰ)根据上表数据,计算 与 的相关系数 ,并说明 与 的线性相关性强弱(已知:
,则认
为 与 线性相关性很强;
,则认为 与 线性相关性一般;
,则认为 与 线性相关
性较弱);
(Ⅱ)求 关于 的线性回归方程,并预测 地区 2019 年足球特色学 校的个数(精确到个)
参考公式:





.
【答案】(I)相关性很强;(II) 【解析】

故在犯错概率不超过 0.05 的前提下认为选修文科与性别有关系,
则出错的可能性为
.
10.在递增的等比数列 中,

,则 __________.
【答案】
【解析】
由等比数列的性质可得
,所以


又因为 为递增的等比数列,
所以 ,即

所以

,所以 ,
所以
11.已知一只蚂蚁在底面半径为 ,高为
的圆锥侧面爬行,若蚂蚁在圆锥侧面上任意一点出现的可能
由题意知
,又 为正项等比数列,所以
,且 ,所以

所以 或
(舍),故选 A
5. 右图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中△ABC 为直角三角形,四边
形 DEFC 为它的内接正方形,已知 BC=2,AC=4,在△ABC 上任取一点,则此点取自正方形 DEFC 的概率

A.
B.
故选:A.
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 年 月至 年 月期间月
接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )
A.月接待游客逐月增加 B.年接待游客量逐年减少 C.各年的月接待游客量高峰期大致在 月 D.各年 月至 月的月接待游客量相对于 月至 月,波动性较小,变化比较稳定 【答案】D 【解析】
由已知
,得. 解得9 - 让每个人平等地提升自我∴ ∴ 即 是首项为 1,公比为 2 的等比数列. 18.一次考试中,5 名同学的数学、物理成绩如表所示: 学生
数学 分
89
91
93
95
97
物理 分
87
89
89
92
93
要从 5 名学生中选 2 名参加一项活动,求选中的学生中至少有一人的物理成绩高于 90 分的概率 请在图中的直角坐标系中作出这些数据的散专题 3 数列与概率
一、单选题 1.调查机构对某高科技行业进行调查统计,得到该行业从业者学历分布饼状图,从事该行业岗位分布条形 图,如图所示.
给出下列三种说法:①该高科技行业从业人员中学历为博 士的占一半以上;②该高科技行业中从事技术岗
位的人数超过总人数的 ;③该高科技行业中从事运营岗位的人员主要是本科生,其中正确的个数为( )
选项:折线图整体体现了上升趋势,但存在 年 月接待游客量小于 年 月接待游客量的情况,故并 不是逐月增加,因此 错误;
选项:折线图按照年份划分,每年对应月份作比较,可发现同一月份接待游客数量逐年增加,可得年接待 游客量逐年增加,因此 错误;
选项:根据折线图可发现,每年的 , 月份接待游客量明显高于当年其他月份,因此每年的接待游客高峰 期均在 , 月份,并非 , 月份,因此 错误;
,208 个
(Ⅰ)
,,

∴ 与 线性相关性很强.
(Ⅱ),11 - 让每个人平等地提升自我,
∴ 关于 的线性回归方程是
.

时,
(百个),
即 地区 2019 年足球特色学校的个数为 208 个.
20.已知数列 满足
,其中 为数列 的前 项和,若


(1)求数列 的通项公式;
(2)设
,数列 的前 项和为 ,试比较 与 的大小.
茎叶图如图 ,其中甲班学生成绩的平均分是 85,乙班学生成绩的中位数是 83,则 的值为
A.8
B.7
【答案】A
【解析】
甲班学生成绩的平均分是 85,
1,
即.
乙班学生成绩的中位数是 83,
若 ,则中位数为 81,不成立.
若 ,则中位数为

解得 .

(1)

的工艺品中随机抽选 件,求被抽选 件工艺品重量均在
.
(2) 件仿制的工艺品中,重量范围在
的工艺品有 件,
重量范围在
的工艺品有 件,
所以从重量范围在
的工艺品中随机抽选 件方法数
(种),
所以所求概率
.
15.高考改革是教育体制改革 中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破 文理分科的“ ”模式初露端倪.其中“ ”指必考科目语文、数学、外语,“ ”指考生根据本人兴趣特长和拟 报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择 门作为选考科目,其中语、 数、外三门课各占 分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目
【答案】(1)70 分 (2)
(3)
【解析】
(1)

此次考试物理成绩落在
内的频率依次为
,概率之和为
小明的物理成绩为 分,大于 分.
小明物理成绩的最后得分为 分.
(2)因为 40 名学生中,赋分 分的有
人,这六人成绩分别为 89,91,92,93,93,96;赋分 分的

人,其中包含 80 多分的共 10 人,70 多分的有 4 人,分数分别为
A.0 个
【解析】
根据饼状图得到从事该行行业的人群中有百分之五十五的人是博士,故①正确;从条形图中可得到从事技
术岗位的占总的百分之三十九点六,故②正确;而从条形图中看不出来从事各个岗位的人的学历,故得到
③错误.
故答案为:C.
相关文档
最新文档