无穷级数习题

无穷级数习题
无穷级数习题

第十二章 无穷级数习题课资料

丁金扣

一、本章主要内容

常数项级数的概念与基本性质,正项级数审敛法,交错级数与莱布尼兹审敛法,绝对收敛与条件收敛。幂级数的运算与性质(逐项求导、逐项积分、和函数的连续性),泰勒级数,函数展开为幂级数及幂级数求和函数,周期函数的傅立叶级数及其收敛定理。 二、本章重点

用定义判别级数的收敛,P-级数、正项级数的审敛法,莱布尼兹型级数的审敛法,幂级数的收敛域与收敛半径,幂级数求和函数,函数的泰勒级数,傅立叶级数收敛定理。 三、本章难点

用定义判别级数的收敛,P-级数审敛法,幂级数求和函数,函数的泰勒级数,傅立叶级

数收敛定理。 四、例题选讲

例1:判别级数()2

1ln 1ln ln 1n n n n ∞

=??+ ???+∑的敛散性。

(用定义)

解:原式=()()2

2ln 1ln 11

()ln ln 1ln ln(1)n n n n n n n n ∞

∞==+-=-++∑∑

级数的部分和1

11111ln 2ln3ln3ln 4ln ln(1)n S n n ??????=-+-++- ?

? ?+??????

111ln 2ln(1)ln 2

n =

-→+, ()n →∞ 所以原级数收敛,且收敛于

1

ln 2

。 例2:证明级数

2

cos cos(1)

n n n n ∞

=-+∑收敛。(利用柯西审敛原理) 证明:1

cos cos(1)

n p

n p n m n m m S S m ++=+-+-=

∑ ()()()11cos 1cos 11

()cos 111n p m n n n p m n m

m n p +-=+++=--+-

+++∑ 得1

111112

()111n p n p n m n S S n m m n p n +-+=+-≤+-+=++++∑,

对任意的0ε>,取2N ε??=????

,则当n N >时,对所有p N ∈,都有

n p n S S ε

+-<,

故原级数收敛。

例3:判别下列级数的敛散性

(1)111ln n n n n ∞

=+??- ???∑ , (2)2

11ln n n n ∞=-∑ , (3)121n

n n n ∞

=??

?+??∑ (4)()1

1!2!!

2!n n n ∞

=+++∑ ,(5)()()()21111n n

n x x x x ∞

=+++∑ ,(0x ≥) (6)

ln 113

n

n ∞

=∑ 解:(1)因为ln(1)ln n n +<,所以

1111ln ln(1)0n n n n n

+-=-+>, 而 111ln

ln ln 1111n n n n n n +?

?-==-<- ?

+++??

, 有

2111111ln 1(1)n n n n n n n n

+-<-=<++, 由比较审敛法知,级数

11

1ln n n n n ∞

=+??- ??

?∑收敛。 (2)因为 22

21ln lim lim n n n n n u n n →∞→∞==-,又211

n n

=∑收敛,所以原级数收敛。

(3)用根值法

1121

2lim n n n n →∞→∞==<+ ,所以原级数收敛。 (4)()()()()1!2!!11!!211!n n n n n n +++<--+=--

()2!1!2!n n n =--<

所以 ()()()()12!21

2!122122

n n n u n n n n n -<

=<++- 有比较法知,原级数收敛。 (5)比值法:

111lim lim n n n n n u x

u x ++→∞→∞=+, 当01x ≤<时,

1

1lim n n n

u x u +→∞=<,级数收敛, 当1x =时,

11

12lim n n n

u u +→∞=<,级数收敛,

当1x >时,

1

01lim n n n

u u +→∞=<,级数收敛。 所以,当0x ≥时,级数收敛。 (6)1

01133ln 31

y

x y e dx dy ∞

∞==-?

?,所以原级数收敛。

例4:判断级数

2

1sin ln n n n π∞

=?

?+ ???∑的敛散性。

解:()11sin

ln n

n u n

=- 1sin ln n u n =,又11ln n n >,知级数21

ln n n ∞=∑发散,从而2

n n u ∞

=∑发散,即级数非绝对收敛。

因为

1

sin

0ln lim n n

→∞

=,且1sin ln x 在()2+∞,内单调减少,由莱布尼兹判别法知,原级数

条件收敛。

例5:证明级数

(

)

n-1

2

11n ∞

=??--- ?

∑收敛。 证:设(

)1f x =-,则原级数为()()n-1

2

1n f n ∞

=-∑, 又(

)3

2110,(0)2f x x x -??

'=-<> ? ???

,即()f x 在()0,+∞内单调下降, 从而()()1f n f n >+,且

()0lim n f n →∞

=,由莱布尼兹判别法知,原级数收敛。

例6:设数列{}n a 为单调增加的有界正数列,证明级数211n n n a a ∞

=+??- ???

∑收敛。

证明:因为数列{}n a 为单调增加有上界,所以极限存在。设

lim n

n a

a →∞

=,考虑

11111

01n n n n n n n n a a a a a

u a a a ++++--<=-

=< 而级数()()1

1112

lim n n n n n a

a a a a a ∞

++→∞

=-=-=-∑存在,由比较审敛法知,原级数收敛。

例7:求下列幂级数的收敛域

(1)12n n n x n ∞

=∑ , (2)2112sin 22n

n x n x ∞

=+?

??? ???

-????∑ ,(3)()()

2

321n

n n

n x n ∞=+-+∑

解:(1)

()

11

212lim lim n n n n a n a n +→∞→∞==+,所以收敛半径为2R =,收敛区间()2,2-。 2x =时,级数11n n ∞

=∑发散;2x =-时,()11

1n n n ∞

=-∑收敛。所以收敛域为[)2,2-。

(2)令122x t x +=-,原级数为21sin 2n n t n ∞

=?

? ??

?∑

因为()11s i n 2111sin 2lim lim n n n n n a a n +→∞→∞

??

?

+?

?===?? ???

,所以收敛半径1R =。又1t =时级数21sin 2n n t n ∞

=?? ???∑发散,1t =-时级数21sin 2n n t n ∞

=?

