零指数幂与负整数指数幂练习题 (2)

合集下载

龙泉市二中七年级数学下册 第8章 幂的运算 8.3 第2课时 零指数幂与负整数指数幂课时训练 苏科版

龙泉市二中七年级数学下册 第8章 幂的运算 8.3 第2课时 零指数幂与负整数指数幂课时训练 苏科版

第2课时零指数幂与负整数指数幂知识点零指数幂与负整数指数幂1.(1)当a≠0时,a0= ;(2)当a≠0,p为正整数时,a-p= .2.(-2021)0的值是()A.-2021B.2021C.0D.13.[2020·句容月考]计算2-3的结果是()A.-8B.-6C.D.64.[2019·兴化期中]计算-1的结果是()A. B.-3 C.- D.35.若(-5)3m+9=1,则m的值是.6.当x 时,(x-4)0=1.7.用小数或分数表示下列各数:(1)-4-2;(2)6.01×10-4;(3)×10-3.8.计算:(1)(-1)2-(π-3)0+2-2;(2)30-2-3+(-3)2-.9.若a=-0.22,b=-2-2,c=--2,d=,则它们的大小关系是()A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b10.下列计算错误的是 ()A.a2÷a0·a2=a4B.a2÷(a0·a2)=1C.(-1.5)8÷(-1.5)7=-1.5D.-1.58÷(-1.5)7=-1.511.[2019·河北]若7-2×7-1×70=7p,则p的值为.12.若3m=,=4,求÷的值.13.阅读材料:(1)1的任何次幂都为1;(2)-1的奇数次幂为-1;(3)-1的偶数次幂为1;(4)任何不等于0的数的0次幂为1.当x为何值时,代数式(2x+3)x+2021的值为1?1.(1)1(2)2.D3.C[解析] 2-3==.4.D5.-3[解析]由题意,得3m+9=0,解得m=-3.6.≠4[解析] 考查零指数幂的意义.因为任何不等于0的数的0次幂都等于1,所以x-4≠0,所以x≠4.7.解:(1)-4-2=-=-.(2)6.01×10-4=6.01×=0.000601.(3)×10-3=1×10-3=0.001.8.解:(1)原式=1-1+=.(2)原式=1-+9-4=6-=5.9.B[解析] a=-0.22=-0.04,b=-2-2=-,c==4,d==1.10.D[解析]a2÷a0·a2=a4,故A项正确; a2÷(a0·a2)=1,故B项正确;(-1.5)8÷(-1.5)7=-1.5,故C项正确;-1.58÷(-1.5)7=1.5,故D项错误.11.-3[解析]因为7-2×7-1×70=7p,所以-2-1+0=p,解得p=-3.12.解:由已知得3m=3-4,2-n=22,所以m=-4,n=-2,所以原式=(1+a2)m+n-3n=(1+a2)m-2n=(1+a2)-4-2×(-2)=(1+a2)0=1.13.解:①当2x+3=1时,解得x=-1,此时x+2021=2020,则(2x+3)x+2021=12020=1,所以当x=-1时,代数式(2x+3)x+2021的值为1;②当2x+3=-1时,解得x=-2,此时x+2021=2019,则(2x+3)x+2021=(-1)2019=-1,所以当x=-2时,代数式(2x+3)x+2021的值为-1;③当x+2021=0时,解得x=-2021,此时2x+3=-4039,则(2x+3)x+2021=(-4039)0=1.综上所述,当x=-1或x=-2021时,代数式(2x+3)x+2021的值为1.确定用科学记数法表示的数的精确度难易度:★★★关键词:有理数答案:一般地,用科学记数法表示的一个近似数a×10n,判断一个用科学计数法表示的数精确到哪一位,一定要先将这个数还原成一般的完整的形式,再去数它精确到的位数。

浙教版2019年七年级数学下册第3章整式的乘除3.6第2课时零指数幂与负整数指数幂练习(含答案)

浙教版2019年七年级数学下册第3章整式的乘除3.6第2课时零指数幂与负整数指数幂练习(含答案)

3.6 同底数幂的除法第2课时 零指数幂与负整数指数幂知识点1 零指数幂与负整数指数幂的概念零指数幂的意义:规定:a 0=1(a≠0),即任何不等于零的数的零次幂都等于1.负整数指数幂的意义:a -p=1a p (a≠0,p 是正整数).即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数.1.下列说法中,正确的是( ) A .(m -1)0的值总等于1 B .3-3表示-3个3相乘 C .a -m =-a mD .a -m (a≠0,m 是正整数)表示m 个a 乘积的倒数 知识点2 科学记数法表示绝对值较小的数对于绝对值较小的数,我们可以用a×10-n来表示,其中n 的值为第一个非零数前的零的个数.例如0.00123=1.23×10-3.2.某种生物细胞的直径约为0.00056 m ,将0.00056用科学记数法表示为( ) A .0.56×10-3 B .5.6×10-4 C .5.6×10-5 D .56×10-5探究 一 零指数幂与负整数指数幂的有关计算教材例5变式计算:(1)20+2-1;(2)(-15)-2×(7)0;(3)(-3)4÷36.[归纳总结] 正确理解零指数幂与负整数指数幂的意义,依据规定进行计算,这样才不易出错.探究 二 科学记数法表示绝对值较小的数教材例4变式题2016•苏州肥皂泡的泡壁厚度大约是0.0007 mm ,0.0007用科学记数法表示为( )A .0.7×10-3B .7×10-3C .7×10-4D .7×10-5[反思] 计算:-12x4y3z÷(-3x3y2).解:原式=-12÷(-3) x4-3y3-2①=-4xy.②(1)找错:从第________步开始出现错误;(2)纠错:一、选择题1.计算:⎝ ⎛⎭⎪⎫120=( ) A .-2 B .2 C .1 D .-12.下列运算正确的是( ) A .x 2·x 3=x 6 B .3-2=-6 C .(x 3)2=x 5 D .40=13.下列说法中正确的是( ) A .(π-3.14)0没有意义 B .任何数的零次幂都等于1C .一个不等于0的数的倒数的-p 次幂(p 是正整数)等于它的p 次幂D .计算(33-3×9)0的结果是14.2016·宜宾科学家在实验中检测出某微生物细胞的直径约为0.0000035米,将0.0000035用科学记数法表示为( )A .3.5×10-6B .3.5×106C .3.5×10-5D .35×10-55.2015·厦门2-3可以表示为( ) A .22÷25 B .25÷22 C .22·25D .(-2)×(-2)×(-2)6.计算10-⎝ ⎛⎭⎪⎫-122016×22017的结果是( )A .-2B .-1C .2D .3二、填空题7.计算:30-2-1=________.8.计算:(1)3-3=________;(2)10-3=________;(3)1-20=________;(4)20160=________.9.纳米是非常小的长度单位,已知1纳米=10-6毫米.已知某种病毒的直径约为100纳米,若将这种病毒排成1毫米长,则病毒的个数是________.10.当m________时,(m -2)0=1成立.11.(1)已知34000=3.4×10x,则x =________;(2)已知0.0000283= 2.83×10x,则x =________________________________________________________________________;(3)已知100=0.1x,则x =________. 三、解答题12.用整数或分数表示下列各数.(1)⎝ ⎛⎭⎪⎫142; (2)⎝ ⎛⎭⎪⎫14-2;(3)⎝ ⎛⎭⎪⎫-142; (4)⎝ ⎛⎭⎪⎫-14-2.13.计算:(1)5-2÷2-3;(2)⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫13-2;(3)⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫150+⎝ ⎛⎭⎪⎫15-2;(4)⎝ ⎛⎭⎪⎫-122÷(-2)3×(-2)-2.14.(1)2016·台州计算:4-⎪⎪⎪⎪⎪⎪-12+2-1;(2)2016·嘉兴、舟山计算:|-4|×(3-1)0-2;(3)计算:(2-3)0-9-(-1)2017-|-2|+(-13)-2.1.已知(x -2)=1,则x =________.2.比较下列各数的大小,并用“=”和“<”把各数连接起来.104,100,10-4,(10-2)2,(102)-2,⎝ ⎛⎭⎪⎫110-4.详解详析教材的地位和作用本节内容是在学生系统地学习了幂的运算后而安排学习的,符合学生从易到难的认知规律.本节中零指数幂和负整数指数幂是同底数幂的除法的特殊情形.通过对本节内容的学习,同底数幂的除法运算的指数从正整数推广到了整数,完善幂的运算知识教学目标知识与技能1.了解零指数幂与负整数指数幂的概念;2.能用科学记数法表示绝对值较小的数;3.了解幂运算的法则可以推广到整数指数幂过程与方法经历探索零指数幂和负整数指数幂的法则的过程,进一步体会幂的意义,提高推理能力和有条理的表达能力情感、态度与价值观在探索零指数幂和负整数指数幂的法则的过程中获取成功的体验,建立自信心,提高学习数学的兴趣教学重点难点重点零指数幂和负整数指数幂的概念难点认识零指数幂和负整数指数幂的产生过程易错点在用科学记数法表示绝对值较小的数时,10的幂的次数较易出错【预习效果检测】1.[解析] D 因为按规定,在(m-1)0=1中,m-1≠0,当m-1=0时,(m-1)0无意义,所以选项A不正确.因为负整数指数幂有其特殊的意义,不能按照正整数指数幂的意义理解,所以选项B不正确.因为a-m=1a m≠-a m,所以选项C不正确.故选D.2.B【重难互动探究】例1解:(1)原式=1+12=32.(2)原式=(-5)2×1=25.(3)原式=3-2=19.例2[解析] C0.0007=7×10-4.故选C.【课堂总结反思】[反思] (1)①(2)原式=-12÷(-3) x4-3y3-2z=-4xyz. 【作业高效训练】[课堂达标]1.C2.[解析] D x 2·x 3=x 5,故A 项错.3-2=132=19,故B 项错.(x 3)2=x 6,故C 项错.D 项正确.3.C 4.A 5.A6.[解析] B 10-⎝ ⎛⎭⎪⎫-122016×22017=1-⎝ ⎛⎭⎪⎫122016×22017=1-⎝ ⎛⎭⎪⎫12×22016×2=1-2=-1.7.[答案] 128.[答案] (1)127 (2)0.001 (3)1 (4)19.[答案] 104[解析] 1÷(100×10-6)=1÷10-4=1÷1104=104(个).10.[答案] ≠211.[答案] (1)4 (2)-5 (3)-2 12.解:(1)⎝ ⎛⎭⎪⎫142=116.(2)⎝ ⎛⎭⎪⎫14-2=1⎝ ⎛⎭⎪⎫142=16.(3)⎝ ⎛⎭⎪⎫-142=⎝ ⎛⎭⎪⎫142=116.(4)⎝ ⎛⎭⎪⎫-14-2=1⎝ ⎛⎭⎪⎫-142=1⎝ ⎛⎭⎪⎫142=16. 13.解:(1)5-2÷2-3=152÷123=2352=825.(2)⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫13-2=1-1⎝ ⎛⎭⎪⎫132=1-9=-8.(3)⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫150+⎝ ⎛⎭⎪⎫15-2=125+1+1⎝ ⎛⎭⎪⎫152= 125+1+25=26125. (4)⎝ ⎛⎭⎪⎫-122÷(-2)3×(-2)-2=(-2)-2÷(-2)3×(-2)-2=(-2)-2-3-2=(-2)-7=-127.14.解:(1)原式=2-12+12=2.(2)原式=4×1-2=2.(3)原式=1-3+1-2+9=6. [数学活动]1.[答案] 5,3,1[解析] 当x -5=0,即x =5时,得30=1;当x -2=1,即x =3时,得1-2=1;当x -2=-1,即x =1时,得(-1)-4=1,所以x =5,3,1.2.[解析] 根据幂的运算性质,先把各数化为整数或小数.解:104=10000, 100=1,10-4=1104=110000=0.0001,(10-2)2=10-4=0.0001, (102)-2=10-4=0.0001,⎝ ⎛⎭⎪⎫110-4=1⎝ ⎛⎭⎪⎫1104=104=10000.因为0.0001<1<10000,所以10-4=(10-2)2=(102)-2<100<104=⎝ ⎛⎭⎪⎫110-4.。