? ???∑收敛,故其收敛域为[)1,1D =-:

再由12112x x +-≤

≤-,解得原级数的收敛域为13,3D ??

=-????

。 (3)()1

121331112333lim lim n n n

n n n

a n a n ++→∞→∞-??

+ ?

??==+-??+ ???

,所以收敛半径13R =,收敛区间为: 11133x -<+<,即4233

x -<<- 当43x =-时,原级数收敛,当2

3

x =-时,原级数发散。

得原级数的收敛域为4

2,33D ??=--????

。 例8:求下列级数的和函数

(1)21021!n n n x n ∞

+=+∑ ,(2)22

1

212n n

n n x ∞

-=-∑ ,(3)()()()201123!n

n n n x n ∞=-++∑ 解(1)

()()12(1)1!23

0(1)!21121lim lim lim n n n n n

a n n n a n n n n +→∞→∞→∞+++===++++ 所以收敛半径R =∞,收敛域为:(),-∞+∞。

2122120000212121!!!!n n n n n n n n n n n x x x x x x x n n n n ∞

∞∞+-====++??

==+????

∑∑∑∑ ()

22222

222122(12)!n x x x x x n x x x xe x e x e xe xe x n ∞='??=+=++=+ ???

∑ 即和函数2

2()2(12)x s x xe x =+。

(2)()()11

2121

2122lim lim n n n n n n

n a a n ++→∞→∞+==-

,所以收敛半径R ==

又x =

(D =。 设级数的和函为()s x ,对幂级数逐项积分得,

()21

220

0112122

n x

x n n n n n n x s x dx x dx -∞

-==-==∑∑?

?

21211()222

212

n n x x x

x

x x ∞-===

=--

∑ ,

(x ∈ 对上式两边求导得

()()

2222

222x x s x x x '

+??== ?-??-,

(x ∈。 (3)易求级数的收敛域为(),-∞+∞。记级数的和函为()s x ,

因为()

()()()1

2123

0011sin 21!23!

n n n n n n x x x x n n -∞

++==--==-++∑∑,

所以

()

()1

23

1sin 23!n n n x

x x n -∞

+=-=-+∑, (),x ∈-∞+∞ 即

()

()1

22

01sin 123!n n n x

x

n x

-∞

+=-=-

+∑, ()0x ≠ 对上式两端求导得:

()()()()1

212

2111

cos sin 23!n n n n x x x x n x -∞

+=+-=-

-+∑

故有()()()

()()1

213

111

cos sin 23!2n n n n S x x x x x n x -∞

+=+-==-

-+∑

, ()0x ≠ 当0x =时,由所给级数知()1

06

S =

。因此 ()()3

1cos sin 02106

x x x x x S x x ?--≠??=??=??

例9 把级数 ()()1

21

22

1121!2

n n n n x n -∞

--=--∑的和函数展开成1x -的幂级数。 解:记级数的和函为()s x ,

即()()()()()1

1

2121

22

111122sin 21!221!22n n n n n n n x x s x x n n ---∞

--==--??=== ?--??

∑∑ ,

()()()()()()221

01111111

sin 2(sin cos cos sin )

222221111112sin

12cos 122!2221!2n

n n n n n x x x s x x x n n -∞

==+---==+--????=-+- ? ?-????

∑∑ (),x ∈-∞+∞

例10 求级数()22

1

12

n

n n

=-∑的和。 解:设

()()()()()2222211

2221021111111112112121111212111ln 122121ln 1ln 12221ln 122n n n n

n n n n n n n n n n s x x x x x

n n n n n x x x n x n x x x x x x n x x x x x x x x ∞

∞∞∞====∞∞-+==∞+=??????==-=- ? ? ?--+-+????????=- ?-+????=----- ?+????=------- ?

??=--+∑∑∑∑∑∑∑()2ln 12

x x x x -++

1,0x x <≠

故级数

()22111111153ln ln ln 22422288412

n

n S n ∞

=??

==-+++=- ?-??∑。 例11 设()111

ln arctan 412

x f x x x x +=+--,试将()f x 展开成x 的幂级数。 解:

()24

440

1

1111111

1141412111n n

n n f x x x x x x x ∞

∞=='=

++-=-+-+-=-=∑∑

所以()()()4410

1

11

041

x

x n

n n n f x f f x dx x

dx x n ∞

+=='=+

==+∑∑

?

?

, 1x <。

例12 设()0n

n n f x a x ∞

==∑,在[]0,1上收敛,试证:当010a a ==时,级数1

1n f n ∞

=??

???∑必定

收敛。

证明 由已知()0

n

n n f x a x

==

∑收敛,所以

0lim n

n a

→∞

=,从而{}n a 有界。即存在0M >,使

得 n a M ≤ ,()1,2,n = ,所以

()12001223

2

1110

1111a a f a M a a n n n n n M

n M n n n

????

=+++≤++== ? ?????

≤=

--

右端对应的级数显然收敛,所以级数

1

1n f n ∞

=?? ???∑收敛,且为绝对收敛。 例13

5

10-。

19

910212??

==+ ???

29

9911111

111110101

0999992192

2!2!2n n n ????????

---+ ? ? ? ??????????? ?=+++++ ? ? ?????

??

?

因为

2

99

11011810

0.002170,0.000019 922!992

??

≈≈

?

??

()

210.0021700.000019 2.00430

≈+-=。

例14 求函数()

2

sin,0

2

0,0

2

T

x x

T

f x

T

x

π

?

≤≤

??

=?

?-≤<

??

的傅立叶展开式。

解:()

f x分段连续,满足展开定理条件

()

22

00

2

1222

sin

2

T T

T

a f x dx xdx

T T T

π

π

-

===

??,

()

()

()

()

()

22

2

2

2

12222

cos sin cos

2

2

,2

11

41

1

0,21

T T

T

n

n

n n

a f x xdx x xdx

T T T T

n k

k

n

n k

πππ

π

π

-

==

-

?

=

+-?

-

=-=?

-?

=+

?

??

,1,1,2,

n k

≠=

另求

1

a:2

2

10

22214

sin cos cos0

4

T

T x x x

a dx

T T T T

πππ

π

==-=

?,

()

22

2

12222

sin sin sin0,1 2

T T

T

n

nx x nx

b f x dx dx n

T T T T T

πππ

-

===≠

??

另求

1

b:2

10

2221

s i n s i n

2

T x x

b dx

T T T

ππ

==

?

所以函数()

f x的傅立叶级数为:

()()

2

1

112214

sin cos,,

241

n

x nx

f x x

T n T

ππ

ππ

=

=+-∈-∞+∞

-

∑。

例15 已知函数()2,02

f x x xπ

=<<,是周期为2π的周期函数,

(1)求()

f x的傅立叶级数;

(2) 证明2

21

16n n π∞

==∑;

(3) 求积分

()

1

0ln 1x dx x +?的值。

解:(1)()()2

222

00

1

1

1

83

a f x dx f x dx x dx π

π

π

ππππ

π

-=

==

=???

22202201

4cos ,

14sin ,

1,2,n n a x nxdx n b x nxdx n n π

ππππ=

=

==-=??

所以有()22

214114cos sin ,

0,23n x nx nx x n

n πππ∞=??

=+-∈ ???∑

由收敛定理,0,2x π=时,级数收敛于

()()

2002022

f f ππ++-=,

又x π=是连续点,所以22

2141

4cos ,

3n n n

πππ∞

==+∑即:

()

2

2

1

112

n

n n π∞

=-=

(2)当0x =时,有22

2141423n n ππ∞=+=∑,亦即:221

16n n π∞

==

∑。 (3)积分

()

1

0ln 1x dx x +?是广义积分,0x =是瑕点,由广义积分的定义的

()()()

1

1

111

2

011000ln 1111lim lim n n

n n n n x x

x dx dx x x n n εεε+++

∞∞--==→→+=-=-∑∑??

()

2

1

2

1

1112

n n n π∞

-==-=∑

第十二章无穷级数练习题含答案知识分享

第十二章 无穷级数练习 1.判别下列级数的敛散性: 21 2 1 1 1 1 11 ! 21sin ;ln(1);;( )32 n n n n n n n n n n n n ∞ ∞ ∞ ∞ +====++-∑∑∑∑ 2.判别下列级数是绝对收敛,条件收敛,还是发散? 211 (1)[3n n n n ∞ -=-+ ∑; 21 cos 3n n n n ∞ =∑; 1 (1)n n ∞ -=-∑。 3. 求幂级数0 n n ∞ =的收敛区间。 4.证明级数1 !n n n n x n ∞ =∑当||x e <时绝对收敛,当||x e ≥时发散。 注:数列n n n x )11(+=单调增加,且e x n n =∞→lim 。 5.在区间(1,1)-内求幂级数 1 1 n n x n +∞ =∑ 的和函数。 6.求级数∑∞ =-2 22)1(1 n n n 的和。 。

7.设1111 2,()2n n n a a a a +== + (1,2,n =L )证明 1)lim n n a →∞ 存在; 2)级数 1 1 ( 1)n n n a a ∞ =+-∑收敛。 8.设40tan n n a xdx π = ? , 1) 求211 ()n n n a a n ∞ +=+∑的值; 2) 试证:对任意的常数0λ>,级数1 n n a n λ∞ =∑收敛。 9.设正项数列}{n a 单调减少,且∑∞ =-1)1(n n n a 发散,试问∑∞ =??? ? ??+111n n n a 是否收敛?并说明理 由。 10.已知222111358π+++=L [参见教材246页],计算1 011ln 1x dx x x +-???。 。

微积分习题之无穷级数共21页文档

[填空题] 1.数项级数∑ ∞ =+-1) 12)(12(1n n n 的和为 21 。 2.数项级数∑∞ =-0 )!2()1(n n n 的和为 1cos 。 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分 和极限;另一种是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点的值。 3.设1))1((lim ,1,01 =->>∞ →n n p n n a e n p a 且,若级数∑∞ =1 n n a 收敛,则p 的取值范 围是),2(+∞。 分析:因为在∞→n 时,)1(1-n e 与 n 1 是等价无穷小量,所以由1))1((lim 1=-∞ →n n p n a e n 可知,当∞→n 时,n a 与 1 1-p n 是等价无穷小量。由因为 级数∑∞=1 n n a 收敛,故∑ ∞ =-11 1 n p n 收敛,因此2>p 。 4.幂级数∑∞ =-0 2)1(n n n x a 在处2=x 条件收敛,则其收敛域为 ]2,0[。 分析:根据收敛半径的定义,2=x 是收敛区间的端点,所以收敛半径 为1。由因为在0=x 时,级数∑∑∞ =∞ ==-0 2) 1(n n n n n a x a 条件收敛,因此应填]2,0[。 5.幂级数∑∞ =-+12) 3(2n n n n x n 的收敛半径为 3。 分析:因为幂级数缺奇次方项,不能直接用收敛半径的计算公式。因 为

22)1(21131)3(2)3(21lim x nx x n n n n n n n n =-+-+++++∞→, 所以,根据比值判敛法,当3x 时,原级数发散。由收敛半径的定义,应填3。 6.幂级数n n n x n n ∑∞ =??? ??+221ln 1 的收敛域为 )1,1[-。 分析:根据收敛半径的计算公式,幂级数n n x n n ∑ ∞ =2 ln 1收敛半径为1,收敛域为)1,1[-;幂级数n n n x ∑ ∞ =22 1收敛域为)2,2(-。因此原级数在)1,1[-收敛,在),)21[1,2(Y --一定发散。有根据阿贝尔定理,原级数在),2[]2,(+∞--∞Y 也一定发散。故应填)1,1[-。 7.已知),(,)(0+∞-∞∈=∑∞ =x x a x f n n n ,且对任意x ,)()(x f x F =',则)(x F 在 原点的幂级数展开式为 ),(,)0(11+∞-∞∈+∑∞ =-x x n a F n n n 。 分析:根据幂级数的逐项积分性质,及),(,)(0 +∞-∞∈=∑∞ =x x a x f n n n ,得 ∑?∑? ∞ =+∞=+=?? ? ??==-010 00 1)()0()(n n n x n n n x x n a dt t a dt t f F x F , 故应填),(,)0(1 1+∞-∞∈+∑∞ =-x x n a F n n n 。 8.函数 x xe x f =)(在1=x 处的幂级数展开式为 ?? ????-???? ??+-+∑∞=1)1(!1)!1(11n n x n n e 。 分析:已知∑ ∞ ==0! 1n n x x n e )),((+∞-∞∈x ,所以