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。

第2课时 零指数幂、负整数指数幂

第2课时 零指数幂、负整数指数幂

可以很方便地表示一些绝对值较小的数.一般地,一个小于1的正数可以表示为
a×10n
的形式,其中1≤a<10,n是 负 整数.
探究点一:零指数幂、负整数指数幂
【例 1】 (1)计算:-14-(2 020-π)0×( 1 )-1+(-2)-2; 2
【导学探究】 1.(2 020-π)0= 1
,( 1 )-1= 2 ,(-2)-2= 2
探究点二:用科学记数法表示绝对值较小的数
【例2】 用科学记数法表示下列各数.
(1)0.003 009;(2)0.000 010 96;(3)0.000 329.
【导学探究】
把一个小于1的正数表示为a×10n的形式,先确定a的值,其中(1),(2),(3)题中
的a分别是 3.009,1.096,3.29
.
再确定n,n的绝对值等于原数中第一个非0数字左边所有0的个数,其中(1),(2),
(3)题中的n分别是 -3,-5,-4
.
解:(1)0.003 009=3.009×10-3. (2)0.000 010 96=1.096×10-5. (3)0.000 329=3.29×10-4.
用科学记数法表示绝对值较小的数,应把握以下几个方面:(1)a为整 数位数为1的小数;(2)n为负整数,n的绝对值等于原数中第一个非零数字左面 所有零的个数(包括小数点前面的那个零).
1.(2019福建)计算22+(-1)0的结果是( A )
(A)5 (B)4 (C)3 (D)2
2.下列各数中,负数是( B )
(A)-(-2)
(B)-|-1|
(C)(-1)0
(D)1-2
3.(2019宜宾)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约