无穷级数单元测试题答案知识分享

无穷级数单元测试题 答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、收敛 3、5 4、π 33--,π π12 48+ -, ???????±±=--±±==,...3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件,

故该交错级数条件收敛。 (2)∑∞ =?? ? ??+11n n n n 解:lim lim( )[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a 解:另设级数1 () n v n a b =+ 111111 1(1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4) ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++ (补充条件1x <,或求出R )

无穷级数练习题word版

无穷级数习题 一、填空题 1、设幂级数 n n n a x ∞ =∑的收敛半径为3,则幂级数 1 1 (1) n n n na x ∞ +=-∑的收敛区间为 。 2、幂级数 0(21)n n n x ∞ =+∑的收敛域为 。 3、幂级数 21 1(3) 2 n n n n n x ∞ -=-+∑的收敛半径R = 。 4 、幂级数 n n ∞ =的收敛域是 。 5、级数21 (2)4n n n x n ∞ =-∑的收敛域为 。 6、级数0 (ln 3)2n n n ∞ =∑的和为 。 7、 1 1 1()2n n n ∞ -==∑ 。 8、设函数2 ()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为 01 (cos sin )2 n n n a a nx b nx ∞ =++∑,则其系数3b 的值为 。 9、设函数2 1, ()1,f x x -?=?+? 0,0, x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。 10、级数 1 1 (1)(2)n n n n ∞ =++∑的和 。 11、级数21 (2)4n n n x n ∞ =-?∑的收敛域为 。 参考答案:1、(2,4)- 2、(1,1)- 3 、R = 4、[1,1)- 5、(0,4) 6、 22ln 3- 7、4 8、23π 9、212π 10、1 4 11、(0,4)

二、选择题 1、设常数0λ>,而级数 21 n n a ∞=∑ 收敛,则级数1 (1)n n ∞ =-∑是( )。 (A )发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p += ,2 n n n a a q -=, 1.2n =,则下列命题中正确的是( )。 (A )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (B )若 1n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (C )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不一定。 (D )若 1 n n a ∞ =∑绝对收敛,则 1 n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不定。 3、设0,1,2 n a n >=,若 1n n a ∞ =∑发散, 1 1 (1) n n n a ∞ -=-∑收敛,则下列结论正确的是( )。 (A ) 21 1n N a ∞ -=∑收敛, 21 n n a ∞ =∑发散. (B ) 21n n a ∞ =∑收敛, 21 1 n n a ∞ -=∑发散. (C ) 21 21 ()n n n a a ∞ -=+∑收敛. (D )2121 ()n n n a a ∞ -=-∑收敛. 4、设α 为常数,则级数 21 sin()( n n n α∞ =∑是( ) (A )绝对收敛. (B )条件收敛. (C )发散. (D )收敛性与α取值有关. 5、级数 1 (1)(1cos )n n n α ∞ =--∑(常数0α)是( ) (A )发散. (B )条件收敛. (C ) 绝对收敛. (D )收敛性与α有关. 6 、设(1)ln(1)n n u =-+ ,则级数 (A ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都收敛. (B ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都发散.

无穷级数单元测试题

第十二章 无穷级数单元测试题 一、判断题 1、。收敛,则3)3(lim 21=+-∞→∞=∑n n n n n u u u ( ) 2、若正项级数∑∞=1 n n u 收敛,则∑∞=12n n u 也收敛。 ( ) 3、若正项级数∑∞=1n n u 发散,则。1lim 1>=+∞→r u u n n n ( ) 4、若∑∞=12n n u ,∑∞=12n n v 都收敛,则n n n v u ∑∞ =1绝对收敛。 ( ) 5、若幂级数n n n x a )23(1 -∑∞ =在x=0处收敛,则在x=5处必收敛。( ) 6、已知n n n x a ∑∞=1的收敛半径为R ,则n n n x a 21∑∞=的收敛半径为R 。 ( ) 7、n n n x a ∑∞=1和n n n x b ∑∞=1的收敛半径分别为b a R R ,,则n n n n x b a ∑∞ =+1)(的收敛半径为 ),min(b a R R R =。 ( ) 8、函数f(x)在x=0处的泰勒级数 ...! 2)0(!1)0()0(2+''+'+x f x f f 必收敛于f(x)。 ( ) 9、f(x)的傅里叶级数,每次只能单独求0a ,但不能求出n a 后, 令n=0得0a 。 ( ) 10、f(x)是以π2为周期的函数,并满足狄利克雷条件,

n a (n=0,1,2,...), n b (n=1,2,...)是f(x)的傅里叶系数,则 必有)sin cos (2)(1 0nx b nx a a x f n n n ++=∑∞=。 ( ) 二、选择题 1、下列级数中不收敛的是( ) A ∑∞ =+1)11ln(n n B ∑∞=131n n C ∑∞=+1)2(1n n n D ∑∞=-+14)1(3n n n n 2、下列级数中,收敛的是( ) A ∑∞ =--11)1(n n n ; B ∑∞=+-1232)1(n n n n ; C ∑∞=+115n n ; D ∑∞=-+1231n n n . 3、判断∑∞=+11 11n n n 的收敛性,下列说法正确的是( ) A 因为 01 1>+n ,所以此级数收敛 B 因为01lim 11=+∞ →n n n ,所以此级数收敛 C 因为 n n n 111 1>+,所以此级数发散。 D 以上说法均不对。 4、下列级数中,绝对收敛的是( ) A ∑∞=-1)1(n n n ; B ∑∞=++12123n n n ; C ∑∞=-??? ??-1132)1(n n n ; D ∑∞=-+-11)1ln()1(n n n . 5、若级数∑∞ =--112)2(n n n a x 的收敛域为[3,4),则常数a=( )