初三数学计算题练习2附答案

初三数学计算题练习2附答案

方程不等式专题测试学校:___________姓名:___________班级:___________考号:___________一、解答题1.先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中x 是6的平方根. 【答案】21x +,7【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】 解:原式(1)(1)(1)(1)(1)(1)x x x x x x x ⎡⎤-++=⋅+-⎢⎥+-⎣⎦ 21(1)(1)(1)(1)x x x x x x x -++=⋅+-+- 21x =+.∵x 是6的平方根,∴26x =,∴原式617=+=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键. 2.材料1:因为无理数是无限不循环小数,所以无理数的小数部分我们不可能全部写出来.比如:π等,而常用的“…”或者“≈”的表示方法都不够百分百准确. 材料2:2.5的整数部分是2,小数部分是0.5,小数部分可以看成是2.5−2得来的.材料3:任何一个无理数,都夹在两个相邻的整数之间,如23<<,是因为根据上述材料,回答下列问题:(1的整数部分是 ,小数部分是 .(2)5+5a b <+,求a b +的值.(3)已知3x y +,其中x 是整数,且0<y <1,求x +4y 的倒数.【答案】(1)44;(2)13;(3【分析】(1(2(3x的值,从而表示出y,求出x+4y的结果,再求x+4y的倒数即可.【详解】解:(1)<∴45<,4,故答案为:44;(2),∴12<<,∴67<,∵5<,a b∴a=6,b=7,∴a+b=13;(3)∵12,∴1+3<2+3,∴4<5,∴x=4,y1,x+4y)∴x+4y【点睛】此题主要考查了不等式的性质,以及估算无理数的大小,a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.3.计算:20-211(3).93⎛⎫--+--- ⎪⎝⎭ 【答案】8.9【分析】先计算0次幂和负指数幂及绝对值和有理数的乘方运算,然后运用有理数的加减法法则计算即可.【详解】解:()20211393-⎛⎫--+--- ⎪⎝⎭ 1111999=-+- 8=9. 【点睛】题目主要考查负指数幂、0指数幂、有理数的乘方,去绝对值,有理数的加减混合运算,熟练掌握各运算法则是解题关键.4.先化简再选择一个你喜欢的数代入求值:(22x x x x --+)÷42x x -. 【答案】12x +,x =1,原式=13 【分析】先根据分式混合运算的法则把原式进行化简,再代入合适的x 的值代入进行计算即可.【详解】 解:原式=(2)(2)(2)(2)x x x x x x +--+-÷42x x - =4(2)(2)x x x +-×24x x - =12x +, 当x =1时,原式=112+=13. 【点睛】本题考查了分式的化简求值及使分式有意义的条件,熟练掌握分式的运算法则和分式有意义的条件是解答本题的关键,注意所取x 的值要使原分式有意义.5.已知10x -+.(1)求x 与y 的值;(2)求x +y 的算术平方根.【答案】(1)1x =,3y =;(2)2【分析】(1)根据绝对值和平方根的非负性求出x 与y 的值;(2)先计算x y +的值,即可得出x y +的算术平方根.【详解】(1)由题可得:10250x x y -=⎧⎨-+=⎩, 解得:13x y =⎧⎨=⎩, ∴1x =,3y =;(2)134x y +=+=,∵4的算术平方根为2,∴x y +的算术平方根为2.【点睛】本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.6.(1)化简:()()11y y +--(2(3)解分式方程:13211x x -=--【答案】(1)-y 2-2y -1;(2)(3)x =3 【分析】 (1)变形后根据完全平方公式计算;(2)先逐项化简,再合并同类二次根式;(3)两边都乘以x -1,化为整式方程求解,再检验.【详解】解:(1)()()11y y +--=-()()1+1y y +=-()21y +=-y 2-2y -1;(2==(3)13211x x-=--两边都乘以x-1,得1-2(x-1)=-3,1-2x+2=-3,解得x=3,检验:当x=3时,x-1≠0,∴x=3是分式方程的解.【点睛】本题考查了全平方公式,二次根式的加减混合运算,以及解分式方程,熟练掌握各知识点是解答本题的关键.7.计算:(11(2)【答案】(1)4;(2)-【分析】(1)先计算二次根式的加法与除法,再计算有理数的减法即可得;(2)先计算二次根式的乘法、分母有理化,再计算二次根式的减法即可得.【详解】解:(1)原式1=151=-4=;(2)原式6==【点睛】本题考查了二次根式的四则混合运算,熟练掌握运算法则是解题关键.8.计算:23122x x x x -----. 【答案】1【分析】直接利用分式的加减运算法则计算即可.【详解】 解:23122x x x x -----, 2312x x x --+=-, 22x x -=-, 1=.【点睛】本题主要考查了分式的加减运算,解题的关键是正确掌握运算法则.9.(101π+.(2)计算:(2--. (3)先化简,再求值:22131693x x x x x x x -+-÷+-+-,其中x = (4)解方程:3111x x x -=-+.【答案】(1)2;(2)22;(3)1x (4)2. 【分析】(1)先根据立方根、算术平方根、绝对值、零次幂的知识化简,然后再计算即可; (2)先运用二次根式的乘方法则和平方差公式计算,然后再运用二次根式的加减运算法则计算即可;(3)先运用分式的四则混合运算法则化简,然后代入计算即可;(4)按照解分式方程的步骤解答即可.【详解】解:(101π+=211-++(2)(2-- =2453-+=22;(3)22131693x x x x x x x -+-÷+-+- =()()2133113x x x x x x ---⨯++- =()1111x x x +++ =()11x x x ++ =1x当x 1x == (4)3111x x x -=-+ x (x +1)-(x +1)(x -1)=3(x -1)x 2+x -x 2+1=3x -3-2x =-4x =2.经检验x =2是分式方程的解.【点睛】本题主要考查了实数的运算、分式的化简求值、解分式方程等知识点,灵活运用相关运算法则成为解答本题的关键.10.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重 千克;(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?【答案】(1)5;(2)超过4千克;(3)1310.4元.【分析】(1)根据最重的一筐与最轻的一筐相减即可;(2)将20筐白菜的重量相加计算即可;(3)将总质量乘以价格解答即可.【详解】解:(1)2-(-3)=2+3=5(千克),故答案为:5;(2)-3×1+(-2)×4+(-1.5)×2+0×3+1×2+2×8 =-3-8-3+0+2+16=4(千克),答:与标准重量比较,20筐白菜总计超过4千克;(3)这20筐白菜的总质量为25×20+4=504(千克),则504×2.6=1310.4(元),答:出售这20筐白菜可卖1310.4元.【点睛】本题考查有理数乘法和加法运算的应用,正负数的意义.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.计算:()()012020sin 60tan 30--+︒-︒【答案】3【分析】先根据零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值化简,再合并,即可求解.【详解】解:()()012020sin 60tan 30--+︒-︒112-=++⎝⎭12= 3= .【点睛】本题主要考查了零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值等知识,熟练掌握零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值是解题的关键.12.计算:(1)3622x x x +++; (2)224b ab a -⎛⎫÷ ⎪⎝⎭. 【答案】(1)3;(2)34a【分析】(1)根据同分母分式加法法则计算即可;(2)根据分式的乘方和除法法则计算即可.【详解】解:(1)原式362x x +=+, ()3+2+2x x =,3=.(2)原式2224b ab a =÷, 2224a ab b =⋅, 34a =.【点睛】本题考查了分式的运算,解题关键是熟练掌握分式运算法则,准确计算.13.如图,直线AB 上顺次有A 、B 、M 三点,线段AB =8,AM =50.直角三角形CDE 的一条直角边CD 在线段BM 上,点C 恰好为线段BD 的中点,且CD =6.若三角形CDE 以每秒1个单位长度的速度向右运动,当点D 到达点M 时三角形停止运动;同时线段AB 以每秒3个单位长度的速度向右运动,当点B 到达点M 时线段停止运动.设三角形CDE 的运动时间为t 秒.(1)当点B 与点D 第一次重合时,求t 的值;(2)当点D 为线段CB 中点时,直接写出t 的值;(3)连接AE 和BE ,当ADE 的面积是BDE 面积的3倍时,直接写出t 的值.【答案】(1)6;(2)9或24:(3)4或7【分析】以A 为原点,在数轴上各点表示各点并表示距离,根据题意列方程求解.(1)点B 与点D 第一次重合时,列方程为8320t t +=+;解方程即可.(2)D 为BC 中点时,6BD CD ==时,有两种情况;①点B 停止运动前,列方程为83(20)6t t +-+=,解得1t ;②点B 停止运动,列方程为50(20)6t -+=,解得2t . (3)设点E 到AM 的距离为h ,则12ADE S AD h =⋅,12BDE S BD h =⋅,3ADE BDE S S =有3AD BD =,列方程20332083t t t t +-=+--解得t 即可.【详解】(1)解:t 的值为6.以A 为原点,AM 为正方向,画数轴 由题意知83B t =+,20D t =+当点B 与点D 第一次重合时,有8320+t t += 解得6t =∴ 当点B 与点D 第一次重合时,t 的值为6. (2)解:t 的值为9或24.以A 为原点,AM 为正方向,画数轴 由题意知83B t =+,20D t =+①点B 停止运动前,有83(20)6t t +-+= 解得19t =②点B 停止运动,有50(20)6t -+=解得224t =∴当D 点为BC 中点时, t 的值为9或24. (3)解:t 的值为4或7.以A 为原点,AM 为正方向,画数轴 由题意知3A t =, 83B t =+,20D t =+ 203AD t t ∴=+-, 2083BD t t =+-- 设点E 到AM 的距离为h 则12ADE SAD h =⋅,12BDE S BD h =⋅ 3ADE BDE S S =3AD BD ∴=20332083t t t t ∴+-=+--解得14t =,27t =∴当△ADE 的面积是△BDE 面积的3倍时,t 的值为4或7.【点睛】本题考查了数轴上数与距离的表示,一次方程,去绝对值等知识点.解题的关键与难点在于建数轴,通过数轴表示距离.去绝对值是易错点.14.设M =2269324a a a a a -+-÷+-. (1)化简代数式M ;(2)请在以下四个数中:2,﹣2,3,﹣3,选择一个合适的数代入,求M 的值.【答案】(1)a 2﹣5a +6(2)30【分析】(1)根据分式的除法法则计算即可;(2)根据分式有意义的条件确定a 的值,代入计算即可.(1)解: M =2(3)2a a -+×(2)(2)3a a a +-- =(a ﹣3)(a ﹣2)=a 2﹣5a +6;(2)解:由题意得,a ≠±2,a ≠±3,当a =﹣3时,M =(﹣3)2﹣5×(﹣3)+6=30.