无穷级数习题

第十二章 无穷级数习题课资料 丁金扣 一、本章主要内容 常数项级数的概念与基本性质,正项级数审敛法,交错级数与莱布尼兹审敛法,绝对收敛与条件收敛。幂级数的运算与性质(逐项求导、逐项积分、和函数的连续性),泰勒级数,函数展开为幂级数及幂级数求和函数,周期函数的傅立叶级数及其收敛定理。 二、本章重点 用定义判别级数的收敛,P-级数、正项级数的审敛法,莱布尼兹型级数的审敛法,幂级数的收敛域与收敛半径,幂级数求和函数,函数的泰勒级数,傅立叶级数收敛定理。 三、本章难点 用定义判别级数的收敛,P-级数审敛法,幂级数求和函数,函数的泰勒级数,傅立叶级 数收敛定理。 四、例题选讲 例1:判别级数()2 1ln 1ln ln 1n n n n ∞ =??+ ???+∑的敛散性。 (用定义) 解:原式=()()2 2ln 1ln 11 ()ln ln 1ln ln(1)n n n n n n n n ∞ ∞==+-=-++∑∑ 级数的部分和1 11111ln 2ln3ln3ln 4ln ln(1)n S n n ??????=-+-++- ? ? ?+?????? 111ln 2ln(1)ln 2 n = -→+, ()n →∞ 所以原级数收敛,且收敛于 1 ln 2 。 例2:证明级数 2 cos cos(1) n n n n ∞ =-+∑收敛。(利用柯西审敛原理) 证明:1 cos cos(1) n p n p n m n m m S S m ++=+-+-= ∑ ()()()11cos 1cos 11 ()cos 111n p m n n n p m n m m n p +-=+++=--+- +++∑ 得1 111112 ()111n p n p n m n S S n m m n p n +-+=+-≤+-+=++++∑, 对任意的0ε>,取2N ε??=???? ,则当n N >时,对所有p N ∈,都有 n p n S S ε +-<,

无穷级数 测试题

1. 填空3分一道(1)若级数1n n u ∞=∑与1n n v ∞=∑都收敛,则()1 .n n n u v ∞ =+∑必 (2)若常数项级数1n n u ∞=∑收敛,则必有lim .n n u →∞ = 2.14分 下列级数中条件收敛的是( )绝对收敛的是() (A)()11112n n n ∞ =-+∑ (B)( )11n ∞=-∑ (C)()111n n n ∞=-∑ (D)()2111n n n ∞=-∑ (E)( )11n n ∞=-∑ (F )() 111n n ∞-=-∑ 下列题10分一道 3.判定级数112n n n ∞=?∑的敛散性(收敛或者发散) 4.判定级数13!n n n n n ∞=?∑的敛散性 5.判定级数()111001n n n ∞ =+∑的敛散性 6.判定级数211ln 1n n ∞=??+ ???∑的敛散性 7.求幂级数()131n n n n x n ∞=-∑的收敛半径及收敛区间(开) 8. 求幂级数11!n n x n ∞ =∑的收敛区间 9.求幂级数112n n nx ∞-=∑的收敛区间及和函数 10.将13 x +展开成()1x -的幂级数,并求其收敛区间。 知识点归纳: 一、正项级数:1.调和级数11n n ∞ =∑发散。 2.11p n n ∞=∑:当p>1时,收敛,p ≤1时发散(包括一系列等价无穷小) 3.比值审敛法(针对通项里出现了,!n a n ):1lim n n n u u +→∞ 的值<1,收敛;>1则发散;等于1,方法用错了,该用第2条。 二.交错级数:()11n n n u ∞=-∑,判定lim 0n n u →∞≠则该级数发散;lim 0n n u →∞ =, 1n n u u +≤,则该级数收敛,此时该级数分条件收敛和绝对收敛,就是将该级数加绝对值()111n n n n n u u ∞∞ ==-=∑∑,去掉麻烦的()1n -, 此时判别法回到正项级数判别法:1)如果还收敛的话,则为绝对收敛,如果发散则为条件收敛。

无穷级数练习题

无穷级数练习题 无穷级数习题 一、填空题 ,,nn1,1、设幂级数的收敛半径为3,则幂级数的收敛区间为。axnax(1),,,nnn0,n1, ,n2、幂级数的收敛域为。 (21)nx,,0n, ,n21n,R,3、幂级数的收敛半径。 x,nn(3)2,,n1, n,x4、幂级数的收敛域是。 ,,1n0n, 2n,(2)x,5、级数的收敛域为。 ,nn4n,1 n,(ln3)6、级数的和为。 ,n20n, ,1n1,7、。 n,(),2n1, 28、设函数fxxx(),,, 的傅里叶级数展开式为 (),,,,,x ,a0,,(cossin),则其系数b的值为。 anxbnx,nn321n, ,,,,x0,,1,,2,9、设函数则其以为周期的傅里叶级数在点处的fx(),x,,,20,,,x1,,x,, 敛于。 ,110、级数的和。 ,nnn,,(1)(2)n1, 2n,(2)x,11、级数的收敛域为。 ,nn,4n,1 ,1,1)R,3参考答案:1、 2、 3、 4、 5、 (2,4),(1,1),(0,4), 21212,,46、 7、 8、 9、 10、 11、 (0,4)422ln3,3 二、选择题 1