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则、分式有意义的条件是解题的关键.15.(1)请你把32,(-2)3,0,12-,110-这五个数在数轴上表示出来. (2)将上列各数用“<”号连接起来:____________________________.【答案】(1)见解析;(2)()-<-<<-<3211203102【分析】(1)先计算有理数的乘方和绝对值,然后在数轴上表示出这些数即可;(2)根据数轴上的点表示的数,左边的数小于右边的数进行求解即可.【详解】(1)239=,()328-=-,1122-=, 数轴表示如下所示:(2)由数轴可知:()3211203102-<-<<-<. 【点睛】本题主要考查了有理数的乘方,绝对值,用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.16.如图所示,数轴上两点A ,B ,动点P 从点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)写出线段AB 的长_______;(2)当1t =时,线段PA 的长是______;此时线段PA 与线段PB 的数量关系是_____;(3)当2PA PB =时,求t 的值.【答案】(1)8;(2)4,P A =PB ;(3)t 的值为53或7. 【分析】(1)根据两点间的距离公式即可求解;(2)先求出当t =1时,P 点对应的有理数为2×1=2,再根据两点间的距离公式即可求出P A 、PB 的长,继而得解;(3)先求出P 点对应的数为2t ,再根据P A =2PB 列出方程,即可求解.【详解】解:(1)∵A 点对应的数为-2,B 点对应的数为6,∴线段AB 的长为6-(-2)=8,故答案为:8;(2)当t =1时,P 点对应的有理数为2×1=2, ∴线段P A 的长是2-(-2)=4;线段PB 的长是6-2=4;∴P A =PB ;故答案为:4,P A =PB ;(3)∵点P 从点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒,∴P 点对应的数为2t ,则P A =2t -(-2)=2t +2,PB =|6-2t|;∵P A =2PB , ∴22262t t +=-,即2t +2=2(6-2t )或2t +2=-2(6-2t ) ,解得:t =53或t =7. ∴t 的值为53或7. 【点睛】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系.17.根据材料完成问题:在含有两个字母的式子中,任意交换两个字母的位置,式子的值始终保持不变,像这样的式子我们称之为对称式,如:11a b +,22a b +,请解决下列问题: ①22a b - ;②22a b ③22a b这3个式子中只有1个属于对称式: (请填序号); (2)已知2()()--=++x a x b x mx n①若1m =,2n =-,求对称式22a b +的值;②若3m =-,1n =,当22a k b k a b--+>0时,求k 的取值范围. 【答案】(1)②;(2)①5;②k 1<.【分析】(1)根据对称式的定义进行判断;(2)①根据已知m =a +b ,n =ab ,整体代入即可求解;②将对称式化简后整理后,解不等式即可求解;【详解】解:(1)①a 2-b 2≠b 2-a 2;②a 2b 2=b 2a 2;③当a ≠0时,由定义知属于对称式的是②,故答案为:②;(2)∵(x -a )(x -b )=x 2-(a +b )x +ab =x 2+mx +n ,∴m =-(a +b ),n =ab ,∴a 2+b 2=(a +b )2-2ab =m 2-2n ,①当m =1,n =-2时,a 2+b 2=12-2⨯(-2)=5; ②∵2222()()0a k b k a b kb ab ka ab a b k a b a b ab ab---+-+-++==>, 当m =-3,n =1时,a +b =3,ab =1, ∴31301k ⨯->, 解得:k 1<.【点睛】本题考查了分式的化简求值,完全平方公式,解一元一次不等式,新定义等知识,解决本题的关键是理解阅读材料,掌握分式计算法则及完全平方公式.18.计算:1201(2)(3.14)|1|3π-⎛⎫-+---+ ⎪⎝⎭. 【答案】7【分析】根据实数的性质化简即可求解.【详解】解:原式4113=+-+ 7=【点睛】此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.19.先化简,再求值:(x +21x x +)÷(x +1),其中x .【答案】1x x +【分析】根据分式的加法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】(x +21x x +)÷(x +1) =22111x x x x ++⋅+ =2(1)11x x x +⋅+=1x x +, 当x =2时,原式=212+=222+. 【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.先化简:,然后,m 在1,2,3中选择一个合适的数代入求值.【答案】26--m ,-8【分析】先按照分式的混合计算法则进行化简,然后根据分式有意义的条件求出m 的值,最后代值计算即可.【详解】解:532224m m m m ⎛⎫ ⎪⎝-÷⎭++-- ()24532222m m m m m ⎛⎫--=-÷ ⎪---⎝⎭ ()222923m m m m--=⋅-- ()()()332223m m m m m+--=⋅-- ()23m =-+26m =--,∵分式要有意义且除数不为0,∴, ∴,∴当1m =时,原式2168=-⨯-=-.【点睛】本题主要考查了分式的化简求值,分式有意义的条件,解题的关键在于能够熟练掌握分式的相关计算法则.。

8.3.2零指数幂与负指数幂课课练及答案(苏科版七年级下)

8.3.2零指数幂与负指数幂课课练及答案(苏科版七年级下)

a m a n =a m +n .第2课时㊀零指数幂与负指数幂㊀㊀㊀明确零指数幂㊁负整数指数幂的意义,并能与幂的运算法则一起进行运算.㊀开心预习梳理,轻松搞定基础.1.810ː810=㊀㊀㊀㊀.2.-12æèçöø÷-2=㊀㊀㊀㊀.3.若a 0=1,则a ʂ㊀㊀㊀㊀.4.已知a ʂ0,-a 5ːa 5=㊀㊀㊀㊀.5.已知|x |=3,且(x -3)0=1,则x =㊀㊀㊀㊀.㊀重难疑点,一网打尽.6.若a m ːa n=1(a ʂ0),则m ㊀㊀㊀㊀n .(比较大小)7.当㊀㊀㊀㊀时,(2a -1)0=1.8.30-2-1=㊀㊀㊀㊀.9.已知32x -1=1,则x =㊀㊀㊀㊀.10.当y =㊀㊀㊀㊀时,(2y +3)0无意义.㊀源于教材,宽于教材,举一反三显身手.11.若(x -1)-2无意义,则(4x 2-3)2012=㊀㊀㊀㊀.12.若a 3 a m =1(a ʂʃ1),则a ,m 满足的条件是㊀㊀㊀㊀.13.已知a >b >0,比较大小:a 0㊀㊀㊀㊀b 0.14.若y 2m -1ːy =y 2,则m -2=㊀㊀㊀㊀.15.计算:(1)-12æèçöø÷3ː-12æèçöø÷3ˑ-12æèçöø÷4;(2)1100æèçöø÷-2+1100æèçöø÷0+1100æèçöø÷-1;七年级数学(下)(3)2-5ˑ0.5-4+3-2ˑ13æèçöø÷-3;(4)2-5+12æèçöø÷-4+2-1ˑ2-3ˑ2+20;(5)-12æèçöø÷-2ː-12æèçöø÷3ˑ(-2)-2ː4 3-12æèçöø÷0.㊀瞧,中考曾经这么考!16.(2012 浙江宁波)(-2)0的值为(㊀㊀).A.-2B .0C .1D.217.(2012 广东梅州)--12æèçöø÷0等于(㊀㊀).A.-2B .2C .1D.-118.(2012 江苏泰州)3-1等于(㊀㊀).A.3B .-13C .-3D.13第2课时㊀零指数幂与负指数幂1.1㊀2.4㊀3.0㊀4.-15.-3㊀提示:根据零指数幂的意义解答.6.=㊀7.aʂ12㊀8.12㊀9.12㊀10.-3211.1㊀12.aʂ0,m=-313.=㊀14.1415.(1)原式=12()3-3+4=12()4=116.(2)原式=10000+1+100=10101.(3)原式=2-1ˑ2-4ˑ0.5-4+3-2ˑ13()-2ˑ13()-1=12+3=312.(4)原式=132+16+18+1=17532.(5)原式=4ː-18()ˑ14ː1=-8.提示:选择恰当的运算法则是解本题的关键.16.C㊀17.D㊀18.D。

零指数幂与负整数指数幂练习题

零指数幂与负整数指数幂练习题

零指数幂与负整数指数幂练习题Revised by Jack on December 14,2020【典型例题】例1. 若式子0(21)x -有意义,求x 的取值范围。

分析:由零指数幂的意义可知.只要底数不等于零即可。

解:由2x -1≠0,得12x ≠即,当12x ≠时,0(21)x -有意义例2. 计算:(1)32031110()(5)(3)0.31230π--+⨯---⨯+-;(2)42310[()()](0)a a a a -⋅-÷≠。

分析:按照有关法则进行运算即可,注意运算顺序。

解:(1)32031110()(5)(3)0.31230π--+⨯---⨯+-=213100030127()1210-+⨯+⨯+ =10100090027123++⨯+=2002(2)4231046101010[()()][()]1a a a a a a a a -⋅-÷=⋅-÷=-÷=-例3. 计算下列各式,并把结果化为只含有正整数指数幂的形式.(1)1322(3)m n ---- (2)22123[2()()][()()]x y x y x y x y -----+⋅-⋅+⋅- 分析:正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算。

解:(1)4132212322226469(3)(3)()()(3)n m n m n m n m ----------=-=-=; 或者:3224132223322326222211(3)9(3)()()3()()3(3)m n n m n m m n m m n n -----=-====(2)22123[2()()][()()]x y x y x y x y -----+⋅-⋅+⋅- =22221323(2)[()]()[()][()]x y x y x y x y --------⋅+⋅-⋅+⋅-=423621()()()()(2)x y x y x y x y --⋅+⋅-⋅+⋅--=43261()()4x y x y -+-+⋅+-=4()4()x y x y -+.例4. 用科学记数法表示下列各数. (1)(2)(3)-309200 (4)- 分析:用科学记数法表示数时,关键是确定a 和n 的值 (1)×710(2)+×510- (3)-309200=-×510(4)-=-×610-.例5. 用小数表示下列各数.(1)56.2310--⨯ (2)38(2)10--⨯分析:本题对科学记数法进行了逆向考查,同样,关键是弄清楚n 的值与小数点的之间的变化关系。