,,an2n1、设常数,而级数收敛,则级数是( )。 ,,0a(1),,,n21n1n,,,,n(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛与,有关 aa,aa,nnnn,,n,1.2,则下列命题中正确的是( )。 2、设q,p,nn22 ,,, (A)若条件收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (B)若绝对收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (C)若条件收敛,则与的敛散性都不一定。 apq,,,nnn,n1n1n1,, ,,, (D)若绝对收敛,则与的敛散性都不定。 apq,,,nnn,n1n1n1,, ,,n1,an,,0,1,23、设,若发散,收敛,则下列结论正确的是( )。 a(1),a,,nnnn1,n1, ,,,,(A)收敛,发散. (B)收敛,发散. aaaa,,,,21n2n2n21n,,N1,n1n1n1,,, ,, (C)收敛. (D)收敛. ()aa,()aa,,,212nn212nn,,n1n1,, ,sin()1n,4、设为常数,则级数,是( ) (),,2nnn1, (A)绝对收敛. (B)条件收敛. (C)发散. (D)收敛性与取值有关. , ,,n,05、级数(1)(1cos),,(常数)是( ) ,n1n, (A)发散. (B)条件收敛. (C) 绝对收敛. (D)收敛性与有关. , 1n6、设,则级数 u,,,(1)ln(1)nn

无穷级数单元测试题答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、 收敛 3、5 4、π33--,ππ1248+-,???????±±=--±±==,... 3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件, 故该交错级数条件收敛。

(2)∑∞ =??? ? ?+11n n n n 解:lim lim()[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a Λ 解:另设级数1 () n v n a b =+ 1111111 (1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ L L 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4)ΛΛ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) Λ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++L (补充条件1x <,或求出R ) 逐项求导,得2462 1 ()11f x x x x x '=++++=-L (这是公比21q x =<的几何级数)

第8章 无穷级数练习题解析

第8章 无穷级数练习题 习题8.1 1.判断题(对的划“√”,错的划“×”) (1)级数部分和的极限已求出,则级数收敛.若部分和的极限不存在,则级数发散. ( ) (2)若级数 ∑∞ =±1 )(n n n v u 收敛,则级数∑∞=1 n n u 与级数∑∞ =1 n n v 都收敛. ( ) (3)改变级数的有限项不会改变级数的和.( ) (4)当0lim =∞ →n n u 时,级数 ∑∞ =1 n n u 不一定收敛.( ) 2.用级数的“∑”形式填空 (1),!3!2!1 +++ 即 . (2),7 1 51311 +-+- 即 . (3) +++4 ln 313ln 212ln 1即 . (4),6 3 524101 ++++ +-即 . 3.判断下列各级数的收敛性,并求收敛级数的和 (1) -+-33227 47474. (2) +++πππ5 43ln ln ln . (3) +?+?+?751531311. (4) ++++7 4 53321.

(5)∑∞ = -+ 1 ) 1 ( n n n. 4.级数∑∞ =+ 1 ) 3 1 2 1 ( n n n 是否收敛?若收敛,求其和. 5.制造灯泡需要抽去玻璃泡中的空气,设灯泡中原有空气的质量m,在多次抽气时,每一次抽出的空气质量为上次剩余质量的20%,连续不断地抽,抽出的空气质量最多是多少? 习题8.2 1.用“收敛”或“发散”填空 (1)∑∞ =13 1 n n .()(2)∑∞ =1 2 2 2 ln n n .() (3)∑∞ =1! n n.()(4)∑∞ =1 2.1 1 n n .() 2.判断下列正项级数的收敛性

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数 (A) 用定义判断下列级数的敛散性 1 . n 2n 1 ; . 1 ;3. 1 1 。 2 n 1 2n 2n2 n 1 3 n 5 n n 1 判断下列正项级数的敛散性 . n! ;5. n e ; 6. n 1 ;7. 2n 3 ;8. n 4 ; 4 n 1 e n 1 2n n 1 n n 3 n 1 n! n 1 100 n n n n n 1 n 9. ;10. 3n n 1 2n 。 n 1 1 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛 . 1 n 1 n 1 ; 12. 1 n 1 ; 13.1.1 1.01 1.001 1.0001; 11 2 n ln n n 1 n 2 14. 1 22 2 3 1 4 1 ; 2 1 3 2 4 2 求下列幂级数的收敛半径和收敛区间 . 3n x n ;16. 1 n x n ; 17. n! x n ; . 1 n ; 15 n n 18 n 1 2n n 1 n 1 n n 1 n 1 19. 1 2n 1 ; 20. n 2 n ; 1 2 n 1 x n 1 3 n x n 求下列级数的和函数 21. n 1 nx n 1 ; 22. n 1 2 1 n 1 x 2n 1 ; 将下列函数展开成 x x 0 的幂的级数 23. shx e x e x , x 0 0 ;24. cos 2 x , x 0 0 ; 2 25. 1 x ln 1 x , x 0 0 ; 26. 1 , x 0 3 ; x 将下列函数在区间 , 上展开为付里叶级数 27. A x cos x , x 。28. f x 2t , x 2

数项级数经典例题大全 (1)

第十二章 数项级数 1 讨论几何级数 ∑∞ =0n n q 的敛散性. 解 当1||q 时, , =n S 级数发散 ; 当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(12 1 -+= , ) (∞→n , 级数发散 . 综上, 几何级数 ∑∞ =0 n n q 当且仅当 1||

4、 讨论级数∑ ∞ =-1352n n n 的敛散性. 解 5 2 , 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散. 5、 证明2-p 级数 ∑∞ =121 n n 收敛 . 证 显然满足收敛的必要条件.令 21 n u n = , 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++p k p k p n n n n p n n k n k n k n u u u 112 2 1 ,1 11) )(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 | ∑=+p k k n u 1 |不失真地放大成只含n 而不含p 的式子, 令其小于ε,确定N . 6、 判断级数∑∞ =1 1 s i n n n n 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要 条件) 7、 证明调和级数∑ ∞ =11n n 发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n n n ln 1 1 211 )1ln(+<+++ <+ . 即得+∞→n S ,) (∞→n . ) 注: 此例为0→n u 但级数发散的例子. 8、 考查级数 ∑∞ =+-1 2 11 n n n 的敛散性 . 解 有 , 2 11 012222n n n n n <+-?>+- 9、 判断级数 ()() +-+??-+??++????+??+)1(41951)1(32852951852515212n n