零指数幂与负整数指数幂练习题

零指数幂与负整数指数幂练习题

6.4 零指数幂与负整数指数幂练习题一、选择题1.下列说法正确的是( )A .(π﹣3.14)0没有意义B .任何数的0次幂都等于1C .a 2•(2a )3=8a 6D .若(x +4)0=1,则x ≠﹣42.若(a +2)0=1,则a 的取值正确的是( )A .a >﹣2B .a =﹣2C .a <﹣2D .a ≠﹣23.若(x ﹣2)x =1,则x 只能取( )A .x ≥2B .x =0C .x =2D .x =0或x =34.如果(x ﹣)0有意义,那么x 的取值范围是( )A .x >B .x <C .x =D .x ≠ 5.等式(x +4)0=1成立的条件是( )A .x 为有理数B .x ≠0C .x ≠4D .x ≠﹣4 6.计算()0的结果是( )A . B .3C .0D .1 7.三个数20,3﹣2,(﹣3)﹣1中,负数的个数是( )A .0个B .1个C .2个D .3个8.在(﹣1)2023,|﹣1|3,﹣(﹣1)18,3﹣3这四个有理数中,负数共有( )A .1个B .2个C .3个D .4个9、20×()﹣1=( )A .﹣2 B .C .2D . 10、20230×2﹣1等于( )A .107B .0C .D .﹣2022 11、计算的结果是( )A .﹣9 B . C . D .9 12、计算2﹣1的结果是( )A .B .﹣C .﹣2D .2 13、下列运算正确的是( )A .a 5+a 5=a 10B .a 6×a 4=a 24C .a 0÷a ﹣1=aD .a 4﹣a 4=a 0 14、计算(20231)﹣1所得结果是 ( )A .2023 B .20231 C .-20231 D .﹣2023 15、若a =0.32,b =﹣3﹣2,c =(﹣)﹣2,d =(﹣)0,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b二、填空题1、当x 满足 时,(x ﹣2)0有意义,且(x ﹣2)0= .2、(π﹣2021)0﹣|﹣3|= .3、当 时,(x ﹣4)0=1.4、(2022﹣π)0的值为 .5、计算:+20210= . 6、计算:2﹣2﹣(3.14﹣π)0= .7、计算:(﹣)﹣1+(π﹣3)0= .8、计算:﹣3﹣2+(﹣)0的结果是 . 9、计算:= . 10、计算:= . 11、如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a ,b )=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,﹣)= .12、若实数m ,n 满足|m ﹣2|+(n ﹣2022)2=0,则m ﹣1+n 0= .三、解答题1、计算:(﹣)﹣1﹣2+(π﹣3.14)0.2、计算:1012312023332---÷-+⨯)()()(π.3、计算:102120231-----)(4、计算:(﹣)﹣1×(﹣2)2﹣(1﹣2)2023.5、.6、计算:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零指数幂与负整数指数幂练习题
1、计算:-1-(-1)0的结果正确是()
A.0? ??B.1? ??C.2? ??D.-2
2、芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为()
A.2.01×10-6千克? B.0.201×10-5千克? C.20.1×10-7千克? D.2.01×10-7千克
3、已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为()
A.0.000124 ???B.0.0124 ????C.-0.00124 ???D.0.00124
4、如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是()
A.30×10-9米? ??B.3.0×10-8米? ???C.3.0×10-10米 ????D.0.3×10-9米
5、计算的结果是( )
A.4????? B.-4????? C.????? D.
6、若(x-2)0=1,则( )
A.x≠0??????? B.x≥2???????? C.x≤2??????? D.x≠2
7、若,则x=( )
A.10?????? B.1???? C.0???? D.以上结论都不对
8、下列运算正确的是( )
A.0.050=0 B.(9-33)0=0 C.(-1)0=1 D.(-2)0=-2
9、化简(x≠-y)为()
A.1 B.0 C.x+y D.以上结论都不对
10、英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()
A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-11
11、花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()
A.3.7×10﹣5克B.3.7×10﹣6克
C.37×10﹣7克D.3.7×10﹣8克
12、计算:.
13、某种原子直径为1.2×10-2纳米,把这个数化为小数是_______纳米.
14、钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公
里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学记数法表示飞濑屿的面积约为_______平方公里.
15、若(a-2)a+1=1,则a=______.
16、若,则x=______.
17、如果无意义,则=______.
18、计算:4-2x5•(23x-2)2=________.
19、用小数表示:-2.18×10-5=______.
20、
21、计算:.
22、计算:.
23、化简:.
24、计算:.
25、计算:(1)100;(2)m0(m0);(3)a5÷a0•a3(a0).。

相关文档
最新文档