级数补充题

无穷级数 1. 已知数列{}n na 收敛,求证级数 ∑∞ =--1 1)(n n n a a n 收敛的充要条件是级数∑∞ =1 n n a 收敛。 分析:考虑 ∑∞ =--1 1)(n n n a a n 与∑∞ =1 n n a 的部分和n S 与n σ,验证n S n n na a +--=-01σ。 2. 设{}n u 是单调增加的正数数列,试证当{}n u 有界时级数 ∑∞ =+??? ? ??-111n n n u u 收敛。 分析:11n 11n 0u u u u u u a n n n n -≤ -=≤+++,验证级数∑∞ =+-1 1)(n n n u u 收敛。 3. 设 ∑∞ =1 n n u 为正项级数,{}n v 为正实数列,记11 ++-= n n n n n v u v u a ,如果a a n n =∞→lim ,且a 为 正实数或正无穷,证明级数 ∑∞ =1 n n u 收敛。 分析:验证级数 ∑∞ =++-1 11)(n n n n n v u v u 收敛,使用比较判别法。 4. 设 3,2,1),1 (21,211=+==+n a a ? a a n n n ,证明:(1)n n a ∞→lim 存在;(2)级数∑∞ =+??? ? ??-111n n n a a 收敛。 5. 设n F 为斐波那契数列,10=F ,11=F ,n F 21--+=n n F F ,1>n 。(1)证明 1 1 2 23--≤≤?? ? ??n n n F ;(2)级数∑∞ =01n n F 收敛,级数∑∞ =2ln 1 n n F 发散。 6. 设{}n a 满足不等式n k a a 1000≤≤,其中 ,2,1,2=≤≤? n n k n ,又级数∑∞ =1 n n a 收敛, 证明:0lim =∞ →n n na 。

无穷级数练习题

无穷级数习题 一、填空题 1、设幂级数 n n n a x ∞ =∑的收敛半径为3,则幂级数 1 1 (1) n n n na x ∞ +=-∑的收敛区间为 。 2、幂级数 0(21)n n n x ∞ =+∑的收敛域为 。 3、幂级数 21 1(3) 2 n n n n n x ∞ -=-+∑的收敛半径R = 。 4 、幂级数 n n ∞ =的收敛域是 。 5、级数21(2)4n n n x n ∞ =-∑的收敛域为 。 6、级数0 (ln 3)2n n n ∞ =∑的和为 。 7、 1 1 1()2n n n ∞ -==∑ 。 8、设函数2 ()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为 01 (cos sin )2 n n n a a nx b nx ∞ =++∑,则其系数3b 的值为 。 9、设函数2 1, ()1,f x x -?=?+? 0,0, x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。 10、级数 1 1 (1)(2)n n n n ∞ =++∑的和 。 11、级数21 (2)4n n n x n ∞ =-?∑的收敛域为 。 参考答案:1、(2,4)- 2、(1,1)- 3 、R = 4、[1,1)- 5、(0,4) 6、 22ln 3- 7、4 8、23π 9、2 12 π 10、14 11、(0,4) 二、选择题

1、设常数0λ>,而级数 21 n n a ∞=∑ 收敛,则级数1 (1)n n ∞ =-∑是( )。 (A )发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p += ,2 n n n a a q -=, 1.2n =,则下列命题中正确的是( )。 (A )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (B )若 1n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (C )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不一定。 (D )若 1 n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不定。 3、设0,1,2 n a n >=,若 1n n a ∞ =∑发散, 1 1 (1) n n n a ∞ -=-∑收敛,则下列结论正确的是( )。 (A ) 21 1n N a ∞ -=∑收敛, 21 n n a ∞ =∑发散. (B ) 21n n a ∞ =∑收敛, 21 1 n n a ∞ -=∑发散. (C ) 21 21 ()n n n a a ∞ -=+∑收敛. (D )2121 ()n n n a a ∞ -=-∑收敛. 4、设α 为常数,则级数 21 sin()( n n n α∞ =∑是( ) (A )绝对收敛. (B )条件收敛. (C )发散. (D )收敛性与α取值有关. 5、级数 1 (1)(1cos )n n n α ∞ =--∑(常数0α)是( ) (A )发散. (B )条件收敛. (C ) 绝对收敛. (D )收敛性与α有关. 6 、设(1)ln(1)n n u =-+ ,则级数 (A ) 1n n u ∞ =∑与 21 n n u ∞ =∑都收敛. (B ) 1n n u ∞ =∑与 21 n n u ∞ =∑都发散. (C ) 1 n n u ∞ =∑收敛而 20 n n u ∞ =∑发散. (D ) 1 n n u ∞ =∑发散而 21 n n u ∞ =∑收敛.

无穷级数习题课及答案

第十一章 无穷级数 (A) 用定义判断下列级数的敛散性 1. ( ) ∑∞=+-+1 12n n n ;2.()∑ ∞ =+1 2221 n n n 判断下列正项级数的敛散性 1.∑∞ =1100!n n n 2.() ∑∞ =++133 2n n n n ;3.∑∞=14!n n n ; 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛 1.() ∑∞ =---11 1 21n n n n ; 2.Λ+-+-0001.1001.101.11.1; 3. Λ++-+++-1 44 133********; 求下列幂级数的收敛半径和收敛区间 1.∑ ∞ =13n n n x n ;2.∑∞ =1 !n n x n ;3.() ∑ ∞ =-1121 n n n x n ;4.∑ ∞ =+-11 21 2 1 n n n x ;5.∑∞ =123 n n n x n 求下列级数的和函数 1.∑∞ =-11 n n nx ;2.121 1 2 1+∞ =+∑ n n n x ; 将下列函数展开成0x x -的幂的级数 1.x 2cos ,00=x ;2.()()x x ++1ln 1,00=x ;3. x 1 ,30=x ; (B) 用定义判断下列级数的敛散性 ()() ∑∞ =++043131 n n n 判断下列正项级数的敛散性 1.∑ ∞ =+1n )1(1 n n ;2.1131++∑∞=n n n ;3.∑∞ =13 n n n ; 判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛

1.() ∑∞ =-?-1 1 311n n n n ;2.()∑∞ =--1 n 121 1n n ; 求下列幂级数的收敛半径、收敛区间 1.()∑∞ =-1 21n n n n x ; 求下列幂级数的收敛区间、和函数与级数和 求∑∞ =--11 ) 1(n n x n 的收敛区间与和函数,并由此求数项级数∑ ∞ =-1 1 2 n n n 的和; 将下列函数展开成0x x -的幂的级数 1.()13212+-= x x x f ,00 =x ;2.()2 1 x x f =,10=x

word版习题课无穷级数

第十二章 无穷级数 章主要内容小结 一、数项级数的审敛法 1、利用部分和数列的极限判别级数的敛散性; 2、正项级数的审敛法 若0lim ≠∞ →n n u ,则级数 ∑∞ =1 n n u 发散;否则由比值法、根值法、比较法及其极限形式判别; 对一般项出现阶乘、及n 次幂形式,多用比值法,?? ? ??=><=+∞→,失效,发散收敛 11,1lim 1ρρρρn n n u u ; 对一般项出现n 次幂形式,多用根值法,?? ? ??=><=∞ →,失效,发散收敛11,1lim ρρρρn n n u ; 对一般项可经缩小与放大处理后化成p 级数或几何级数形式,则用p 级数或几何级数作为比较标准,采用 比较法或极限形式,对比值法与根值法中1=ρ的情况,也可用比较法、求部分和法、积分判别法做; 注意:能用比值法判别收敛的级数一定可用根值法判别收敛,因为可以证明当n n n u u 1 lim +∞→存在时,n n n u ∞→lim 也存在,且n n n n n n u u u 1 lim lim +∞→∞ →=,反之不一定成立。 3、任意项级数审敛法 ∑∞ =1 n n u 为收敛级数,若 ∑∞ =1 n n u 收敛,则 ∑∞ =1 n n u 绝对收敛;若 ∑∞ =1n n u 发散,则 ∑∞ =1 n n u 条件收敛; 莱布尼兹判别法:01>≥+n n u u ,且0lim =∞ →n n u 则交错级数 ∑∞ =--1 1 ) 1(n n n u 收敛,且1+≤n n u r 。 (二)求幂级数收敛域的方法 1、标准形式的幂级数,先求收敛半径1 lim +∞→=n n n a a R ,再讨论R x ±=的敛散性; 2、?? ?直接用比值法或根值法 式通过换元转化为标准形非标准形式的幂级数。 (三)幂级数和函数的求法 1、求部分和式的极限; 2、初等变换法:分解、直接套用公式; 3、在收敛区间内,采用逐项求导与逐项积分的方法,套用公式,再对所求的和作逆运算;

超越考研《无穷级数》练习题参考答案

无穷级数 P127-练习1 判别下列级数的敛散性: 1. 31 2 ln n n n ∞ =∑ ; 【解】 32 14 54 ln ln lim lim 01→∞ →∞ ==n n n n n n n ,而级数51 4 1∞ =∑ n n 收敛 (5 4 p = 的p -级数), 则由正项级数的极限形式的比较判别法知 31 2 ln n n n ∞ =∑ 收敛. 2. 21 sin 2 n n n π ∞ =∑. 【解】因为2 2 sin 2 2 π π≤ n n n n , 由于2 1 1 2(1)12 lim lim 122n n n n n n n u n u p p ++ +==<,故由正项级数的比值判别法知级数2 12π∞ =∑n n n 收敛. 再由正项级数的比较判别法知21 sin 2 n n n π ∞ =∑收敛,且为绝对收敛. P128-练习2 设常数0,a >试判别级数 1 (1)(1cos )n n a n ∞ =--∑是条件收敛还是绝对收敛. (1992) 【解】211 1(1)(1cos )(1cos )2sin 2n n n n a a a n n n ∞ ∞∞ ===--=-=∑∑∑, 因为正项级数212n a n ∞ =?? ?? ?∑收敛,而2 2sin 22a a n n ??≤ ???, 所以 正项级数211 (1cos )2sin 2n n a a n n ∞ ∞ ==-=∑∑收敛, 从而 级数 1 (1)(1cos )n n a n ∞ =--∑绝对收敛.

P129-练习3 设正项级数 1 n n a ∞ =∑收敛,且常数(0,)2π λ∈,则21(1)(tan )n n n n a n λ ∞ =-∑( ). (A )绝对收敛 (B )条件收敛 (C )发散 (D )收敛性与λ有关 【解】因正项级数 1 n n a ∞ =∑收敛,所以 21 n n a ∞ =∑也收敛. 又22tan lim lim tan ,0n n n n n a n n a n l l l l ==>,故由正项级数的极限形式的比较判别法知 21 (1)(tan )n n n n a n λ ∞ =-∑是绝对收敛的. 选(A ) P130-练习4 设级数 1 n n a ∞ =∑与 1 n n b ∞ =∑均收敛,且n n n a c b ≤≤,证明:级数 1 n n c ∞ =∑收敛. 【证明】由0n n n n n n n a c b c a b a ≤≤?≤-≤-, 故级数 1 1 (), ()n n n n n n b a c a ∞ ∞ ==--∑∑均为正项级数. 因为级数1 n n a ∞ =∑与 1 n n b ∞ =∑均收敛, 则 1 ()n n n b a ∞ =-∑收敛,由正项级数的比较判别法知1 ()n n n c a ∞ =-∑收敛, 又由于级数()1 1 ()n n n n n n c a c a ∞∞ ===+-∑∑,则由性质知级数1 n n c ∞ =∑收敛. P133-练习5 求幂级数121(1)21 n n n x n -¥ =--?的收敛域及和函数. (2010) 【解】易求得级数的收敛半径1R =,且在1x =±时级数均收敛,故收敛域为[1,1]-; 当()1,1x ∈-时 ,设11221 111(1)(1)()()2121 n n n n n n S x x x x xS x n n --ゥ -==--===--邋, 其中121 11(1)()21 n n n S x x n -¥ -=-=-?, 而12112212 00 1 1 (1)1 ()(1)arctan 211n x x x n n n n n S x x dx x dx dx x n x -ゥ---==¢骣骣 -÷÷??÷==-==÷??÷÷??÷-+桫桫邋蝌 , 故1()()arctan ,[1,1]S x xS x x x ==-

相关文档
最新文档